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SYMPLECTIC HOMOLOGY OF DISC COTANGENT
BUNDLES OF DOMAINS IN EUCLIDEAN SPACE

KEI IRIE

Let V be a bounded domain with smooth boundary in R", and D*V
denote its disc cotangent bundle. We compute symplectic homology of
D*V, in terms of relative homology of loop spaces on the closure of
V. We use this result to show that the Floer-Hofer—Wysocki capacity
of D*V is between 2r(V) and 2(n + 1)r(V'), where r(V') denotes the
inradius of V. As an application, we study periodic billiard trajectories
on V.

1. Introduction

1.1. Main result. Let us consider the symplectic vector space T*R", with
coordinates pi,...,DPn,q1,---,qn and the standard symplectic form w, :=
dpr1 N dq1 + - + dpp N dgn. For any bounded open set U C T*R™ and

real numbers a < b, one can define a Zy-module SHLa’b)(U ), which is called
symplectic homology. This invariant was introduced in [7]. Our first goal

is to compute SHLa’b)(U ), when U is a disc cotangent bundle of a domain
in R™.
First, let us fix notations. For any domain (i.e., connected open set) V' C
R™, its disc cotangent bundle D*V C T*R" is defined as
DV :={(¢;p) e T'R" | ¢ € V,|p| < 1}.

We use the following notations for loop spaces:
e A(R") := WL2(SY R"), where S! := R/Z.
o A<*(R"™):={y € A(R") | length of v < a}.
e For any subset S C R", we set

A(S) 1= {7 € AR™) [ 4(S1) € S}, A<(S) i= A(S) N A< (RY).
Then, the main result in this note is the following:
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Theorem 1.1. Let V' be a bounded domain with smooth boundary in R",
and V' denote its closure in R™. For any a < 0 and b > 0, there exists a
natural isomorphism

SH?(D*V) = H, (A<0(V), A<Y(V) \ A(V)).

Moreover, for any 0 < b~ < b, the following diagram commutes:

~

SHYY )(D*V) — H, (A<Y" (V),A<"" (V) \ A(V))

| |

SHY ) (D*V) —z= Ho (A< (V), A< (V) \ A(V)).

The left vertical arrow is a natural map in symplectic homology and the right
vertical arrow s induced by inclusion.

1.2. Floer—Hofer—Wysocki capacity and periodic billiard trajec-
tories. By using symplectic homology, one can define the Floer—Hofer—
Wysocki capacity, which is denoted as crpgw. The Floer-Hofer—Wysocki
capacity was introduced in [8]. We recall its definition in Section 2.4. The
Floer—-Hofer-Wysocki capacity of a disc cotangent bundle D*V is important
in the study of periodic billiard trajectories on V (for precise definition, see
Definition 6.3):

Proposition 1.2. Let V be a bounded domain with smooth boundary in R™.
Then, there exists a periodic billiard trajectory v on V' with at most n + 1
bounce times such that length of v = cppw (D*V').

Remark 1.3. The idea of using symplectic capacities to study periodic
billiard trajectory is due to Viterbo [14]. See also [5], in which a result
similar to Proposition 1.2 (Theorem 2.13 in [5]) is proved. Proposition 1.2
is essentially the same as Theorem 13 in [11]. However, our formulation of
symplectic homology in this note is a bit different from that in [11], in which
we used Viterbo’s symplectic homology [13]. Hence, we include a proof of
Proposition 1.2 in Section 6, for the sake of completeness.

Given Proposition 1.2, it is natural to ask if one can compute cppw (D*V)
by using only elementary (i.e., singular) homology theory. The following
corollary of our main result gives an answer to this question. For any x € V/,
¢, denotes the constant loop at .
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Corollary 1.4. Let V' be a bounded domain with smooth boundary in R",
and b > 0. Let us define (> : (V,0V) — (A<Y(V),A<P(V)\A(V)) by b(z) :=
cz. Denote by (%), the map on homology induced by *. Then,

CFHw(D*V) =
inf{b | (:°) : Hy(V,0V) — Hy(A<P(V), A2 (V) \ A(V)) vanishes}.

To prove Corollary 1.4, we need to combine our main result Theorem 1.1
with results in [10]. Corollary 1.4 is proved in Section 6.

1.3. Floer—Hofer—Wysocki capacity and inradius. Using Corollary
1.4, one can obtain a quite good estimate of cppw (D*V') by using the inra-
dius of V. First, let us define the notion of the inradius:

Definition 1.5. Let V be a domain in R™. The inradius of V, which is
denoted as r(V), is the supremum of radii of balls in V. In other words,
r(V) := sup,cy dist(z, 0V).

Our estimate of the Floer—-Hofer—-Wysocki capacity is the following:

Theorem 1.6. Let V' be a bounded domain with smooth boundary in R™.
Then, there holds 2r(V) < cpaw (D*V) <2(n+ 1)r(V).

Combined with Proposition 1.2, Theorem 1.6 implies the following result:

Corollary 1.7. Let V be a bounded domain with smooth boundary in R™.
There exists a periodic billiard trajectory on V with at most n + 1 bounce
times and length between 2r(V') and 2(n + 1)r(V).

Remark 1.8. Let (V') denote the infimum of the lengths of periodic billiard
trajectories on V. Corollary 1.7 shows that {(V) < 2(n + 1)r(V). When V
is convez, this result was already established as Theorem 1.3 in [5]. On the
other hand, the main result in [11] is that (V') < const,r(V') for any domain
V with smooth boundary in R”. A weaker result £(V) < const,vol(V)'/"
was obtained in [9, 14].

Theorem 1.6 is proved in Section 7. Here, we give a short comment on
the proof. Actually, the lower bound is immediate from Corollary 1.4, and
the issue is to prove the upper bound. By Corollary 1.4, it is enough to
show that if b > 2(n + 1)r(V), then (2),[(V,0V)] = 0. We will prove this
by constructing a (n + 1)-chain in (A<*(V),A<*(V) \ A(V)) which bounds
(V,0V). Details are carried out in Section 7.

1.4. Organization of the paper. In Section 2, we recall the definition
and main properties of symplectic homology, following [7]. In Section 3,
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we recall Morse theory for Lagrangian action functionals on loop spaces,
following [1,3]. The goal in these sections is to fix a setup for the arguments
in Sections 4-6.

In Section 4, we prove our main result Theorem 1.1. The proof consists
of two steps:

Step 1: In Theorem 4.2, we prove an isomorphism between Floer homol-
ogy of a quadratic Hamiltonian on T*R"™ and Morse homology of its fiberwise
Legendre transform.

Step 2: By taking a limit of Hamiltonians, we deduce Theorem 1.1 from
Theorem 4.2.

Our proof of Theorem 4.2 is based on [2]: we construct an isomorphism by
using so-called hybrid moduli spaces. However, since we will work on T*R",
proofs of various C%-estimates for (hybrid) Floer trajectories are not auto-
matic. Techniques in [2] (in which the authors are working on cotangent
bundles of compact manifolds) do not seem to work directly in our setting.
To prove C%-estimates for Floer trajectories in our setting, we combine tech-
niques in [2,7]. Proofs of C-estimates are carried out in Section 5.

In Section 6, we discuss the Floer—-Hofer—-Wysocki capacity and periodic
billiard trajectories. The goal of this section is to prove Proposition 1.2 and
Corollary 1.4.

In Section 7, we prove Theorem 1.6. This section can be read almost
independently from the other parts of the paper.

2. Symplectic homology

We recall the definition and main properties of symplectic homology. We
basically follow [7].

2.1. Hamiltonian. For H € C*°(T*R"), its Hamiltonian vector field Xy
is defined as w,(Xg, ) = —dH(").

For H € C*®(S' x T*R™) and t € S, H; € C®°(T*R") is defined as
Hi(q,p) := H(t,q,p). P(H) denotes the set of periodic orbits of (X, )cg1,
ie.,

P(H) := {x € C®(S", T*R") | i(t) = Xp, (x(t))}.

x € P(H) is called nondegenerate if 1 is not an eigenvalue of the Poincaré
map associated with . We introduce the following conditions on H &
C>(S! x T*R"):

(HO): Every element in P(H) is nondegenerate.
(H1): There exists a € (0,00)\7Z such that sup,c g1 || Hi—Q%[|c1 (7+rny < 00,

where Q%(q,p) = a(lq|* + |p[?).
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Remark 2.1. The class of Hamiltonians considered in this note is a bit
different from that in [7]. To put it more precisely, (H1) is more restrictive
than conditions (6) and (7) in [7]. On the other hand, we do not need con-
dition (8) in [7]. It is easy to see that our definition of symplectic homology
is equivalent to that in [7], see Remark 2.6.

Lemma 2.2. For any H € C*®(S! x TR™) which satisfies (H1), P(H) is
C -bounded. In particular, if H also satisfies (H0), then P(H) is a finite
set.

Proof. Suppose that there exists H € C*°(S! x T*R") which satisfies (H1)
and P(H) is not C%-bounded. Then, there exists a sequence (r;)j—12,..
in P(H) such that R; := maxycg1 |z;(t)| goes to oo as j — oo. Define
v; : St — T*R™ and h? € C®°(S! x T*R™) by

vi(t) :=z;(t)/Rj, h(t,q,p) := H(t, Rjq, R;p)/R;.

It is easy to show that v; € P(h’/). Moreover, since sup,cg1 ||dH; — dQ%||co
< 00,

(2.1) lim sup [|dh! — dQ%||co = 0.
J 70 test
By definition, max,cg1 [vj(t)| = 1. In particular, (v;); is C°-bounded. More-
over, since dv; = X,;(v;), (2.1) shows that (v;); is C'-bounded. Hence,
t
up to a subsequence, (v;); converges in C°(S1, T*R™). We denote the limit
by wv.
By the triangle inequality,

/ X, (05(0)) — X (v(0)) | dt

/ 1, (0(1)) — X (0 (0)] i + / [Xan (05(1)) — Xan(v(0)] dt.

As j — oo, the first term on the right-hand side (RHS) goes to 0 by (2.1)
and the second term on the RHS goes to 0 since v; converges to v in CP.
Therefore, for any 0 < tg <1,

v(to) —v(0) = lim v;(to) —v;(0)

to to
= lim Xy (vj(t))dt = Xqa(v(t))dt
7= Jo 0
hence v € P(Q®). On the other hand, it is clear that max,cg1 |[v(t)| = 1.
This is a contradiction, since a ¢ 7Z implies that the only element in P(Q,)
is the constant loop at (0,...,0). O

H € C*(S x T*R") is called admissible if it satisfies (HO) and (H1).
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2.2. Truncated Floer homology. Let J = (J;);cs1 be a time dependent
almost complex structure on T*R", such that:

(J1): For any t € S, J; is compatible with wy,, i.e., gJ,(£,1) = wn (&, Jin)
is a Riemannian metric on T*R".

