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THE ANNULUS PROPERTY OF SIMPLE HOLOMORPHIC
DISCS

Kai Zehmisch

We show that any simple holomorphic disc admits the annulus prop-
erty, i.e., each interior point is surrounded by an arbitrary small annulus
consisting entirely of injective points. As an application we show that
interior singularities of holomorphic discs can be resolved after slight
perturbation of the almost complex structure. Moreover, for boundary
points the analogue notion, the half-annulus property, is introduced
and studied in detail.

1. Introduction

In this article we consider holomorphic discs as Gromov [5] introduced to
symplectic geometry. These are smooth (up to the boundary) maps u defined
on the closed unit disc D ⊂ C, which take values in an almost complex
manifold (M,J), map the boundary circle ∂D into a (maximally) totally real
submanifold L ⊂M , and solve the (non-linear) Cauchy–Riemann equation

∂su+ J(u)∂tu = 0, s+ it ∈ D.

In order to make those discs applicable to symplectic geometry not only cer-
tain compatibility conditions with the symplectic (or contact) structure are
useful. To ensure that the solution space of holomorphic discs has a mean-
ingful structure (e.g., the structure of a smooth finite-dimensional manifold)
the self-intersection behaviour of a single solution should not be too excep-
tional. If for example, the solutions foliate the symplectic manifold (as in
case one talks about fillings with holomorphic discs, see Eliashberg [3]) this
has strong implications for the topology of the manifold.

As it is well-known (cf. the book of McDuff and Salamon [11]) the exis-
tence of a single injective point, i.e., an immersed point which is not a double
point, is enough to show that the moduli space of solutions is a smooth mani-
fold, provided the almost complex structure is perturbed suitably. To find
examples of somewhere injective holomorphic discs (i.e., discs which admit
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136 KAI ZEHMISCH

an injective point) Lazzarini [8] found a method to produce those out of a
given holomorphic disc u just by restricting the map u to suitable subsets
of D.

Our interest lies in a closer understanding of the structure of simple holo-
morphic discs, discs with a dense subset of injective points. For a given point
we ask for a sufficiently small neighbourhood that does not have too many
double points. This is the content of this work. The central issue in doing so
(and not only for simple holomorphic discs as, e.g., studied by Lazzarini [8],
Kwon and Oh [7], and Oh [14]) is that double points might accumulate not
only in the interior, but also at the boundary. The first case is obstructed
by the existence of a dense set of injective points, i.e., by simplicity. This is
due to Micallef and White [12]. However, on the boundary the situation is
completely different as we shall explain before we come to our main results.

By the work of Micallef and White [12] the intersection behaviour in the
interior is understood and a unique continuation principle is valid (well-
known in complex analysis). For boundary intersections this holds only
under extra conditions: consider the local situation of two holomorphic maps
z �→ z, z �→ −z both defined on the closed upper half-plane H. We see that
the images only have the real line in common opposite to plenty of intersec-
tion points. This means that the unique continuation principle is violated.
Globally this is also the case as the map (D, ∂D) → (CP 1,RP 1) induced by
H � z �→ z2 ∈ C shows. However, if one can exclude this self-matching phe-
nomenon a relative version of the similarity principle due to Carleman [2]
can be applied, and hence contradicts simplicity of the holomorphic disc.
We remark that this relative Carleman similarity principle for certain tech-
nical reasons only works provided the boundary accumulation points are
immersed.

In the situation where mixed intersections appear, which are those where
the boundary circle intersects the disc at the interior, no analogy of a unique
continuation principle is known. Moreover, a formulation of such a theorem
for an arbitrary holomorphic disc map u should involve the structure of the
set u−1

(
u(∂D)

)
, the so-called net, as the example H � z �→ z3 ∈ C shows.

The regions between the eikπ/3
R

+-axes, k = 0, 1, 2, 3, are overlapping and
self-matching, respectively. But in general the net has a very rich structure
which is still not fully understood; cf. [7]. But if one is only interested in
subquestions concerning the local behaviour of holomorphic discs one can
avoid those problems as done, e.g., by Lazzarini [8]. He showed how to reduce
a given holomorphic disc to obtain a simple one.

