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SYMPLECTIC RIGIDITY AND WEAK COMMUTATIVITY

Franco Cardin and Simone Vazzoler

We present a new and simple proof of Eliashberg–Gromov’s theorem
based on the notion of C0-commutativity introduced by Cardin and
Viterbo in [1].

1. Introduction

The notion of C0-commutativity has been introduced in [1] in connection
with the problem of finding variational solutions of multi-time Hamilton–
Jacobi equations. The proof of the main theorem is essentially based on
the use of Viterbo’s capacities. In that paper, it has been foreseen that
from the C0-commutativity framework Eliashberg–Gromov’s theorem on
symplectic rigidity could follow. An interesting proof of this fact has been
recently worked out by Humilière (see [4]) using the concept of pseudo-
representations.

The question of the C0-closure of the group of symplectomorphisms is
widely considered as the starting point of the study of symplectic topol-
ogy; for this reason is important to enrich this particular area with new
proofs, eventually trying to simplify the subject. This note presents a new
proof of Eliashberg–Gromov’s theorem, starting from the concept of C0-
commutativity and using simple algebraic arguments.

2. Weak commutativity and Eliashberg–Gromov’s theorem

In the following, by a function of class C1,1 we mean a C1 function with
Lipschitz derivative.

Definition 1. Let H, K be two autonomous Hamiltonians. We will say that
H and K C0-commute if there exist two sequences Hn, Kn of C1 Hamiltoni-
ans C0-converging to H and K, respectively, such that, in the C0-topology:

(2.1) lim
n→∞{Hn, Kn} = 0.
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The previous definition is a good extension of the standard Poisson brack-
ets since the following theorem holds.

Theorem 2 (Cardin, Viterbo [1]). Let H and K be two compactly sup-
ported Hamiltonians of class C1,1. If they C0-commute then {H, K} = 0 in
the usual sense.

The following lemma is the generalization of Theorem 2 to the affine at
infinity case.

Lemma 3 (Humilière, [4]). Let u, v two affine maps R
2n → R and Hn, Kn

be compactly supported Hamiltonians, such that

Hn → H, Kn → K, {Hn + u, Kn + v} → 0.

Then {H + u, K + v} = 0.

In what follows, we will consider only sequences of compactly supported
symplectomorphisms Φ(n), more precisely such that supp(Φ(n) − Id) is
compact.

Theorem 4 (Symplectic rigidity, [2, 3]). The group of compactly sup-
ported symplectomorphisms is C0-closed in the group of all diffeomorphisms
of R

2d.

Proof. To fix the notations: (q, p) = (q1, . . . , qd, p1, . . . , pd) ∈ R
2d and denote

by

(2.2) (Q(n)
1 (q, p), . . . , Q(n)

d (q, p), P (n)
1 (q, p), . . . , P (n)

d (q, p)),

a sequence of symplectic transformations C0-converging to

(Q1(q, p), . . . , Qd(q, p), P1(q, p), . . . , Pd(q, p)).

Note that we have to prove only {Qi, Pi} = 1. In fact, the other relations
{Qi, Qj} = 0 = {Pi, Pj}, and {Qi, Pj} = 0 for i �= j, are automatically
satisfied in view of Lemma 3. Now we define a new sequence (using the
previous one)

(2.3)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Q̃
(n)
i = Q

(n)
i +

1√
d

d∑

k=1

P
(n)
k ,

P̃
(n)
i = P

(n)
i +

1√
d

d∑

k=1

Q
(n)
k ,
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that will C0-converge to

(2.4)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Q̃i = Qi +
1√
d

d∑

k=1

Pk,

P̃i = Pi +
1√
d

d∑

k=1

Qk.

Clearly {Q̃(n)
i , P̃

(n)
i } = 0, in fact

{Q̃(n)
i , P̃

(n)
i } = {Q(n)

i , P
(n)
i } +

1√
d

d∑

k=1

({P (n)
k , P

(n)
i } + {Q(n)

i , Q
(n)
k })

+
1
d

d∑

k=1

{P (n)
k , Q

(n)
k } = 1 − 1 = 0.

Again using Lemma 3, we obtain {Q̃i, P̃i} = 0: passing to the limit,

{Q̃i, P̃i} = {Qi, Pi} +
1√
d

d∑

k=1

({Pk, Pi} + {Qi, Qk}) +
1
d

d∑

k=1

{Pk, Qk}

= {Qi, Pi} +
1
d

d∑

k=1

{Pk, Qk} = 0.

Define (just to simplify the notations) Ci(q, p) = {Qi, Pi}. For every fixed
(q, p) ∈ R

2d, the last homogeneous linear system reads

(2.5)

⎛

⎜
⎜
⎜
⎝

d − 1 −1 . . . −1
−1 d − 1 . . . −1
...

...
. . .

...
−1 −1 . . . d − 1

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

C1

C2
...

Cd

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

0
0
...
0

⎞

⎟
⎟
⎟
⎠

.

This system has C1 = C2 = · · · = Cd as solution; in fact, the d × d matrix
has determinant equal to zero: if we sum the last d − 1 rows we get the
opposite of the first row; in particular the rank of the matrix is d − 1, so
the subspace of solutions has dimension 1 and is exactly the space of equal
components vectors. Recalling the Jacobi identity

(2.6) {f, {g, h}} + {g, {h, f}} + {h, {f, g}} = 0,

we obtain, considering terms like {Qi, {Qj , Pj}} for i �= j,

(2.7) 0 = {Qi, {Qj , Pj}} + {Qj , {Pj , Qi}} + {Pj , {Qi, Qj}}
and since {Qi, Pj} = {Qi, Qj} = 0, we get

(2.8) {Qi, {Qj , Pj}} = 0.
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In the same way, considering {Pi, {Qj , Pj}} we obtain

(2.9) {Pi, {Qj , Pj}} = 0.

Once we have set C1(q, p) = C2(q, p) = · · · = Cd(q, p) = C(q, p), using the
previous relations, we have

(2.10)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{Q1, C} = 0
{Q2, C} = 0

...
{Pd−1, C} = 0
{Pd, C} = 0,

which is a homogeneous linear system of the type A · DC = 0

(2.11)

⎛

⎜
⎜
⎜
⎝

−Q1,p1 . . . −Q1,pd
Q1,q1 . . . Q1,qd

−Q2,p1 . . . −Q2,pd
Q2,q1 . . . Q2,qd

...
. . .

...
...

. . .
...

−Pd,p1 . . . −Pd,pd
Pd,q1 . . . Pd,qd

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

C,q1

C,q2

...
C,pd

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

0
0
...
0

⎞

⎟
⎟
⎟
⎠

.

From the fact that Φ : (q, p) �→ (Q1, . . . , Qd, P1, . . . , Pd) is a diffeomor-
phism we have detA �= 0 (because A = DΦ · E where E is the sym-
plectic matrix) and so C(q, p) = C, a constant. It remains to show that
C = 1. This comes from the fact that outside a compact set of R

2d we have
(Q1, . . . , Qd, P1, . . . , Pd) = (q1, . . . , qd, p1, . . . , pd) and so {qi, qj} = {pi, pj} =
0 and {qi, pj} = δij outside this compact set. From the fact that the Poisson
brackets are (at least) continuous, it follows that we must have C = 1. �
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