Let H € C*(S' x T*R") be an admissible Hamiltonian. For any z_,z, €
P(H), we introduce the Floer trajectory space in the usual manner

My g(z—,24) =
{u:Rx S = TR" | d5u — J;(8yu — X, (u)) = 0, ligl u(s) = x+}.
We set My j(z_,24) = Mgy j(z_,24)/R, where R acts on My j(z_, x4 )
by shift in the s-variable.
The standard complex structure Jiq on T*R"™ is defined as

Jstd(api) = 6q¢> Jstd(aqi) = _8177,"
Now, we state our first CY-estimate. It is proved in Section 5.

Lemma 2.3. There exists a constant € > 0 which satisfies the following
property:

For any admissible Hamiltonian H € C>®(S' x T*R"™) and

J = (Ji)iesr which satisfies (J1) and sup, ||J: — Jsdl|co < €,

My j(x_,x4) is CO-bounded for any x_,z, € P(H).

We recall the definition of Floer homology. For any v € C*°(S!, T*R"),
we set

Ap(y) = /S1 ol <Zpid%’> — H(t,~(t)) dt.

For real numbers a < b, the Floer chain complex CFLa’b)(H) is the free Zo
module generated by {y € P(H) | Au(y) € [a,b)}, indexed by the Conley—-
Zehnder index indgyz. For the definition of the Conley—Zehnder index, see
Section 1.3 in [7].

Suppose that J = (J;);cs1 satisfies (J1) and each J; is sufficiently close
to Jsta. Lemma 2.3 shows that for generic J, My j(z_,z1) is a compact
zero-dimensional manifold for any z_,z, € P(H) such that indcz(x_) —
indcz(24) = 1. We can thus define the Floer differential 0y, ; on CFl?) (H)
as

O,y ([z-]) = > tMpg(z—,24) - [24].

indcz(z4)=indcz(z_)—1

The usual gluing argument shows that 8%{”] = 0. HFLa’b)(H, J):= H*(CFLa’b)
(H),0m,r) is called truncated Floer homology.
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2.3. Symplectic homology. Suppose that we are given the following data:
e Admissible Hamiltonians H—, H* € C®(S! x T*R").
o J = (J )iest, JT = (J;")ieq1, which satisfy (J1). Moreover, all J;,
J;r are sufficiently close to Jsiq.
We assume that HFI™ (=, J=), HF{*" (H+, J*) are well-defined. If H— <
H* ie., H (t,q,p) < H*(t,q,p) for any t € S! and (q,p) € T*R", one can
define monotonicity homomorphism

HF"Y (-, J7) — HFS (H*, JT)

in the following way.
First, we introduce the following conditions on H € C*®(R x S x T*R"):

(HH1): There exists so > 0 such that

H(S()?ta qap) (S Z 80)
H(_307t7q7p) (S < _SO)

H(s,t,q,p) :{

(HH2): 0,H (s,t,q,p) > 0 for any (s,t,q,p) € R x ST x T*R".
(HH3): There exists a(s) € C*°(R) such that:
e d/(s) >0 for any s.
e a(s) eZ = d'(s) > 0.
e Setting A(s,t,q,p) := H(s,t,q,p) — Q**)(q,p), there holds

sup [|As tllor(rerny < 00, sup |95 As ¢l co(rerny < 00
(s,t) (s:t)

If H satisfies (HH1)-(HH3) and H;" = Hi,,, H is called a homotopy
from H~ to H*. For any H~ and H™' such that H~ < HT, there exists a
homotopy from H~ to H™. In fact, take p € C*°(R) such that

s>1 = p(s)=1, s<0 = p(s)=0,
0<s<1l = p(s) €(0,1), p(s)>0.

Then, H(s,t,q,p) := p(s)H"(t,q,p) + (1 — p(s))H(t,q,p) is a homotopy
from H~ to HT.
Next, we introduce conditions on J = (Jst)(s)erx s, @ family of almost

complex structures on T*R"™ parametrized by R x S*:

J81,t(q7p) (S Z 81)
J—s1,t(Q7p) (8 < _51)
(JJ2): For any (s,t) € R x S, Js; is compatible with w,.

If J satisfies (JJ1), (JJ2) and J= = Jig, 4, J is called a homotopy from J—
to JT.

(JJ1): There exists s; > 0 such that J,+(q,p) = {
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Let H € C®°(R x S! x T*R™) be a homotopy from H~ to H' and J =
(Js,t)(s,t)erx st be a homotopy from J~ to J*. For any 2 € P(H™) and
x4y € P(HT), we define

Mu (-, 24) =
{u:R x St — T*R" | dgu — Js+(Opu — Xg,,(u)) =0, lirin u(s) =z}

Now, we state our second C°-estimate. It is proved in Section 5.

Lemma 2.4. There exists a constant € > 0 which satisfies the following
property:
IfJ = (JS,t)(s,t)eRxsl satisfies SUps,tHJs,t — Jadlleo < e,
My j(x_,xy) is CO-bounded for any x_ € P(H™), x4 €

)

P(H™).

Lemma 2.4 shows that, if J is generic and all J,; are sufficiently close to
Jstd, Mmu,j(x—,z4) is a compact zero-dimensional manifold for any z_ €
P(H™), 4 € P(H") such that indcz(z_) = indcz(xy). We define @ :

CFY (g, J-) — CFY (H*, J*) by

D([z-]) = > IMug(z—,2q) - [z4].
indcz(z4)=indcz(z—)

The usual gluing argument shows that ® is a chain map. The monotonicity
homomorphism

o, HFY(H~, J7) — HFY (HT, )

is the homomorphism on homology induced by ®. One can show that ®,
does not depend on the choices of H and J, see Section 4.3 in [7].

Remark 2.5. Let H be an admissible Hamiltonian and J°, J! be S!-

dependent almost complex structures such that HF L""’) (H,J%, HFLa’b)
(H,J') are well-defined. Then, one can show that the monotonicity homo-

morphism H]F‘La’b)(H7 JY — HFLa’b) (H,J') is an isomorphism. Hence,
HFLa’b)(H ,J) does not depend on J, and we denote it by HF"?) (H). More-
over, for two admissible Hamiltonians H—, H" satisfying H~ < H™, the
monotonicity homomorphism HFLa’b)(H ) — HFLa’b)(H 1) is well-defined.

We define symplectic homology. Let U be a bounded open set in T*R".
Let Hy denote the set consisting of admissible Hamiltonians H such that
H|gi5 <0. Hy is a directed set with relation

H™ <H" < H™(t,q,p) < H"(t,q,p) (V(t,q,p) € S' x T*R™).
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Then, for any —oo < a < b < oo, we define symplectic homology SHLa’b)(U)
by
SH*(U) .= lim HFY ().
—
HeHy

If U C V, then obviously Hy C Hy. Hence, there exists a natural homo-
morphism

sHY (V) — sHYY ().

Moreover, for any a®,b* € R such that a~ < a™, b~ <b", a” <b™, at <
- + pt
b™, there exists a natural homomorphism spl )(U) — spl™? )(U).

Remark 2.6. As noted in Remark 2.1, the class of Hamiltonians consid-
ered here is different from that in [7]. However, our definition of symplectic
homology given above is equivalent to the definition in [7] (see Section 1.6
in [7]). A key fact is that compact perturbations of quadratic Hamiltonians
are admissible both in our sense and sense in [7].

2.4. Floer—Hofer—Wysocki capacity. Finally, we define the Floer—
Hofer-Wysocki capacity, which is originally due to [8]. For any bounded
open set U and b > 0, we define

SH"Y(U) := lim SHEV(U).
e—+0

When U C V, there exists a natural homomorphism SHiO’b)(V) —

SHEkO’b)(U). For any p € T*R", we define

0(p) := lim SH) (B (p: ),
e—+40

where B?"(p : €) denotes the open ball in T*R"™ with center p and radius ¢.
It is known that ©°(p) = Zs, see pp. 603-604 in [8].

Let U be a bounded domain (hence connected) in T*R"™. Taking p € U
arbitrarily, we define the Floer—Hofer-Wysocki capacity of U as

crmw (U) == inf{b | SHY? (') — €(p) = Zs is onto}.

It is known that the above definition does not depend on the choice of p, see
pp. 604 in [8].
3. Loop space homology

In this section, we recall Morse theory on loop spaces for Lagrangian action
functionals. We mainly follow [1, 3].
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3.1. Lagrangian action functional. Recall that we used the notation

A(R") := WhH2(S1 R™). Given L € C*®°(S! x TR"), we consider the action
functional

S ARY) - R; VH/Sl L(t,7(8), (1)) dt.

We introduce the following conditions on L:

(L1): There exists a € (0,00) \ 7Z such that

)’ — @f 2
(ta.0)— (o~ ala

(L2): There exists a constant ¢ > 0 such that 02L(t,q,v) > c for any
(t,q,v) € St x TR™.

< 0.
C2(TR™)

sup
teSt

Notice that (L1) implies the following estimates:

(L1): |D2L(t,q,v)| < const,
0L (t, g, v)| < const(1 + |q[), [0uL(t, g, v)| < const(l + |v]),
|L(t,q,v)| < const(1 + |g|* + [0]?).

Lemma 3.1. If L satisfies (L1) and (L2), the following holds.

(1) S : A(R™) — R is a Fréchet C' function. Its differential dSy, is given
by

dS(y / BuL(t. 7, )E(E) + BuL(t,, 3)E() dt.

Moreover, dSy, is Gateaux differentiable. We denote the differential
by dZSL.
(2) v € A(R™) satisfies dS1(y) = 0 if and only if v € C*°(S*,R") and

d .
— &,L(t,’y,’y)) = 0.

6qL(t> v 7) - dt (

Proof. Using (L1)” and (L2), the proof is the same as Proposition 3.1 in [3].
U

Let us set P(L) := {v € AR"™) | dSi(y) = 0}. v € P(L) is called
nondegenerate if d2Sy(y) is nondegenerate as a symmetric bilinear form on
T A(Rn) Wl 2(51 n)
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For each v € A(R"), DSL(y) € T,A(R") = WH2(S1 R") is defined so
that

(DSL(Y), E)wre = dSL(7)(€) (V€ € WH(S',R")).

We show that the pair (Sp, DS|) satisfies the Palais-Smale (PS) condition.
First, let us recall what the PS condition is:

Definition 3.2. Let M be a Hilbert manifold, f : M — R be a C' function
and X be a continuous vector field on M. A sequence (pg)r on M is called
a PS sequence, if (f(pk))i is bounded, and limg_,o df (X (pr)) = 0. The pair
(f, X)) satisfies the PS condition, if any PS sequence contains a convergent
subsequence.