Finally we point out that there a geometric situations in which the holo-
morphic discs behave particularly nice. One class of examples are almost
complex manifolds which allow a Schwarz reflection principle. This is the
case for a real analytic boundary condition L and an almost complex
structure integrable near L, see [15], or if one can find an anti-holomorphic
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involution with a fix-point set containing L; cf. [4]. After an extension by
reflection all self-intersection points lie in the interior and the results of
Micallef and White [12] can be applied. Another situation where no mixed
intersections can appear are holomorphic discs inside a strictly pseudo-
convex domain Ω such that L ⊂ ∂Ω; cf. Eliashberg [3]. But in this work
no such restrictions to the almost complex structure is made and the aim is
to prove results in full generality. In other words, we have to deal with all
kinds of double points.

Our first result concerns the structure of injective points near a given
interior point. We say a holomorphic disc has the annulus property if around
any interior point one can find an arbitrary small annulus consisting entirely
of injective points. For a precise definition we refer to Definition 3.1.

Theorem 1.1. A holomorphic disc has the annulus property if and only if
the disc is simple.

The annulus property allows one to perform local constructions with a
given holomorphic disc. Of primary interest (in particular in 4-dimensional
topology) is the existence of immersed holomorphic discs.

Corollary 1.2. For any simple J-holomorphic disc u : (D, ∂D) → (M,L)
there exists a smooth almost complex structure J̃ (still making L totally real)
and a simple J̃-holomorphic disc ũ : (D, ∂D) → (M,L) such that

(i) ũ has no interior critical point, i.e., ũ |B1(0) is an immersion,
(ii) ũ is arbitrary C2-close to u, and
(iii) J̃ is arbitrary C1-close to J .

To obtain the result one just removes all the finitely many interior critical
points of u. By a theorem of McDuff (see [10, Theorem 4.1.1]), about small
discs near each interior critical point the J-holomorphic disc u can be locally
approximated by J-holomorphic immersions. Now using small annuli around
the interior critical points as in Theorem 1.1 the cut and paste procedure
from [9, Lemma 4.3] and [10, Corollary 4.2.1] yields the claim. As the
construction shows, ũ coincides with u and J̃ coincides with J away from
the neighbourhoods, where the local perturbations take place. The annulus
property thereby is used in a crucial way in order to extend the almost
complex structure over the annuli to obtain a smooth J̃ .

For a similar formulation of the annulus property along the boundary
one has to exclude the case that the holomorphic disc-map takes the same
values along two disjoint boundary segments (recall the example z �→ z2

from above). We will say the holomorphic disc is not self-matching, see
Definition 9.4 for a precise formulation. We say a holomorphic disc has the
half-annulus property if around any boundary point one can find an arbitrary
small half-annulus consisting entirely of injective points, see Definition 6.1.
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Theorem 1.3. A holomorphic disc has the half-annulus property if and only
if the disc is simple and not self-matching.

We remark that both theorems above are crucial in developing a higher-
order-intersection theory for holomorphic discs. This is expected to gener-
alize the filling-with-holomorphic-discs method considerably, see [16]. For
a generic almost complex structure the moduli space of somewhere injec-
tive holomorphic discs (representing a certain relative homotopy class) with,
e.g., a boundary singularity, a tangent self-intersection, or a more general
constraint on their jet-prolongations is a smooth manifolds of the expected
dimension. By an argument due to McDuff–Salamon (see [11, Lemma 3.3.4])
the (half-)annulus property is used to perform a linearized version of the
argument of Corollary 1.2 to get the manifold structure. We point out that
the half-annulus property is especially made for this argument. Moreover,
a posteriori all somewhere injective holomorphic discs are simple and even
simple along the boundary for a generic almost complex structure, see [16].

This article is organized as follows: a precise definition of simple holo-
morphic discs is given in Section 2, where we show the equivalence to the
name-giving property of not being somewhere locally multiply covered. The
annulus property is introduced in Section 3 and the first steps of the proof
of Theorem 1.1 (which is identical with Theorem 3.2) are made. Section 4
treats the intersection behaviour at boundary intersection-points based on
the relative Carleman similarity principle. Section 5 does the analogue for
mixed intersections and the proof of Theorem 1.1 with a set-theoretical argu-
ment based on Section 4 is finished. In Section 6 the half-annulus property is
introduced and, as a first step for Theorem 1.3, the equivalence to simplicity
along the boundary is shown. Sections 7 and 8 are devoted to the concept
of injective points of the boundary map of holomorphic discs. Section 9
discusses the relation between simplicity along the boundary and locally
multiply covered boundary maps and completes the proof of Theorem 1.3.

