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SYMPLECTIC RIGIDITY AND WEAK COMMUTATIVITY
FraNCO CARDIN AND SIMONE VAZZOLER

We present a new and simple proof of Eliashberg-Gromov’s theorem
based on the notion of C%-commutativity introduced by Cardin and
Viterbo in [1].

1. Introduction

The notion of C°-commutativity has been introduced in [1] in connection
with the problem of finding variational solutions of multi-time Hamilton—
Jacobi equations. The proof of the main theorem is essentially based on
the use of Viterbo’s capacities. In that paper, it has been foreseen that
from the C%-commutativity framework Eliashberg-Gromov’s theorem on
symplectic rigidity could follow. An interesting proof of this fact has been
recently worked out by Humiliere (see [4]) using the concept of pseudo-
representations.

The question of the C°-closure of the group of symplectomorphisms is
widely considered as the starting point of the study of symplectic topol-
ogy; for this reason is important to enrich this particular area with new
proofs, eventually trying to simplify the subject. This note presents a new
proof of Eliashberg-Gromov’s theorem, starting from the concept of C°-
commutativity and using simple algebraic arguments.

2. Weak commutativity and Eliashberg—Gromov’s theorem

In the following, by a function of class C*! we mean a C! function with
Lipschitz derivative.

Definition 1. Let H, K be two autonomous Hamiltonians. We will say that
H and K C°-commute if there exist two sequences H,,, K,, of C! Hamiltoni-
ans C%-converging to H and K, respectively, such that, in the C°-topology:

(2.1) lim {H,, K,} = 0.
n—oo
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The previous definition is a good extension of the standard Poisson brack-
ets since the following theorem holds.

Theorem 2 (Cardin, Viterbo [1]). Let H and K be two compactly sup-
ported Hamiltonians of class CY'. If they C°-commute then {H, K} = 0 in
the usual sense.

The following lemma is the generalization of Theorem 2 to the affine at
infinity case.

Lemma 3 (Humiliere, [4]). Let u,v two affine maps R*™ — R and H,, K,
be compactly supported Hamiltonians, such that

H, — H, K, — K, {Hy +u, K, + v} — 0.
Then {H +u, K +v} = 0.

In what follows, we will consider only sequences of compactly supported
symplectomorphisms o™ more precisely such that supp(CI)(") —1d) is
compact.

Theorem 4 (Symplectic rigidity, [2,3]). The group of compactly sup-
ported symplectomorphisms is C°-closed in the group of all diffeomorphisms
of R4,

Proof. To fix the notations: (¢,p) = (q1,- . .,qa, p1,- - -,1q) € R? and denote
by

(22) (@ @,p), Q5" (@.p), P (a,p), - Py (a,)),
a sequence of symplectic transformations C%-converging to

(QI(Q7p)a s 7Qd(Qap)7 Pl(‘]ap)a st 7Pd(Qap))‘

Note that we have to prove only {Q;, P;} = 1. In fact, the other relations
{Qi,Qj} = 0 = {P;, P;}, and {Q;,P;} = 0 for ¢ # j, are automatically
satisfied in view of Lemma 3. Now we define a new sequence (using the
previous one)

(2.3)
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that will C°-converge to
- 1 &
Qi=Qi+ 7 Z Py,

P+7ZQ1€

Clearly {Q\™, P} =0, in fact

(2.4)

d
~n) pn n n 1 n n n n
(@7 Py =1 P+ =3 (RY P+ @)
k=1

d
1 n n
k=1
Again using Lemma 3, we obtain {@Z, ]3} = 0: passing to the limit,
{Qi P} ={Qi. P} + — Vi Z {Py, P} + {Qi, Q1)) + Z{Pk,czk}

1
={Qi, P} + 5 ;{Pk, Qi) = 0.

Define (just to simplify the notations) C;i(q,p) = {Q;, P;}. For every fixed
(¢,p) € R??, the last homogeneous linear system reads

d—1 -1 ... -1 Ch 0
-1 d-1 ... -1 Cy 0
(2.5) . . ) . =1
-1 -1 ... d-1 Cyq 0
This system has Cy = Cy = --- = Yy as solution; in fact, the d x d matrix

has determinant equal to zero: if we sum the last d — 1 rows we get the
opposite of the first row; in particular the rank of the matrix is d — 1, so
the subspace of solutions has dimension 1 and is exactly the space of equal
components vectors. Recalling the Jacobi identity

(2.6) {f.{g, h}} + {9, {h, f}} +{h,{f. 9}} =0,

we obtain, considering terms like {Q;, {Q;, P;}} for i # j,

(2.7) 0={Qi,{Qy, P;}} +{Q;,{F;, Qi}} + {P;,{Q:, Q;}}
and since {Q;, Pj} = {Q4,Q;} = 0, we get

(2.8) {Qi{Q;, Pj}} =0.
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In the same way, considering {P;,{Q;, Pj}} we obtain

(2.9) {F;,{Q;, Pj}} =0.
Once we have set C1(q,p) = Ca(q,p) = --- = Cy(q,p) = C(q,p), using the
previous relations, we have
{Q17 O} =0
{QQ, C} =0
(2.10) :
{Pd—b C} =0
{P;,C} =0,
which is a homogeneous linear system of the type A- DC =0
—Qupy o —Qipy Qua - Que\ (Can 0
iy | Qo Qe Qe Q) G 0
—Pyp .. —Pap, Pig .. Puag, Cp, 0

From the fact that ® : (¢,p) — (Q1,...,Q4, Pi1,...,Py) is a diffeomor-
phism we have det A # 0 (because A = D® - E where E is the sym-
plectic matrix) and so C(q,p) = C, a constant. It remains to show that
C = 1. This comes from the fact that outside a compact set of R?¢ we have
(Qh SRR Qd: Pl, SRR Pd) = (QIa -+-54d, P15 - - - 7pd) and so {QZy q]} = {plapj} =
0 and {¢;,p;} = d;; outside this compact set. From the fact that the Poisson
brackets are (at least) continuous, it follows that we must have C' =1. O
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