Lemma 3.3. Suppose that L € C*®(S' x TR™) satisfies (L1). Let (i) be a

sequence on A(R™) such that both Sr(vk) and || DS (Vk)||lwi2 are bounded.
Then, (i) is C°-bounded.

Proof. Suppose that there exists a sequence (vx)x such that both Sr (),

|DSL(Vk)|lw1.2 are bounded, and my := max,;cq1 | 7% (t)| goes to oo as k —
0o. We define 0, € A(R") and I}, € C(S! x TR") by

k() == e (t)/my,  Le(t,q,p) = L(t,mpq, myp)/mui>.

We show that (6 ) is W12-bounded. Since () is obviously C%-bounded,
it is enough to show that (d3)s is L?-bounded. First, notice that

=0.

- . Sp()
A0, S0 = I =2

On the other hand, since L satisfies (L1)

. |0k)?

Thus, (6)x is L2-bounded.
By taking a subsequence of (d)r, we may assume that there exists § €
A(R™) such that limy_,o ||65 — 8]l co = 0, and 6 — 0 (k — co) weakly in L2
We prove that dS;(6) = 0, where I(t,q,v) := |v|?/4a — a|q|?. This means
that & € C(S',R") and 6(t) + 4a25(t) = 0. Since a ¢ 7Z, this means that
d(t) = 0. However, since max;cg1 |0(t)] = limg_,oo max;cg1 [0k(¢)| = 1, this
is a contradiction.
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To prove dS;(d) = 0, first notice that

=0.

D
lim (DS, () fyrz = tim | PSLOR wn

—00 myg

Hence, it is enough to show that for any ¢ € C*°(S*, R"), there holds
klilgo(dsl(5) —dSi(dx))(€) = 0, kli_)ﬂgo(dsl(%) —dSy,(61))(€) = 0.

To check the first claim, notice the following equation:

(d5:(5) ~ dsi(a)(©) = [ OO =) ¢y~ a(5(1) — 8i(t)) - (1)

St 2a

Then, since 8, converges to ) weakly in L%, the RHS goes to 0 as k — oo.
The second claim follows from limg_, ||l — lg||c1 = 0. O

Corollary 3.4. Suppose that L € C*®(S' x TR") satisfies (L1) and (L2).
Then, the pair (Sp, DS1) satisfies the PS condition on A(R™).

Proof. Suppose that (v)x is a PS sequence with respect to (Sr, DSr). Then,
Lemma 3.3 shows that (y)x is C%-bounded. Then, Proposition 3.3 in [3]
shows that (y%)r has a convergent subsequence. (|

3.2. Construction of a downward pseudo-gradient. Suppose that L €
C>(S* x TR™) satisfies (L1) and (L2). To define a Morse complex of Sz, we
need the following condition:

(LO): Every v € P(L) is nondegenerate.

The following lemma (basically the same as Theorem 4.1 in [3]) con-
structs a downward pseudo-gradient vector field for Sg. For the definitions
of the terms “Lyapunov function,” “Morse vector field” and “Morse-Smale
condition,” see Section 2 of [3].

Lemma 3.5. If L € C®(S! x TR") satisfies (L0)-(L2), there exists a
smooth vector field X on A(R™) which satisfies the following conditions:

(1) X is complete.
(2) St is a Lyapunov function for X.
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(3) X is a Morse vector field. X () = 0 if and only if v € P(L). Every
v € P(L) has a finite Morse index, which is denoted by indyorse (7).

(4) The pair (Sr, X) satisfies the PS condition.

(5) X satisfies the Morse-Smale condition up to every order.

Proof. In the course of this proof, we use the following abbreviation:
{a< S, <b}:={y€eAR") | a < SL(y) < b}.

Moreover, || - |ly1.2 is abbreviated as || - ||.
Since (Sr, DSp) satisfies the PS condition, and all critical points are non-
degenerate, for any a < b, there exist only finitely many critical points of
81, on {a < 81, < b}. We denote them as v1,...,Vm.
For each 1 < j < m, Lemma 4.1 in [3] shows that there exist U.

vir Yy
such that:
e U,, is a neighborhood of 7; in {a < 81, < b}.
oV, is a smooth vector field on Uw.

e 7; is a critical point of Y, with a finite Morse index, and there holds

dSp (Yo, (1) < = 2()lly —ul*> (Ve Uy,

where A(7;) is a positive constant.

By taking U, sufficiently small, we may assume that ||Y, || <1 on U,,. We
take a smaller neighborhood V,; such that Vifyj c Uy,

Since (Sr, DS1) satisfies the PS condition, there exists € > 0 such that :
for any v € {a < Sp < b} \ (Uy, U---UU,,), |DSL(7)|| > €. For each v ¢
Uy, U---UU,,, set Yy := —DSL(7)/|DSL(7)|. Then, obviously ||Y;| = 1.
Moreover,

dSp(7)(Y5) = (DS1(7), Y5) = = IDSL(V)]| < —e.

Since Sy, is C! by Lemma 3.1 (1), if U, is a sufficiently small neighborhood
of v,

V€U, = dSL(v)(Y) < —¢/2.

We may also assume that U, is disjoint from V., U---UV,, . Moreover, since
A(R™) is paracompact, we can define a locally finite open covering {U, }yer
of {a < 8, < b} such that v1,...,vm € T

Let {x~},er be a partition of unity with respect to {U,}yer. Then, we
define a vector field Y on {a < & < b} by Y := 3 x,Y,. Since each
Y, satisfies ||Y,| < 1, it is clear that ||Y|| < 1. Moreover, there exists ¢ > 0
such that

YV U UV, = dSi()(Y () < e
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Now, we show that (Sg,Y") satisfies the PS condition on {a < 81, < b}. Let
(xr)k be a sequence on {a < Sy, < b} such that limy_,o, dSz(x) (Y (zx)) = 0.
Then, x, € V,, U---UV,  for sufficiently large k. By taking a subsequence,
we may assume that x;, € V,, for all k. Then, since

dS () (Y (zx)) = dSe(wr)(YVyy (21)) < =My lew — 7

there holds limy_. ||xx — 71]| = 0. Thus, (Sg,Y") satisfies the PS condition.
We have defined a smooth vector field Y on {a < Sy < b}, which satisfies
(2)-(4) and V] < 1.

Finally, we construct X on A(R"). Take a sequence of closed intervals
(Iin)mez with the following properties:

e (min I, )y, (max I, ), are increasing sequences.

e U, Im =R.

o I, NI, # 0 if and only if |m —m/| < 1.

e For any m € Z, I, N I, +1 does not contain critical values of Sy.

For every m, there exists a smooth vector field X,, on {minl,, < S; <
max I, } which satisfies (2)—(4) and || X,,|| < 1. Finally, taking a partition of
unity (pm)m with respect to the open covering {min I,,, < S;, < max I, },
of A(R"™), we define a vector field X on A(R") by X := > pmXy,. Then,
it is easy to check that (S, X) satisfies the PS condition. Moreover, since
X satisfies || X|| < 1 everywhere, X is complete.

The vector field X defined above satisfies (1)—(4) in the statement. Since
it is of class C*°, the Sard-Smale theorem shows that (5) is satisfied by a
sufficiently small C'*® perturbation. 0

3.3. Morse complex. Let X be a downward pseudo-gradient for Sy on

A(R™), which is constructed in Lemma 3.5. Since X is complete, one can
define (¢;X);er, a family of diffeomorphisms on A(R") so that

0o =idagny, (e} ) = X(£7).
For each v € P(L), its stable and unstable manifolds are defined as

We(y: X) = {p € AR") | lim i (p) =7},
W'(y: X):={p € AR") | lim ¢ (p) =7}
For any v,~" € P(L), we set Mx(7,7') := W"(v : X) N W?*(+/, X). Since

Mx(7,7') consists of flow lines of X, Mx(7,7’) admits a natural R action.
We denote the quotient by Mx (v, 7).
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ot

For any 7,7 € P(L), W*(v : X) and W#(y/ : X) are transverse, since
X satisfies the Morse-Smale condition. Therefore, Mx(7,7’) is a smooth
manifold with dimension indyjerse () — indyorse (7') — 1. When indpiorse (77) —
indyorse (V) = 1, Mx(7,7') consists of finitely many points.

For any —oo < a < b < o0, CMLa’b)(L) denotes the free Zs-module gen-
erated by {y € P(L) | a < Si(y) < b}. We define a differential 07, x on

cM™) (L) by

dr.x (7)) = > IMx(v,7) - [Y]-
indMorse ('—Y/):indl\/lorse ('Y)_l

Then, (CMLa’b)(L),OL,X) is a chain complex, and its homology group

HMLa’b)(L, X) is isomorphic to H({Sr, < b}, {SL < a}). For details, see [1].

Next, we discuss functoriality. Consider LY, L' € C*°(S! x TR") which
satisfy (L0)—(L2) and L°(t,q,v) > L(t,q,v) for any (t,q,v) € S* x TR".
Take vector fields X% X! on A(R") such that (L°, X°) and (L', X1) satisfy
the conditions in Lemma 3.5.

We assume that P(L%) N P(L') = @ (this can be achieved by slightly
perturbing L°). Then, by a C*°-small perturbation of X°, one can assume
the following:

For any 7° € P(LY) and v* € P(LY), W¥(y" : X©) is transverse
to We(y!: X1h).
If this assumption is satisfied, Mxo x1(7%,7!) = W*(?? : XO)n W5y :
X1) is a smooth manifold with dimension indyforse (7°) — indporse (Y1)-
We define a chain map ® : CMI*? (20, X0) — cM™? (L1, X1) by

®([v]) == Z ﬁMXO,Xl(%’Y/) ]

indl\/[olrse (Wl)zindlvlorse (’Y)

® induces a homomorphism on homology, which coincides with the homo-
morphism induced by the inclusion ({Spo < b},{Sp0 < a}) — ({Sp1 <

b}, {Sp < a}).

4. Proof of Theorem 1.1

The goal of this section is to prove Theorem 1.1, i.e., to compute SHLa’b)
(D*V) for a bounded domain V' C R™ with smooth boundary. In Section
4.1, we reduce Theorem 1.1 to Theorem 4.2 and Lemma 4.3. Theorem 4.2
is the main step, and it is proved in Sections 4.2 and 4.3, assuming some
CV-estimates of Floer trajectories: Lemmas 4.8-4.10. These C%-estimates are
proved in Section 5. Lemma 4.3 is a technical lemma on loop space homology,
and it is proved in Section 4.4.