2. Characterization of simplicity

Due to the fundamental result of Micallef and White [12] the local behaviour
of simple holomorphic spheres is well-understood, and studied in full detail
in the book of McDuff and Salamon [11]. Some of these local properties
remain valid for interior points of holomorphic discs. The aim of this section
is to give an overview of what is known about this.

Let us consider an almost complex manifold (M,J) which contains a
totally real submanifold L. We would like to study the local behaviour of
a J-holomorphic disc u : (D, ∂D) → (M,L). For this let us recall some
definitions: a critical point of u is a point z ∈ D such that du(z) = 0.
Synonymously, we say singular point or just singularity. We denote the set
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of critical points by

Crit(u) :=
{
z ∈ D

∣
∣ du(z) = 0

}

and the preimage of critical values by

Cr(u) := u−1
(
u
(
Crit(u)

))
.

Notice, any point z ∈ D which is not a critical point of u, is automatically
immersed by u. This is due to the fact that u is J-holomorphic, i.e., u solves

∂tu(z) = J
(
u(z)

)
∂su(z)

for all z ∈ D. Therefore, by the inverse function theorem, u is a local embed-
ding near its non-critical points.

Holomorphic maps satisfy the unique continuation principle well-known
for analytic functions in one variable. That the principle is valid for
J-holomorphic maps is due to Carleman [2]. For holomorphic discs we obtain
therefore, see Lazzarini [8, Theorem 3.5]:

Proposition 2.1. For a non-constant J-holomorphic disc u : (D, ∂D) →
(M,L) the following sets are finite:

(i) the set of critical points Crit(u),
(ii) the preimage u−1(p) for all p ∈M , and
(iii) in particular, the preimage Cr(u) of critical values.

As it is well-known (see [11, 16]) the existence of an injective point, a
point z ∈ D such that

u−1
(
u(z)

)
= {z} and du(z) �= 0,(2.1)

can be used to provide the solution space of the Cauchy–Riemann operator
(i.e., the moduli space of holomorphic discs) with the structure of a finite-
dimensional manifold (at least locally).

Proposition 2.2. The set of all injective points of u

Inj(u) :=
{
z ∈ D

∣
∣ z is an injective point of u

}

is open in D.

Proof. Let z0 be an injective point. We claim that there exists r > 0 such
that u−1

(
u(z)

)
= {z} for all z ∈ Br(z0) ∩ D. Otherwise, we could find

sequences zν → z0 and wν → w0 in D such that zν �= wν as well as u(zν) =
u(wν) for all ν ∈ N. But by the first condition in (2.1) this would imply that
w0 = z0. This is a contradiction, because by the second condition in (2.1)
the restriction u |V is an embedding (and hence injective) for some open
neighbourhood V of z0 in D. �
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A J-holomorphic disc u is called somewhere injective if u has an injective
point, i.e., if Inj(u) �= ∅. In order to find conditions under which a holo-
morphic disc is somewhere injective we will study the set of self-intersection
points of u

S(u) :=
{
(z1, z2) ∈ D × D \ ΔD

∣
∣ u(z1) = u(z2)

}

and the projection to the first coordinate

S1(u) := proj1 S(u).

By the mean value theorem applied to the coordinate functions of u we see
that the closure of S(u) is contained in the disjoint union

S(u) ⊂ S(u) 
 ΔCrit(u).(2.2)

The inclusion in (2.2) is in general strict as the following injective map
shows: D � z �→ (z2, z3). Moreover, we observe that the complement of the
set of injective points has the following description:

D \ Inj(u) = Crit(u) ∪ S1(u) ⊃ S1(u).(2.3)

Therefore, we see again that Inj(u) is open. Further, we remark that

Cr(u) = Crit(u) ∩ S1(u),

a fact that we will use throughout our arguments.
Following Lazzarini [8] we define now:

Definition 2.3. A J-holomorphic disc u is simple if Inj(u) is dense in D.