526 KEI IRIE

4.1. Outline. Let us take (a;;)m, an increasing sequence of positive num-
bers such that a,, ¢ 7Z for any m, and lim,,, .~ @, = 0o. We take a sequence
(km)m in C*°(R>p,R) such that:

(k
(k
(k3

1): For every m, Ok (t) > 0 and 9%k, (t) > 0 for any ¢t > 0.
2): For every m, Oiky, = ap, on {t | kn,(t) > 0}.
): (km)m is strictly increasing. Moreover,

0 (0<t<1)
sup kp, (t) = PN
o m () {oo (t>1)
Let us define K,, € C®°(R",R) by K,,(p) := km(|p|?). Then, (k1) implies
that K,, is strictly convex. Moreover, (k2) implies that

R™ = R" p — v(p) := 0p K,

is a diffeomorphism. We denote its inverse by p(v), i.e., 0p Ky, (p(v)) = v. Let
K, be the Legendre transform of K,,, i.e., K%, (v) := p(v) - v — K, (p(v)).
Then, it is easy to show that (K,),), is strictly decreasing, and inf,, K, (v) =
|v] for any v € R™.

We take a sequence (Q,)m of smooth functions on R”, such that

(Q1): There exists a sequence of constants (¢m)m such that Q,(q) —
(am|q* + ¢m) is compactly supported.
0 (¢geV)
0o (¢g V)
Let H],(q,p) := Qm(q) + Km(p). Then, for every m, H], satisfies (H1).
Moreover, (H), )., is strictly increasing, and

(Q2): (Qm)m is strictly increasing. Moreover, sup,,, Qm(q) = {

((g,p) € D*V),
((¢:p) ¢ DV).

0
sup Hy,(q,p) = {OO

Let L!, be the fiberwise Legendre transform of H/,. It is easy to see
that L (q, ) = K, (v) — Qmu(q). Then, for every m, L/ satisfies (L1)

and (L2). (L],)n is strictly decreasing, and there holds inf,, L] (q,v)
vl (qeV)
—o00 (q¢V)

Since (H],)m is strictly increasing, by sufficiently small perturbations of
(H!,)m, one can obtain a sequence (H™),, on C*®(S! x T*R"™) with the
following properties:

e For every m, H™ is admissible.
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e (H™),, is strictly increasing, and

0 ((g;p) € D*V)
0o ((¢,p) ¢ D*V)
e For every m, its Legendre transform L™ is well-defined, and it sat-
isfies (LO)—(L2). (L™), is strictly decreasing, and inf,, L™ (¢, ¢,v) =
vl (geV)
—0 (g¢ V)

Remark 4.1. For notational reasons, we use superscripts for H™ and L™.

sup Hm(t’q,P) = {
m

By the first two properties, SHLa’b)(D*V) =lim HFLa’b)(Hm). Now,
we state the following key result, which is proved in Sections 4.2 and 4.3:

Theorem 4.2. For any —oo < a < b < 0o and m, there exists a natural
isomorphism HM™") (L™) = HFLa’b)(Hm). The following diagram is commu-
tative for every m:

M (L) —— HMIY) (L)

~l l~

HF? (™) — HF"Y (Fmt),

Then, we obtain

lim HF?(H™) = lim HM (2™)
— —

o o Zzoy{sm < b}, 9{8”" < a}).

Since (L™),, is strictly decreasing and inf,, L™ (t,q,v) = {U’ (g € Y)
for any c € R
i%fSLm () < ¢ < ~(S*) ¢ V or (length of 7) < c.
Therefore, for any a < 0 and b > 0,
SH(DV) = H, (A(R") U (AR") \ A(V)), AR") \ A(V))
~ H, (A<P(R™), A<P(R™) \ A(V))
= H (AS(V), A< (V) \ A(V),

where the second isomorphism follows from excision and the third isomor-
phism follows from the next Lemma 4.3, which is proved in Section 4.4.
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Lemma 4.3. Let V be a bounded domain in R™ with smooth boundary. For
any 0 < b < oo, there exists a natural isomorphism

H(AS(R™), ASP(R") \ A(V)) = Ho (A (V), A<°(V) \ A(V)).

Finally, we have to check that for any b_ < by, the following diagram
commutes:

SHI*Y ) (D*V) — = H.(A<Y (V), A< (V) \ A(V))

| |

SHIY ) (D*V) —= H. (A" (V), A<0" (V) \ A(V)).
This is clear from the construction, hence omitted.

4.2. Construction of a chain level isomorphism. In this and the
next subsection, we prove Theorem 4.2. In this subsection, we define an
isomorphism

aMl»? (pmy — mgrle (gm.
Following [2], we define this isomorphism by considering so-called hybrid
moduli spaces. Suppose, we are given the following data:
o J" = (J{")est, which is sufficiently close to the standard one, and
CF™Y (H™, ™) is well-defined.
e Smooth vector field X on A(R"™), such that oMY (L™, X™) is well-
defined.
e yeP(L™) and z € P(H™).
We consider the following equation for u € W13(St x [0, 00), T*R™):

Osu — J{" (8tu — Xum (u)) =0,
m(u(0)) € Wh(y: X™),
lim u(s) = x.
S§—0Q
7 denotes the natural projection T*R™ — R™; (¢, p) — ¢. The moduli space
of solutions of this equation is denoted by Mxm gm jym (7, z).

Remark 4.4. In the definition of Mxm gm ym, we have used a Sobolev
space W13(S1 x [0,00), T*R™). One can replace it with W (S x [0, 00),
T*R™) for any 2 < r < 4. The condition 2 < r < 4 is necessary to carry out
the Fredholm theory and prove C%-estimates for Floer trajectories.

To define a homomorphism by counting M xm gm jm (7, x), we need the
following results:
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Lemma 4.5. For generic J™, Mxm gm_ym(7y,) is a smooth manifold of
dimension indyiorse (7) — indez(x) for any v € P(L™) and x € P(H™).

Proof. See Section 3.1 in [2]. O

Lemma 4.6. For any v € P(L™), x € P(H™) and u € Mxm gm_jm(7v, ),
there holds

St(1) > Spe (1(u(0))) > Agpm (u(0)) > App ().
Proof. See pp. 299 in [2]. O

Corollary 4.7. When Spm(y) < Agm(z), Mxm gm gm(y,z) = 0. When
Spm(y) = Agm(x), Mxm gm gm(y,z) # 0 if and only if v = w(x). In this
case, Mxm pgm_gm(7y,x) consists of a single element u such that u(s,t) =

x(t).

We recall that our setup differs from the one of [2] inasmuch as our base
manifold is R", while the authors of [2] work with compact bases. However,
their analysis applies to our situation for all aspects except for the C°-bounds
of Floer moduli spaces.

Now, we state our third C-estimate. It is proved in Section 5.

Lemma 4.8. There exists € > 0 such that, if J™ satisfies sup, ||J[" —
Jaallco < &, Mxm gm gm(7y,z) is C°-bounded for any v € P(L™) and
xePH™).

Suppose that J™ satisfies the condition in Lemma 4.5, and it is sufficiently
close to Jsq. By Lemma 4.8, for any v € P(L™) and x € P(H™) such that
indwmorse (7) —indez () = 0, Mxm gm_jm (7, x) is a compact zero-dimensional
manifold. Then, we can define a homomorphism

v oM (m xmy - oFY (H™, g™,
[v] — > EMxm gm gm (7, 2) - [z].

indgoz (x)=indwmorse ()

Corollary 4.7 shows that U™ is an isomorphism (for details, see Section 3.5
in [2]). Gluing arguments show that U™ is a chain map (for details, see
Section 3.5 in [2]). Hence U™ induces an isomorphism on homology.

4.3. Chain level commutativity up to homotopy. In the previous sub-
section, we constructed a chain level isomorphism

v oML xmy — oFP (Hm g
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for every m. In this subsection, we show that

m

M pm, xmy CE (Hm, gmy

| |

CMLa’b) (Lm—&—l’ Xm+1) N CFLavb) (Hm—l—l’ Jm+1)

\I,m+1

commutes up to chain homotopy, where ®# and ®* are chain maps con-
structed in Sections 2.3 and 3.3, respectively.
To prove this, we introduce a chain map

O : OV (L™, X™) — CFID (Hm L ),
[/7] — Z ﬁMXm’Hm+l’Jm+1(’y7 .CU) . [.ZU]

indpMorse (’Y) =indcz (I)

It is enough to show @7 o¥™ ~ @ ~ U Hlodl. (~ means chain homotopic.)
First, we show that U™+l o &L ~ ©. For any v € P(L™) and z €
P(H™ ), NO(v,x) denotes the set of (o, u,v), where

a€0,00), u:[0,0] = AR"Y), veWH3([0,00) x ST, T*R"™)

which satisfy the following conditions:

Xm+1

w(0) € Wy X™),  u(s) = X" ((0)) (0 < 5 < a),
dsv — JM (9w — XH{”“(U)) =0, 7(v(0))=u(e), lim v(s)=uz.

We state our fourth C%-estimate. It is proved in Section 5.

Lemma 4.9. There exists € > 0 which satisfies the following property:

If J7H satisfies sup, || J" T — Jgalloo < €, ||v]|lco is uniformly
bounded for any (a,u,v) € N°(v,z), where v € P(L™) and
z € P(H™).

Suppose that J™ is generic and sufficiently close to Jgq. Then, due to
Lemma 4.9 and gluing arguments, the following holds:

e When indyjorse (7) — indez(z) = —1, NO(y,z) is a compact zero-
dimensional manifold. Every (o, u,v) € N9(v, x) satisfies a > 0.
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e When indyjorse (7) —indcz(x) = 0, NO(, z) is a one-dimensional (1D)
manifold with boundary. Its boundary is {a = 0}, and its end is com-
pactified by the following moduli spaces (we set k := indporse (7) =
indcz(x)):

./\;le (’7’ ’7,) X NO(’Y/v l‘) (’7, € P(Lm)a indMorse (’Y/) =k— 1)5
MXm,XWH—l (’}/, ’7/) X MX7n+l7Hm+l7Jm+l (’7,, l’)

(7/ € P(Lm+1)> indmorse ('7/) = k)a
/\/’0(7, x') x MHm+1’Jm+1 (', xz) (o' € 'P(Hm—H), indoz(2') =k +1).

Let us define K0 : CMS%(L™, X™) — CF£% (H™ 1, Jm+1) by

K] = > N (v, z) - [a].

indcz (z)=indMorse (v)+1

Then, the above results show that Ogm+1_jm+1 0 K*+K%0dpm xm = 0o
oL +o.