The first non-trivial observation concerning simplicity is due to Micallef
and White [12]:

Theorem 2.4. For any simple J-holomorphic disc u the set

Sinter(u) := S(u) ∩ (
B1(0) ×B1(0)

)

of interior self-intersection points of u is discrete in B1(0) ×B1(0).

Equivalently, we could say that for all r ∈ (0, 1) the set S(u)∩(Dr×Dr) is
finite. This means for a simple J-holomorphic disc u there exist no sequences
zν → z0 and wν → w0 in B1(0) with zν �= wν for all ν ∈ N and z0, w0 ∈ B1(0)
such that u(zν) = u(wν), regardless whether z0 and w0 coincide or not. A
proof of Theorem 2.4 avoiding the theory of minimising area-like functionals
is given by Lazzarini in [11, Theorem E.1.2].

Remark 2.5. A particular consequence of Theorem 2.4 is that for a simple
disc u any point in Crit(u) ∩ B1(0) has a pointed neighbourhood U∗ such
that the restriction u |U∗ is an embedding, i.e., is injective.

Sometimes, a weaker version of Theorem 2.4 is sufficient in order to get
informations about the geometric structure of a holomorphic disc; see [11,
Lemma 2.4.3].
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Lemma 2.6. Let u be a J-holomorphic disc. Assume that there are
sequences zν → z0 and wν → w0 in B1(0) with zν �= wν for all ν ∈ N and
z0, w0 ∈ B1(0) such that u(zν) = u(wν). Assume in addition that du(z0) �= 0.
Then there exists an analytic function ϕ defined on an open neighbourhood
V of w0 such that ϕ(w0) = z0 and u = u ◦ ϕ on V .

The second proof of this fact given in [11] relies on the Carleman similarity
principle. In Section 4, we extend this approach to cases, where the boundary
is present.

Lemma 2.6 can be used to give an equivalent characterization of simplicity,
which is more practical in the applications:

Proposition 2.7. A J-holomorphic disc u is simple if and only if there
are no two non-empty disjoint open subsets U1 and U2 of D such that
u(U1) = u(U2).

Proof. The J-holomorphic disc u is not simple if and only if Inj(u) is not
dense in D, i.e., the complement D \ Inj(u) has an interior point. Because
of the fact that Crit(u) is finite, u is not simple if and only if S1(u) has an
interior point, see (2.3).

If there are two non-empty disjoint open subsets U1 and U2 of D such
that u(U1) = u(U2) we get in particular U1 ⊂ S1(u), which means that
S1(u) has an interior point. By the previous discussion this implies that u
is not simple.

On the other hand, if S1(u) has an interior point then in particular
Sinter(u) has an accumulation point. Because Crit(u) is finite we can assume
that we are in the situation of Lemma 2.6. Now du(z0) �= 0 implies that
z0 �= w0 and we can further assume that U := ϕ(V ) and V are disjoint.
Note, that any analytic function is open. Consequently, we found non-empty
disjoint open sets U and V such that u(V ) = u(U). �

We see that our definition of simplicity coincides with the one given by
Lazzarini in [11]. Combining Theorem 2.4 with Proposition 2.7 we get a
further characterization of simplicity:

Corollary 2.8. A J-holomorphic disc u is simple if and only if Sinter(u) is
a discrete subset of B1(0) ×B1(0).

3. The annulus property

Throughout this section we consider a J-holomorphic disc u : (D, ∂D) →
(M,L), where (M,J) is an almost complex manifold containing a totally
real submanifold L. The aim is to show that for any interior point of D

there exist arbitrary small surrounding annuli which consist completely of
injective points of u, provided u is simple. In other words, we will prove that
u has the annulus property. This is the analogous statement to [11, Corollary
2.5.4], where that case of holomorphic spheres is considered.
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Definition 3.1. We will say that u has the annulus property if for any point
z0 ∈ B1(0) and any given ε > 0 with Bε(z0) ⊂ B1(0) there exists a closed
subset Aε,z0 diffeomorphic to the annulus S1 × [0, 1] such that the following
conditions are satisfied:

(i) Aε,z0 ⊂ B∗
ε (z0), where B∗

ε (z0) := Bε(z0) \ {z0},
(ii) a boundary component of Aε,z0 has winding number 1 around z0,
(iii) u |Aε,z0

is an embedding, and
(iv) u−1

(
u(Aε,z0)

)
= Aε,z0 .