Next, we show that ®7 o U™ ~ O. Let H € C®(R x S x T*R") be a
homotopy from H™ to H™*! and J = (Jst)(s,t)crx st be a homotopy from

J™ to J™TL By (HH1) and (JJ1), there exists so > 0 such that

(HP, T (s < =s0),
(HP L T (s 2 s0),

(Hs,tv Js,t) = {

For any v € P(L™) and x € P(H™!), N' (7, z) denotes the set of (8, w),
where

B € (—00,s0], weW([B,00) x S, T*R™),

which satisfy the following properties:

m(w(B)) € W"(y: X™), Osw — Js4(Ow — Xg, ,(w)) =0,

lim w(s) = x.

Now, we state our fifth C%-estimate. It is proved in Section 5.

Lemma 4.10. There exists € > 0 which satisfies the following property:

If J satisfies supg || Jst — Jaallco < &, [[wlco is uniformly
bounded for any (B,w) € Ni(v,x), where v € P(L™), x €
P(Hm+1).
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Suppose that J is generic and sufficiently close to Jgq. Then, by
Lemma 4.10 and gluing arguments, the following holds:

e When indyjorse (7) — indez(z) = —1, AM(y,z) is a compact zero-
dimensional manifold. Every (3,w) € N'1(v, ) satisfies 3 < sq.

e When indyorse (7) — indcz(x) = 0, N1(v,2) is a 1D manifold with
boundary. Its boundary is {3 = sp}, and its ends are compactified by
the following moduli spaces (we set k := indpjorse (7) = indcyz(x)):

Mxm(y,7") % N (v, x) (v € P(L™), indyorse (7)) =k — 1),
MXm7Hm7Jm(’)/,IIZ'/) X MH,J(J:',JJ) (2" € P(H™),indoz(2") = k),
Ny, 2) x Mppmsa gmir (2, 2) (2" € P(H™ ), indez(2') = k +1).

Let us define K : CME? (L™, X™) — CFLY) (™1, 7 +1) by
K'[y] = > N (v, 2) - [2].

indcy (LE) =indporse (7)+1

Then, the above results show that dgm+1_jm+1 0 K' 4+ K' 0 9pm xm = © +
dH o gm,

4.4. Proof of Lemma 4.3. Finally, we prove Lemma 4.3. Through this
section, V' denotes a bounded domain in R™ with smooth boundary. First,
we need the following lemma:

Lemma 4.11. For any open neighborhood W of V. and b > 0, the natural
homomorphism

H. (AP (W), AP (W) \ A(V)) — Hy(ASP(W), AP (W) \ A(V))
s an isomorphism.

Proof. This is equivalent to showing that H.(A<(W) \ A(V),A<b(W) \
A(V)) =0.

Let us take a k-dimensional singular chain o = Y, c;a; € Cp(A<P(W) \
A(V)) (ci € Za, o : AF — A<P(W) \ A(V) are continuous maps) such that
Oa € Cp_1 (A<P(W) \ A(V)). Since AF is compact, there exists ' < b such
that o;(AF) ¢ A<V (W) for all i.

Let us take a compactly supported smooth vector field Z on W, which
points outwards on V. Let (¢f );cr be the isotopy on W generated by Z,
ie., pf =idw, Owp? = Z(pf). Take § > 0 and define ol : A¥ — A(W) by
al(p) :== % o a;(p) (Vp € A¥). When § > 0 is sufficiently small, o}(A¥) C

(2

A<P(W) for any i and 0 <t < 1.
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It is easy to see that ! satisfies the following properties for any i and
0<t< I
0
(2

= 4.
t =

e ol = Y .cial satisfies ol € CR(A°(W) \ A(V)) and da! €
Cr_1 (AP (W) \ A(V)) for any 0 <t < 1.
e al € Cl(A<P(W)\ A(V)).
Then, we obtain [a] = [a%] = [a!] = 0 in Hy(A<P(W) \ A(V), A<P(W) \
A(V)). O

Corollary 4.12. For any open neighborhood W of V', the natural homo-
morphism

Ho (AP (W), A< (W) \ A(V)) — Ho(ASP(R™), ASP(R™) \ A(V))
s an isomorphism.

Proof. Consider the following commutative diagram:

HL(A<P(W), A< (W) \ A(V)) —= H.(AP(R"), A<b(R") \ A(V))

i i

H,(AP(W), AP (W) \ A(V)) — H (A<"(R"), A<°(R"™) \ A(V)).

Then, vertical arrows are isomorphism by Lemma 4.11, and the top arrow is
an isomorphism by excision. Therefore, the bottom arrow is an isomorphism.

O
Applying Lemma 4.11 with W = R",
H (A"(R"), A<°(R™) \ A(V)) — H.(A"(R"), A<°(R™) \ A(V))
is an isomorphism. Hence, to prove Lemma 4.3, it is enough to show that
the natural homomorphism
H (A'(V),  AS*(V)\A(V)) — H (A"(R"),  AP(R™)\ A(V))
is an isomorphism. To show this, we need the following trick: take a sequence
(gl)l of Riemannian metrics on R”, with the following properties:
(g-1): For any tangent vector £ on R", [¢],: is decreasing in I: [§]g1 > [{]g2 >

(g-2): For any tangent vector £ on R, lim;_, [£], = [§], where | - | is the
standard metric.
(g-3): For any [ > 1, there exists an embedding 7; : OV X (—¢, &) — R
with the following properties:
o 7)(z,0) =z for any x € V.
o 7, 1(V) =0V x (—¢,0).
° Tl*gl is a product metric of g'|sy and the standard metric on
(_€l7€l)'
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We set Wi :=V UIm .

For each [, we define

AR = {7 e )

5(t)| 2 dt < b}, AP (V) == ATPR™MNA(Y).
S’l

By (g-1), (A7P(R™));, (ASP(V)), are increasing sequences of open sets in

A<P(R™), A<P(V). By (g-2), U AT(R™) = A<P(R™), U AF(V) = A=(V).
Thus, there holds
H.(ASY(V), A<2(V) \ A(V)) = Ty HL(AF(7), AF(V) \ A(V)),
l—o0
HL (A (R"), AP (R") \ A(V)) = lim H.(AP(R"), A7 (R") \ A(V)).

|—0o0

Therefore, Lemma 4.3 is reduced to the following lemma:
Lemma 4.13. For any l > 1, the natural homomorphism
HA APV, AR (V) \ A(V)) = Ho(AFP(R™), AZP(R™) \ A(V)
18 an tsomorphism.

Proof. Let us take W; D V as in (g-3). Since Corollary 4.12 is valid also for
J,

H (AF (W), AS (W) \ A(V)) — Ho (AP (R™), AP (R™) \ A(V))
is an isomorphism. Hence, it is enough to show that

I+ Ho (AP (V) ASP (V) N A(V)) — Ho( A (W), AR (Wh) \ A(V))

is an isomorphism. We check surjectivity and injectivity.

We prove surjectivity of I. Take a = Y, cia; € Ck(A;°(W))) such that
OJa € C’k,l(Afb(Wl) \ A(V)). Since A* is compact, there exists b’ < b such
that

length of a;(p) with respect to ¢' < (Vi, Vp € AF).

Let us take p € C°°((—¢y,¢;)) with the following properties:

e p(s)=0on[0,g).

e 0<p(s) <b/V, —e; < p(s) <0on (—¢,0).

e p(s) = s near —¢y.
Then, we define a smooth map ¢ : W; x [0,1] — W;;(x,t) — ¢i(z) such
that:

o Ifx ¢ Imm, pr(z) = .

o If x=7(y,s), pu(2) = 1u(y, (1 —)s + tp(s)).
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It is easy to check the following properties of ¢:
e oo = idw,, p1(W) = V. -
o Forany 0 <t <1, o(W;\V)CW\V, p(V)=V.
e For any tangent vector { on Wy and 0 <t < 1, |di(§)[,0 < (b/b)[¢] -

We define o} : A¥ — A(W}) by al(p) = ¢ 0 ozl(p) (Vp € Ak) By the
last property of o, ak(AF) A<b(VVl) Moreover, a! := . ¢;al satisfies the
following properties:

e o’ =q.

o of € CL(ATY(WY)), Dat € Cr—1 (AP (W) \ A(V)) for any t € [0,1].

o ol € Ch(A(V)), Bat € Croy (ATP(V) \ A(V)).
Thus, we obtain [a] = [a°] = [a!] € Im I. Hence, we have proved surjectivity
of 1.

We prove injectivity of I. Let a = Y. cia; € C(A;°(V)) such that
da € Cr_1(AT(V) \ A(V)). We show that if I([a]) = 0, then [a] = 0.
By I([a]) = 0, there exists 8 = > ,d;8; € Ci1(ASP(W7)) such that
9B — a € Cr(ASP (W) \ A(V)). Since A*, A1 are compact, there exists
b’ < b such that

length of a;(p), B;(¢q) with respect to g\ <V (Vi, Vj, Vp e AF, Vg e AFHD.

Taking ¢ : W; x [0, 1] — W, as before, we set

t t t ¢ t ¢
Q; = Pro g, o= E ciog, PBji=wiofy, [i= E :dJﬂj'
J

i
Then, it is easy to confirm the following claims:

e Forany 0 <t<1,alc Ck(A<b( ), Oat € Cj._ 1(A<b( JNA(V)).
o fle 0k+1<A<b<V)>
o 08" — ol € CL(ASP(V) \ A(V)).

Thus, we obtain [a] = [a!] = [98'] = 0 in Hi(A;7(V),AS(V) \ A(V)).
Hence, we have proved injectivity of I. U

5. CY-estimates

The goal of this section is to prove Lemmas on C%estimates for Floer
trajectories: Lemmas 2.3, 2.4 and 4.8-4.10. Our arguments in this section
are based on techniques in [2,7].

5.1. Wl2_.estimate. The goal of this subsection is to prove the following
Wh2_estimate. In the following statement, an expression “co(H, M)” means
that cg is a constant which depends on H and M.
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Proposition 5.1. For any H € C®(R x S x T*R") satisfying (HH2),
(HH3) and M > 0, there exists a constant co(H, M) > 0 which satisfies the
following property:

Let I C R be a closed interval of length < 3, and (Jst)(s yerxst

be a I x S*-family of almost complex structures on T*R", such

that every Js; is compatible with w,. Suppose that there holds

P < o e, ae)) < 2062
9 = n\S» st =

for any s € I, t € S' and tangent vector & on T*R™. Then, for
any Wh3-map u: I x St — T*R™ which satisfies

Osu — Js 1 (Opu — Xp, ,(u)) = 0, sup |Ap, (u(s))| < M,
sel

there holds |lully1.2(1xs1) < co-
Remark 5.2. H, € C®°(S! x T*R") is defined as H(t,q,p) := H(s,t,q,p).
A crucial step is the following lemma.

Lemma 5.3. Let H and I be as in Proposition 5.1. Then, there exists a
constant c1(H) > 0 such that: for any v € C°(S, T*R"™) and s € I, there
holds

ol + 101ale < 1 (14 [ 100 = X, (a(O) + 0.H.fa(0) ).

Proof. Let us take ca(H) so that ca > sup,; |0sAs ¢llco (recall that Ag; was
defined in (HH3)). Then, we show that there exists a constant c3(H) > 0
such that there holds

51 ol < eal et [ 10— X (o) + 0uHun(olt) )

for any x € C*°(SY, T*R") and s € I. Suppose that this does not hold.
Then, there exists a sequence (xy); and (sg)r such that
(5.2)
[
(@ (0))|? + Os Hsy 1 (1 (1)) dt

— 00 k — 00).
ca+ [q1 10wy — Xp ( )

Skt
Since ¢ + 0sHs (g, p) > 0 for any (s,t,q,p), there also holds

[0cwe — X, (k)| L2

k .
B -0 (o)
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Let us set my := ||zk||z2 and vi := xx/my. Then, obviously ||vg| 2 = 1.
We show that (vg)x is Wh2-bounded, i.e., (;vx)x is L?-bounded. To show
this, we set h¥(t, q,p) := Hs, +(mrq, mgp)/my?, and consider the inequality

10¢vrl 2 < [10¢vr — Xpe (vr)l L2 + | Xps (vk) [ 22
||Orvr — Xk (vg)| 2 is bounded in k, since

[0sxr — X, (i) 22

mg

(5.3) H&gvk — th (vk)HL2 = — 0 (k‘ — oo)

To bound || X% (vk)|| 12, we use the inequality

[ X gator) (Vi) = Xpr (vi) [l 22 < 1 X gacsp) (0k) — Xpn (k) [ o

< SUPest [As, el _

(5.4) <
my

Then, it is easy to see that there exists ¢4(H) > 0 such that || Xk (vg)||r2 <
ca(1 + ||vg||z2). Thus, we have proved that (vy)y is W2-bounded.

By taking a subsequence of (vj)r, we may assume that there exists v €
Wh2(S1 T*R™) such that limg . ||[v —vi]|co = 0, and dvx converges to dv
weakly in L?. Moreover, we may assume that (s;); converges to s € I.

We show that limg—co | Xga(s)(v) — Xpr(vk)[zz = 0. By the triangle
inequality,

[ X gator (v) = Xk (k) [[ 2 < [ X gate) (V) = Xao) (k)| 22
+ 1 X qate) (vk) = Xk (vg) [ £2-

Then, limg 00 | Xgas) (v) = Xgats) (vg)[| L2 = 0 since limy o0 [[v — vk |2 = 0.
On the other hand, (5.4) shows that limg e [| X gacs) (vk) — Xk (vk)[[ 2 = 0.
Now, we show that ;v — Xa(s) (v) = 0in L3(SY, T*R"), i.e.,

<8tv — XQa(s) (U), ’£>L2 =0
for any & € C°°(S*, T*R™). This follows from

(O — Xga(») (v),8) 12 = kli]rg)lo<8tvk — Xy (vg), &) 2 = 0.
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The first equality holds since in L?(S!, T*R")
Oy, converges to dpv (weakly), X (vk) converges to Xpa(s (v) (in norm).
The second equality follows from (5.3).

Now, we have shown that 0y — Xga(s) (v) = 0 in L?(S*, T*R™). Therefore,

by a boot strapping argument, we conclude that v € C°°(S*, T*R"). This
implies that a(s) € 7Z, hence a/(s) > 0 by (HH3). Hence, we obtain

2
m

M
e+ Jor OB o (D) i~ [ QUGR) (2 (1)) dt
1 1
= —
Jor QVER (ug(t))dt  d/(s)][v]l7
However, this contradicts the assumption that (zy)x satisfies (5.2). Hence,
we have proved (5.1). Setting c5 := max{cacs, c3}, there holds

(k — o00).

55 ol < es(1+ [ 10~ X, (O + 0. Hoota(0) at

for any z € C°°(St, T*R") and s € I. Now, it is enough to show that there
exists cg(H) > 0 such that

56 0wl < o1+ [ 10~ X (0D + OuHalalt) ).
By using
10| 2 <10 — Xar, ()l 2 + ([ Xa, ()] 2
< 102 = X, (@)l > + 2a(s) |2 2 + Sup [Astllers
(5.6) follows easily from (5.5). O
Now, we can prove Proposition 5.1.

Proof of Proposition 5.1. Suppose that u € W13(I x S, T*R") satisfies
Osu — Js 1(Opu — X, ,(u)) =0, su;l) }AHS (u(s))| < M.
se

By elliptic regularity, u is C* on intI x S'. By the assumption on Jst, it is
easy to see that

\Js,t88u|2 < 4\35u|2, |(95u|2 < 2wy (0su, Jg10su).

By Lemma 5.3, the following inequality holds for any s € int[:

)+ o)z < e (14 [ a0t + 0. Hup(uls.0) ).
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The RHS is bounded by

/ 410yu(s, |2 + 0y Hap(uls, 1)) dt < / 8eonm (st T pDsut)
St S1

+ 0sH1(u(s,t))dt
< —80; (AHS (u(s)))

By similar arguments, it is easy to show that

/Sl |0su(s,t)|* dt < —20, (AHS(u(s)))

Therefore,
J I+ ovu(s) e ds < ex [ 1 80, (A, u(s))) ds < x(3-+ 1621),
I I

/ 105u(s) |12 ds < / 90 Agy. (u(s))) ds < 4M.
I I

Thus, we get
/ lu(s, t)|* + |Opu(s, t)|? + |0su(s, t)|* dsdt < 3¢y + (16¢; + 4) M.
IxSt

This concludes the proof of Proposition 5.1. O

5.2. Proof of Lemma 2.3 and 2.4. First, notice that Lemma 2.3 is a
special case of Lemma 2.4. Hence, it is enough to prove Lemma 2.4. First,
we need the following lemma:

Lemma 5.4. Suppose that H € C®(R x S x T*R") is a homotopy from
H~ to H*. Then, there exists M > 0 which depends only on H such that
| Ap, (u(s))| < M forany s € R andu € My j(x_,xy), wherex_ € P(H™),
T4 S P(H+)

Proof. Since P(H~) and P(H™) are finite sets, there exists M > 0 such
that

Ag—(z), Ag+(y) € [-M, M] (Vm ePH), Yy € P(H+)).

Since Ap, (u(s)) is decreasing on s, Ap,(u(s)) € [-M,M] for any u €
Mup,g(x—, z4). O

Now, we prove Lemma 2.4. In the course of the proof, constants which we
do not need to be specified are denoted as “const.”
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Proof of Lemma 2.4. To estimate ||ul]|co, it is enough to bound
[[wl(jj41)xs1lco for each integer j. Take a cut-off function x so that

suppx C (=1,2), xlp=1, 0<x <1, —2<x <2

Setting v;(s,t) := x(s — j)u(s,t), it is enough to bound |[|v;[co (in the
following, we omit the subscript j). First, notice that

|v]|co < constl||v||y1.s < const|| V|3,

where the first inequality is a Sobolev estimate and the second one is
Poincaré inequality. By the Calderon—Zygmund inequality, there exists ¢ > 0
such that

IVollzs < e(ll(@s = Jstad)vliLs + vl 1s)-

We claim that ¢ := 1/2c¢ satisfies the requirement in Lemma 2.4. Suppose
that sup; ; || Jsta — Jstllco < 1/2¢. Then,

cll[(9s = Jsa0e)vll s < c(llJsta — stllcollOwvll s + 1105 — Jsa0e)vllr3)
IVol[1s/2 4 ¢l (95 = Js0p)vl| s

IN

Hence, we obtain
IVollzs < 2¢(||vllzs + 195 — Tser)v] 13)-

Since v(s,t) = x(s — j)u(s,t), it is clear that [[v][zs < [[ullps(j—1,j42x51)-
On the other hand, since

(05 — Js10)v(s, t) = X' (s — j)uls,t) + x(s — It (w) Xp, , (u)
and H satisfies (HH3), it is easy to see
1(0s = Js,10)vl| 13 < const(L + [[ull pa(j-1,j42x51))-
Then, we conclude that
[V][zs < const(1 + [|ullpsj—1,5421x51)) < const(1 + [[ullwrz(—1,j42)xs1))-

Then, Lemma 5.4 and Proposition 5.1 show that the RHS is bounded. [
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5.3. Proof of Lemmas 4.8—4.10. These lemmas are consequences of the
following proposition:

Proposition 5.5. There exists a constant € > 0 which satisfies the following
property:

Suppose we are given the following data:

o H c C®(R xS x T*R™) which satisfies (HH2) and (HHS).

o J = (Jst)(s,t)erxst which satisfies (JJ2) and sup(s 4 || Jst —

JsthCO < €.

e Constants My, My > 0.

Then, there exists a constant ¢(H, My, M1) > 0 such that, for

any o € R and u € W3([o,00) x S, T*R") satisfying

Osu — Js 1 (Opu — X, , (u)) =0, 81>1p | Ap, (u(s))| < Mo,
(o) llyerosgs gy < M,
there holds ||u||co < ¢(H, My, My).

In this subsection, we deduce Lemmas 4.8-4.10 from Proposition 5.5.
First, notice that Lemma 4.8 is a special case of Lemma 4.10. Hence, it is
enough to prove Lemmas 4.9 and 4.10.

Proof of Lemma 4.9. Since P(L™) and P(H™*1) are finite sets, there exists
M > 0 such that

Spm(7), Agm+i(z) € [-M, M]
for any v € P(L™), x € P(H™1). For any (o, u,v) € N°(v,z), there holds

Spm () 2 Spm(u(0)) = Spme+1(u(0))
> Spmi(u(a)) > Agm+1(v(0)) > Agm+i(z).

In particular, Spm+1(u(a)) is bounded from below. Now, we use the following
lemma:

Lemma 5.6. For any v € P(L™) and d € R, go[)ggr)l(W“(y S X)) N
{Spm+1 > d} is precompact in A(R™).

Proof. This lemma is an immediate consequence of Proposition 2.2, Corol-
lary 2.3 in [1]. Let (y&,tx)k>1 be a sequence, where vy, € W¥(y : X™)
and t; > 0, such that, with ~; := cpt)imﬂ('yk), Spm+1(7y,) > d. Since
Spm () = Spmi1(7y,) > d, Corollary 2.3 in [1] shows that (yx)x has a conver-

gent subsequence. Then, Proposition 2.2 (2) in [1] implies the conclusion. [
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Since Spm+1(u(a)) is bounded from below for any (o, u,v) € NO(v,x),
Lemma 5.6 shows that ||u(a)jy1,2 is bounded for any (a,u,v). Therefore,

7 (v (0))llwz/s.s < const|[w(v(0))[lw12 = const[u(a)[lw:.2

is bounded from above (the first inequality is a Sobolev estimate). On the
other hand, sup,sq [Agm+1(v(s))| < M. Hence, Proposition 5.5 shows that
|lv]|co is bounded. O

Proof of Lemma 4.10. Suppose that (8,w) € N''(v,z). Then, there holds
Spm(v) =2 Spm(m(w(B))) = Apm(w(B)) = Ay (w(B)) = Agm+1(z).