We see that any J-holomorphic disc u which has the annulus property
is simple. This is because for all z0 ∈ B1(0) and for all ε > 0 the annulus
Aε,z0 is contained in Inj(u) so that the set of injective points is dense, see
Definition 2.3. The converse is also true:

Theorem 3.2. A J-holomorphic disc is simple if and only if it has the
annulus property.

Proof of Theorem 3.2 (part I). The above discussion shows that it is enough
to show that any simple J-holomorphic disc u has the annulus property. We
start our proof with some preliminaries. Let z0 ∈ B1(0) be any point and
take ε > 0 such that Bε(z0) ⊂ B1(0). By Proposition 2.1 we can choose
ε > 0 so small such that

B∗
ε (z0) ∩ Cr(u) = ∅.(3.1)

In particular, u |B∗
ε (z0) is an immersion but potentially with self-intersections.

By Theorem 2.4 we have that Sinter(u) is discrete and, consequently,

S(u) ∩ (
Bε(z0) ×Bε(z0)

)

is a finite set. Hence, we can assume after shrinking ε > 0 if necessary
that the restricted map u |B∗

ε (z0) is injective. Or equivalently, u |B∗
ε (z0) is an

embedding; cf. Remark 2.5.
In order to prove the annulus property it remains to study the subset

u−1
(
u(A)

)
of D, where

A := Bε/2(z0) \Bε/4(z0) ⊂ B∗
ε (z0).

The aim is to show that there is a subannulus of A which has winding
number 1 and consists entirely of injective points. Because Inj(u) is open
(see Proposition 2.2) for this it will be enough to show that there is an
embedded circle in A, which has winding number equal to 1, such that any
point on the circle is injective.

In order to provide the space of self-intersections with a useful structure
we will introduce some terminology: on the set A×D, we define the following
correspondence:

S := S(u) ∩ A × D.
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By simplicity of u this set has no interior point in A×D, see Proposition 2.7.
Furthermore, in view of (3.1) the set S must be closed. Therefore, the set
of accumulation points

R := Acc(S)

of S is contained in S. Theorem 2.4 implies now that Acc(S) is a subset of
A × ∂D and the intersection S ∩ A ×B1(0) is discrete. Hence, we get

R ⊂ (S ∩ A × ∂D
)

and R∩ A ×B1(0) = ∅.(3.2)

Consequently, the projection to the first component

R1 := proj1R
which is a compact subset of A, has no interior point (viewed as a subspace
of A). This means that the set A \R1 is dense in A, or equivalently the set
R1 is nowhere dense in A. Roughly speaking, R1 contains no 2-dimensional
components. In fact, 1-dimensional pieces are not there as well:

Lemma 3.3. There exists no embedding c : [−1, 1] → A with c([−1, 1])
⊂ R1.

Taking the lemma to be granted we see together with (3.2) that the
compact set

S1 := proj1S
is nowhere dense in A and there exists no embedding c : [−1, 1] → A such
that its image c([−1, 1]) is contained in S1.

Before we continue with the construction of the desired annulus Aε,z0 we
will give the proof of Lemma 3.3. It relies an the relative Carleman similarity
principle and is postponed to Section 4. �

Remark 3.4. The set S∩A×∂D has no interior point in A×∂D. Otherwise,
we would find open subsets U ⊂ A and I ⊂ ∂D such that u(U) = u(I),
and hence, that u(U) ⊂ L. This contradicts the fact that L is totally real.
Further, the set

proj1
(
S(u) ∩ A × ∂D

)
=

{
x ∈ A

∣
∣ ∃y ∈ ∂D : u(x) = u(y)

}

has no interior point in A. Otherwise, there would exist an open subset U
of A such that u(U) ⊂ u(∂D) ⊂ L, which is again a contradiction.