Then, sup,sg ’AHS(U)(SM is bounded. Moreover, since Spm(m(w(f))) is
bounded from below, ||7(w(3))|ly1.2 is bounded. Hence, ||w||co is bounded.

5.4. Proof of Proposition 5.5. Finally, we prove Proposition 5.5.

It is enough to bound sup(s_, s)c[jj+1]x st u(s,t)| for each integer j > 0.
The proof for 7 > 1 is as the proof of Lemma 2.4. Hence, we only consider
the case j = 0. We denote the g-component and p-component of u by ug,

up, i.e., u(s, t) = (uq(s, 1), up(s,t)).
By the theory of Sobolev traces, there exists @4(s,t) € Wi3([o,00) x St :
R™) such that @,(0,t) = uy(o,t) for any ¢t € S', and there holds

[[%gll w13 (jo,00) x 51:R7) < const|ug(o)[lyy2/s(51.mm)-
Take a cut-off function x € C*°([0, 00)) such that
suppx C [0,2), xlpy=1, 0<x<1, —-2<x <0
We set w(s,t) == x(s — 0)(ug(s,t) — Ug(s,t), up(s,t)). Since
[ullcogo,c11xs1) < llwllco + ldgllco(o,o1)xs1) < llwllco + constl[ag [y,
it is enough to bound ||w||co. It is easy to see that
lwllco < constlwllyrs < const|[ Vs

by the Sobolev estimate and the Poincaré inequality. Since wy(o,t) =
(0,...,0), we can use Calderon—Zygmund inequality to obtain

IVwlzs < e([[(8s = Jstad)wl| s + [lw]zs).-

We claim that € := 1/2¢ satisfies the requirement in Proposition 5.5.
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If supg ¢ [|Js,t — Jstallco < 1/2¢, there holds
IVwils < 2e(lwlzs + 10 — Juudwlzs).
We divide (95 — J5+0;)w into two parts
(0, — Juad)w = X/ (5 — ) (g — gy 1) + X(5 — 0)(Os — T8 1ty — gy 1),
We bound the first and second term on the RHS

[first term||ps < const([|ull 13 (jo,042)x51) + lUqll£3),
[[second terml| s < const([|Js¢(u) Xn, , (W)l L3(j0,0+21x51) + [Ugllwr12)

< const(1 + [[ula(irosaixst) + [glliro).
Hence, |Vw||s is bounded by

[Vw]| s < const(1 + 1w/l 23 (jo0+2)x51) T+ g llwr.3)

< const (1 + [[ullwr2(o.0t21x51) + [4g(0)lw2/s.3s1))-

Since sup,>, ‘AHS (u(s))‘ is bounded by assumption, Proposition 5.1 shows
that [[ully12([s042]xs1) is bounded. On the other hand, [lug(a)|lyy2/3.3(g1y 18
bounded by assumption. Hence, the RHS is bounded. O

6. Floer—Hofer—-Wysocki capacity and periodic billiard trajectory

The goal of this section is to prove Proposition 1.2 and Corollary 1.4.

6.1. Symplectic homology of restricted contact type (RCT)-
domains. In this subsection, we collect some results on symplectic homol-
ogy of RCT-domains, which are essentially established in [10].

Definition 6.1. Let U be a bounded domain in T*R"™ with a smooth bound-
ary. U is called RCT, when there exists a vector field Z on T*R"™ such that
Lyw, = w, and Z points strictly outwards on 0U.

Let U be an RCT-domain in T*R™. Then, Ryy := ker(w|gy) is a 1D
foliation on OU, which is called characteristic foliation. Roy has a canon-
ical orientation: for any p € 9oU, £ € Ryy(p) is positive if and only if
wn(Z(p),&) > 0. Poy denotes the set of m-fold coverings of closed leaves of
Rou, where m > 1.

For each v € Pyy, A(v) = fv izwy is called the action of v. By our
definition of orientation of Rgy, A(y) > 0 for any v € Pyy.
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One can also define the Conley—Zehnder index indcyz(7y) for any v € Pay,
even when 7 is degenerate. For details, see Section 3.2 in [11]. For each
integer k, we set

Sk(0U) = {A(¥) | 7 € Pov,indez(y) <k}, %(0U) := | Ti(0U).
kEZ
Y(0U) C R is called the action spectrum.

Lemma 6.2. For any RCT-domain U in T*R", the following statements
hold:

(1) For any 0 < a < min%,,11(0U), SHL_La)(U) > 7.
(2) Let V' be another RCT-domain in T*R™ such that V C U. Then, for
any a satisfying
0<a<minX,;(0U), min ¥, +1(9V),

the natural homomorphism SHq[q_l’a)(U) — SHL_LG)(V) is an isomor-
phism.
(3) For any 0 < e < min¥,41(0U),

craw(U) = inf{a | SHEY9)/(U) — SHEY)(U) vanishes}.
(4) CFHW(U) S En+1(8U).
Proof. In Proposition 4.7 in [10], the following statement is proved:
Let U be an RCT-domain, and 0 < a < min¥(9U). Then,
sul=b Uy = H,..(U,8U).
Statement (1) in our Lemma 6.2 can be proved in the same way as this
statement in [10], although our assumption a < min¥,;(0U) is weaker.
Statement (2) also follows directly from the proof of Proposition 4.7 in [10].

For details, see [10] pp. 360-361. Statement (3) is Proposition 5.7 in [10].
Statement (4) is proved in exactly the same way as Theorem 8 in [11]. O

6.2. Periodic billiard trajectory. The goal of this subsection is to prove
Proposition 1.2. Throughout this subsection, V denotes a bounded domain
in R™ with smooth boundary. First, we clarify the definition of periodic
billiard trajectory.

Definition 6.3. A continuous map v : R/TZ — V is called a periodic bil-
liard trajecotory if there exists a finite set B C R/TZ such that the following
holds:

e On (R/TZ) \ B, there holds 4# = 0 and |[§| = 1.
e For any t € B, A4 (t) := limp_, 10 §(t + h) satisfies the law of reflection
o (8) +4- (1) € Ty AV, A (8) —4-(1) € (TydV) - \ {0}

Elements of B are called as bounce times and T is called the length of ~.
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[V

First, we construct a sequence of RCT-domains which approximates D*V.
Fix a positive smooth function h : V — Rs( and a compactly supported
vector field Z on R” so that:

h(q) = dist(q, V)2 when ¢ is sufficiently close to OV.
Z points strictly outwards on 9V
dh(Z) > 0 everywhere on V.
Setting Z =, Z;0q;, subgey |04, Z;(q)] < 1/2n.
For any ¢ > 0, we set H.(q,p) := |p|*>/2 + ¢h(q), and U, := {H. < 1/2} C
D*V.
We show that U, is an RCT-domain. We define Hy € C*°(T*R") by
Hz(q,p) :=p- Z(q). We define a vector field Z on T*R" by

7 = Zpiapi +XHZ.

)

It is easy to check that Lzw, = wy. (¢ Z), denotes the flow generated by Z,
ie., pf = idr-gn and dypf = Z(pf).
Lemma 6.4. When ¢ > 0 is sufficiently small, dH-(Z) > 0 on {H. = 1/2}.

In particular U- = {H: < 1/2} is an RCT-domain. There exists T > 0
such that LpT (UZ) D D*V. Moreover, we can take T, so that lim._,oT. = 0.

Proof. By simple computations,

szdpz |p| _szpjaqzz( )

i,

2 2
p; +D;
> |p|* - Z —— s, Z;()| = pl*/2,
qeVv
dH.(Z)(q,p) szdpz )(q,p) + edh(Z(q)) > |p|2/2.

Hence, there holds the following claims:

e dH.(Z) > 0 everywhere on D*V \ {p = 0}.

. Zipidpi(Z) >0 on {|p| =1}.

e 7 points outwards on {(q,p) | ¢ € OV }.
Since Z points outwards on 9V, for sufficiently small € > 0, dh(Z) > 0 on
{h = 1/2¢}. Hence, the first property implies that dH.(Z) > 0 on {H. =
1/2}. By the second and third properties, cp%T(D*V) C D*V for any T > 0.
Hence, for sufficiently small € > 0, there holds @?T(D*V) C U . This means
that D*V C ©Z(U-). O
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By Lemma 6.4, there exist sequences €1 > g > ---, 171 > Ty > --- such
that:
o U, :={H., <1/2}is an RCT-domain with respect to Z.
e Setting U, := gp%k(U,;), there holds U;” D Uy” D -+ and N, U, =
D*V.

L] hmkﬁoo EL = llmkﬂoo Tk =0.

Since U,j = cp%(Uk_) and Lzw, = wy, limg_ CFHW(U]:)/CFHW(U;;) =
limj_.oo e’ = 1. On the other hand, craw (U ) < cpaw(D*V) <
craw (Uy). Therefore, there holds

klinc}o CFHW(U];) = klirgo CFHW(UJ) = CFHw(D*V)

Lemma 6.5. Suppose that there exists a sequence (Vi) such that vy, €
PaUk—, which satisfies supy, indoz () < m and limy_o A(vk) = a, where m
is an integer and a > 0. Then, there exists a periodic billiard trajectory with
at most m bounce times and length equal to a. In particular, a > 0.

Proof. By our assumption, there exists I'y, : R/7Z — {H., = 1/2} such
that

Py = Xp, (T), /szdqz— W), indog(Te) <m

For the last estimate, see Lemma 8 in [11]. Let ¢ : R/7Z — R" be the
g-component of I'y. Then, by simple computations

Tk
it (e =0 B g =12 [ laPa= A
0

Moreover, the following identity is well-known (see Theorem 7.3.1 in [12]):

indMorse (Qk) = indCZ (Pk) <m.