4. Boundary intersections

Let (M,J) be an almost complex manifold of real dimension 2n containing
a totally real submanifold L. In this section, we consider two J-holomorphic
embeddings

u, v :
(
D

+, [−1, 1], 0
) −→ (M,L, p),
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of the closed upper half-disc D
+ = D ∩ {�m(z) ≥ 0}. We are interested in

the accumulation behaviour of the intersection points of u and v near their
boundaries. So we consider two sequences zν → 0 and wν → 0 of points in
D

+ \ {0} such that u(zν) = v(wν) for all ν ∈ N.
If we stick to the 4-dimensional case for the moment we see that u and

v must be tangent at 0, i.e., the images of du(0) and dv(0) must coincide.
Indeed, assuming the contrary the J(p)-invariance of the tangent spaces of
the half-discs at p would then imply that the intersection of du(0){C} with
dv(0){C} is {0}. But by the dimension assumption this means that u and v
would be transverse at (0, 0). This is a contradiction.

Remark 4.1. In the above argument the presence of the boundary was not
used. Taking the boundary into account we see that the linear maps du(0)
and dv(0) are collinear over R.

This is not just a 4-dimensional phenomenon as the following lemma
will show. So independent of the dimension the holomorphic half-discs are
tangent at the accumulation point.

Lemma 4.2. Let u, v be as above. Then there exists a non-zero real number
δ such that du(0) = δdv(0).

Proof. We will show that du(0) and dv(0) are collinear over C, i.e., there
exists a complex number a �= 0 such that du(0) = dv(0) · a. Because the
partial derivatives us(0) and vs(0) are contained in TpL the number a must
be real.

First of all we can find a local chart about p in which the totally real
boundary L corresponds to R

n ⊂ C
n, and in which the almost complex

structure J is the multiplication by i at least for all real points, see [11,
Exercise B.4.10], or [8, Proposition 3.3]. Therefore, it is enough to consider
J-holomorphic maps

u, v : (D+, [−1, 1], 0) −→ (Cn,Rn, 0),

u = (u1, . . . , un), v = (v1, . . . , vn),

where J is an almost complex structure on C
n such that J = i on R

n.
Arguing by contradiction we suppose that du(0){C} and dv(0){C} do not

coincide. So they span a real 4-dimensional subspace of C
n, because the case

of a real 3-dimensional subspace is excluded by i-invariance. Now we wish
to apply the relative Carleman similarity principle (see [1, Theorem A.2])
to each of the solutions u and v of

ws + J(w)wt = 0,

w([−1, 1]) ⊂ R
n,

w(0) = 0,
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separately. Using a smooth endomorphism field which conjugates J to i and
is the identity along R

n, we can assume that u and v solve the linear equation

ws + iwt +Aw = 0,

w([−1, 1]) ⊂ R
n,

w(0) = 0,

where A is a smooth real matrix valued function on D
+ (depending on u,

resp. v), see [11, p. 24]. Now by the relative Carleman similarity principle,
we find

• a continuous complex matrix valued function B of invertible matrices
with B(0) = id,

• and an analytic C
n-valued function f with f(0) = 0,

both defined in a neighbourhood U of 0 in C and both are real along R,
such that w = Bf holds on U ∩ {�m(z) ≥ 0}. In particular there exist
a, b ∈ R

n \ {0} such that

u(z) = az + o(|z|) and v(z) = bz + o(|z|)
as z tends to 0 in D

+.
After composing with a complex linear transformation A ∈ GL(Cn) such

that A(Rn) = R
n we can further assume that a = (1, 0, . . . , 0)T and b =

(0, . . . , 0, 1)T as column vectors in C
n. Therefore, we have that the coordinate

functions ϕ := u1 and ψ := vn are local diffeomorphisms about ϕ(0) = 0
and ψ(0) = 0, respectively. Hence, by Taylor’s formula, we obtain

u ◦ ϕ−1(z) =
(
z, o(|z|)) in C × C

n−1,

v ◦ ψ−1(z) =
(
o(|z|), z) in C

n−1 × C.