To show that (gg)r converges to a periodic billiard trajectory on V', first,
we show that lim infy 7, > 0. If this is not the case, by taking a subsequence,
we may assume that limg_,,, 7 = 0. Then, according to Proposition 2.3
in [4], there exists go, € V such that (qy)x converges to the constant loop
at ¢so in C%-norm. However, this leads to a contradiction by the following
arguments:

e Suppose ¢ € V. Let K be a compact neighborhood of ¢ in V.
Then, for sufficiently large k, Imgqgr C K. On the other hand,
limg oo |||k |lc1 = 0, and g satisfies G + exVh(qr) = 0, |qk|?/2 +
erxh(qr) = 1/2. This is a contradiction.
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e Suppose ¢ € JV. Let v be the inward normal vector of OV at ¢uo.
For any k, there exists ), € S! such that ¢, (0x) - v < 0. On the other
hand, for any = € V sufficiently close to ¢, there holds Vh(z)-v < 0.
This contradicts our assumption that ¢ satisfies gy + exVh(qx) =0
for any k.

Thus, we have proved lim infy, 7, > 0. On the other hand, there also holds
limsupy, 7, < oo by exactly the same arguments as on pp. 3312 in [4] (see
also Lemma 15 in [11]).

Since (k) satisfies 0 < lim infy 7, < limsupy, 7, < oo and indyorse (qx) <
m, Propositions 2.1 and 2.2 in [4] show that a certain subsequence of (gx)x
converges to a periodic billiard trajectory on V with at most m bounce
times, and length limy_ ., A(7%) = a. O

Now, the proof of Proposition 1.2 is immediate.

Proof. By Lemma 6.2 (4), there exists v, € PaU;Z such that A(yx) =

CFHW(U];) and indcz ('yk) <n+1. Since limkﬂoo CFHW(Uk_) = CFHw(D*V),
Lemma 6.5 concludes the proof. O

6.3. Floer—Hofer—Wysocki capacity. In this subsection, we prove Corol-
lary 1.4. First, we need the following lemma:

Lemma 6.6. For sufficiently small ¢ > 0, the following holds:

(1) For sufficiently large k, the natural homomorphisms
sul-(UF) — sH- e (D*v),  SHLY(D*V) — SHL M (U))

are isomorphisms, and the above homology groups are isomorphic to
Zo.

(2) The natural homomorphism H,(V,0V) — H,(A<5(V),A<5(V) \
A(V)) is an isomorphism.

Proof. Lemma 6.5 shows that liminf; min3,1(0U, ) > 0. Then, for any
0 < ¢ < liminfg min ¥,,,1(0U,,), (1) follows from Lemma 6.2 (1), (2). In par-
ticular, Theorem 1.1 shows that H, (A<(V), A<¢(V) \ A(V)) = Z,. Hence,
(2) holds when H,(V,0V) — H, (A<¢(V),A<¢(V) \ A(V)) is injective.

Let us fix p € V. Then, if 0 < ¢ < 2dist(p, dV), any v € A~(V) \ A(V)
satisfies v(S') C V' \ {p}. Hence, we get a commutative diagram

Hy,(V,0V) —= Hy(AS5(V), AS5(V) \ A(V))

\ l«ev)*

Ho (V. V\ {p}),
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where the vertical arrow is induced by the evaluation map ev : v —
7(0). Since the diagonal map is an isomorphism, the horizontal arrow is
injective. O

Finally, we prove Corollary 1.4.
Proof of Corollary 1.4. Our goal is to show that cppw (D*V) is equal to
by := inf{b | H,(V,0V) — H, (A<b(V),A<b(V) \ A(V)) vanishes}.
Take £ > 0 so that it satisfies the conditions in Lemma 6.6. Then,
H,(V,0V) — H, (A<b(V),A<b(V) \ A(V)) vanishes
= H,(A°(V),A=(V)\ A(V)) — H, (A<b(1_/), A<P(V) \ A(V)) vanishes
— SHI=1)(D*V) — SHI=1Y) (D*V) vanishes.

The first equivalence follows from Lemma 6.6 (2) and the second equiva-
lence follows from Theorem 1.1. Since cpuw (D*V) = limy_oo cruw (U;7) =
limy oo craW (U}, ), it is enough to show that CFHw(U,:'_) > b, and
craw (U ) < by for any k. Since U, and U, are RCT-domains, Lemma 6.2
(3) implies that

craw (UE) = inf{b | SH 19)(UE) — SHL 1Y) (UF) vanishes}.

Therefore, cpaw (U, ,j ) > b, follows from the commutativity of

SHi, ) (UFh) sHl ()
su, 9 (D*v) — sHL Y (D V).
On the other hand, cpaw (U, ) < b, follows from the commutativity of

st b9 (D V) — sul Y (DHv)

|

SH, 9 (U ) — sHL Y (U)).

7. Floer—Hofer—Wysocki capacity and inradius

The goal of this section is to prove Theorem 1.6. First of all, the lower bound
2r(V) < cppw(D*V) is immediate from the proof of Lemma 6.6 (2). The
upper bound cpuw (D*V) < 2(n+ 1)r(V) is a consequence of the following
lemma:
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Lemma 7.1. For any b > 2(n + 1)r(V), there exists a continuous map
C :V x[0,1] — A<b(V) which satisfies the following properties:

(a) For anyx € V, C(x,0) = ¢, := constant loop at x.
(b) Setting V := dV x [0,1]UV x {1}, C(V) c A<t(V) \ A(V).

Let us check that Lemma 7.1 implies the upper bound. By Corollary 1.4,
it is enough to show that

()s 2 Ho(V,0V) — Hyu(A<P(V), A< (V) \ A(V))
vanishes when b > 2(n+1)r(V). Take C' : V x [0,1] — A<%(V) as in Lemma

7.1. Setting I : V. — V x [0,1] by I(x) := (x,0), consider the following
diagram:

Ho(V, V) — o HL (A1), A<b(7) \ A(V))
I*i /
H.(V x [0,1],

7).

Property (a) in Lemma 7.1 implies that the above diagram is commutative.
It is easy to see that H.(V x [0,1],V) = 0. Therefore, (:*), = 0. This
completes the proof of cppw (D*V) < 2(n+ 1)r(V) modulo Lemma 7.1.
Now, our task is to prove Lemma 7.1. Since b > 2(n+1)r(V), one can take
p so that p > 2r(V) and (n+ 1)p < b. We fix p in the following argument.

Lemma 7.2. For any p € V, there exists Up, a neighborhood of p in V and
a continuous map oy : Uy, X [0,1] — A<P(V') so that the following holds for
any x € Up:

e For any 0 <t <1, o,(z,t) maps 0 € St to z.
o 0,(x,0) = cy.

* op(z,1) ¢ A(V).

Proof. Since p/2 > r(V), there exists a smooth path 7 : [0,1] — V such
that v(0) = p, 7(1) € OV and length of ~ is less than p/2. There exists a
neighborhood U, of p and a continuous map I' : U, — W12(]0,1],V) such
that

e I'(p) =1
e For any = € Uy, I'(z)(0) = z, I'(z)(1) € OV
e For any = € Up, length of I'(x) is less than p/2.
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Now, define oy, : U, x [0,1] — A<P(V) by

I(z)(2tT) (0<7<1/2)
op(z,t)(1) = .
D)@l -7) (1/2<r<1)
Then, it is immediate to see that o, satisfies the required conditions. O

Lemma 7.3. Let (Up),cy be an open covering of V as in Lemma 7.2. Then,
there exists (W;)1<j<m, which is a refinement of (Up),ey and such that:

For any x € V', the number of j such that x € W; is at most
n 4+ 1.

Proof. Actually, this lemma is valid for any covering of V. By Lebesgue’s
number lemma, one can take § > 0 so that any subset of V' with diameter
less than ¢ is contained in some U,. We fix such ¢, and take a (smooth)
triangulation A of V so that every simplex has diameter less than §/2. For
each vertex v of A, Star(v) denotes the union of all open faces of A (we
include v itself), which contain v in their closures.

Let vy, ..., vy, be vertices of A, and set W; := Star(v;) for j =1,...,m.
Since each W; has diameter less than J§, (W;)i<j<m is a refinement of
(Up)peir- Moreover, if x € V is contained in a k-dimensional open face of
A, the number of j such that x € Wj is exactly k + 1. Hence (W})i<j<m
satisfies the required condition. O

Remark 7.4. The above proof of Lemma 7.3 is the same as the standard
proof of the fact that any n-dimensional polyhedron has Lebesgue covering
dimension < n (see Section 2 in [6]).

Take (W;)1<j<m as in Lemma 7.3. Since it is a refinement of (Uy),cy, one

can define a continuous map o; : W; x [0, 1] — A<P(V') so that the following
holds for any x € Wj:

e For any 0 <t <1, oj(x,t) € A<P(V) maps 0 € S! to x.
o O’j(iL‘,O) = Cg-
o oj(x,1) ¢ A(V).

For each 1 < j < m, let us take x; € C°(V) so that 0 < Xj <1,

suppx; C Wj, and K :={z € V' | x;(z) = 1} satisties J;;,, K; = V. We
define 6; : V x [0,1] — A<P(V) by
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Then, it is immediate that ¢; satisfies the following properties:

e For any = € YZ and 0 <t <1, 5j(x,t) maps 0 € S* to z.
e Forany z € V, 7j(x,0) = ¢,.
e For any z € Kj, 6;(z,1) ¢ A(V).

To finish the proof of Lemma 7.1, we introduce the following notation:

Definition 7.5. For any 71,...,vm € A(V) such that v1(0) = - - - = 7,(0),

we define their concatenation con(vyi,...,vm) € A(V) by

con(yi, ..., ¥m)(t)

. . N 1
;=7j+1<m<t—3>> <J§t§”,j=0,.--7m—1>-
m m m

Proof of Lemma 7.1. We define C': V x [0,1] — A(V) by
C(z,t) == con(d1(z,1),...,5m(z,1)).

Since &1(x,t),...,6m(z,t) maps 0 € S! to x, the above definition makes
sense. We claim that this map C' satisfies all requirements in Lemma 7.1.

First, we have to check that length of C(z,t) is less than b. Obviously,
length of C(z,t) is a sum of the lengths of &;(z,t) for j = 1,...,m. If
x ¢ Wj, 6j(x,t) = ¢, by definition. Hence &;(z,t) has length 0. Moreover,
the number of j such that x € W; is at most n + 1, by Lemma 7.3. Hence,
length of C(z,t) is less than (n 4 1)p < b. Finally, we verify conditions (a)
and (b). (a) follows from

C(x,0) = con(d1(x,0),...,6m(x,0)) = con(cg, ..., Cz) = Cq.

To verify (b), we have to check the following two claims:

(b-1) For any z € V, C(x,1) ¢ A(V).
(b-2) For any z € OV and 0 <t <1, C(z,t) ¢ A(V).

We check (b-1). Since (K;)1<j<m is a covering of V, there exists j such that
x € Kj. Then, 6;(x,1) ¢ A(V), therefore C(z,1) ¢ A(V). (b-2) is clear since
C(z,t) maps 0 € St tox ¢ V. O
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