Recall that we have assumed u(zν) = v(wν) for our sequences zν → 0 and
wν → 0. So setting z̃ν := ϕ(zν) and w̃ν := ψ(wν) for all ν ∈ N we find

z̃ν = o(|w̃ν |) and w̃ν = o(|z̃ν |)
for all ν ∈ N. But this implies

∣
∣
∣
z̃ν
w̃ν

∣
∣
∣ =

∣
∣
∣
o(|w̃ν |)
|w̃ν |

∣
∣
∣ → 0 and

∣
∣
∣
w̃ν

z̃ν

∣
∣
∣ =

∣
∣
∣
o(|z̃ν |)
|z̃ν |

∣
∣
∣ → 0

as ν tends to infinity. Consequently,

1 =
z̃ν
w̃ν

w̃ν

z̃ν
→ 0

as ν → ∞, which is a contradiction. This shows that u and v must be tangent
at 0 which proves the claim. �
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Lemma 4.2 allows us to define the sign of the boundary intersection at
the accumulation point (0, 0) to be the sign of the real number δ, i.e.,

δu,v := sign(δ).(4.1)

Notice that this definition is intrinsic, i.e., is invariant under conformal
reparametrizations which respect the boundary condition. Now it turns out
that under the assumptions of the proceeding section the images of the half-
disc maps u and v coincide, provided that the sign is positive. This is to say
that the unique continuation principle holds true.

Lemma 4.3. If the sign δu,v is positive then there exist open neighbourhoods
U and V of 0 in D

+ such that u(U) = v(V ). In fact, there exists an analytic
diffeomorphism ϕ between pointed neighbourhoods of 0 in C such that v =
u ◦ ϕ hold true on V .

In order to prove this lemma we will need a particular coordinate system
about the intersection point making one of the holomorphic discs flat. The
following result can be obtained as in [11, Lemma 2.4.2]:

Lemma 4.4. Let w : (D+, [−1, 1], 0) → (M,L, p) be a J-holomorphic embed-
ding. Then there exists a neighbourhood U of 0 in C

n and an embedding

Φ : (U,U ∩ R
n, 0) −→ (M,L, p)

such that

Φ−1 ◦ w(z) = (z, 0, . . . , 0) in C × C
n−1

for all z ∈ D
+ and J̃ := Φ∗J = dΦ−1 ◦ J ◦ dΦ satisfies

J̃(z, 0) = i(4.2)

for all z ∈ D
+.

Proof of Lemma 4.3. We will follow the line reasoning from [6, p. 90]. By
Lemma 4.4 we can assume that our J-holomorphic half-disc maps u, v are
given by

u, v : (D+, [−1, 1], 0) −→ (Cn,Rn, 0),

u = (u1, . . . , un), v = (v1, . . . , vn),

such that u(z) = (z, 0, . . . , 0) for all z ∈ D
+, where J is an almost complex

structure on C
n such that J = i on D

+ × {0}. By our assumption there is a
positive real number δ > 0 such that du(0) = δdv(0). So, we find that

∂tv1(0) = 1
δ∂tu1(0) = 1

δ i

has positive imaginary part. W.l.o.g. we can assume that �m(
∂tv1(z)

)
> 0

for all z ∈ D
+. Therefore, the function t �→ �m(

v1(s + it)
)

is monotone
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increasing for all s ∈ [−1, 1] and, hence, v1(z) ∈ {�m(z) > 0} for all z ∈
{�m(z) > 0} ∩ D

+. Consequently, we have that

J(v1, 0) = i.(4.3)

If we write ṽ for the tuple (v2, . . . , vn) in the following we get that
∫ 1

0
D2J(v1, τ ṽ){ṽ}dτ =

∫ 1

0
∂τJ(v1, τ ṽ)dτ = J(v1, ṽ) − J(v1, 0) = J(v) − i

on D
+. By J-holomorphicity we get that

0 = ∂sv + J(v)∂tv = ∂sv + i∂tv +Bṽ,(4.4)

where

B :=
(∫ 1

0
D2J(v1, τ ṽ){ . }dτ · ∂tv

)

is an element of C∞(
D

+,HomR(Cn−1,Cn)
)
. Setting B̃ := projCn−1 B, which

yields an element in C∞(
D

+,EndR(Cn−1)
)
, we get finally

0 = ∂sṽ + i∂tṽ + B̃ṽ.

The relative Carleman similarity principle (see [1, Theorem A.2]) implies
that there exist 0 < ε ≤ 1, a complex analytic function f :

(
Dε, [−ε, ε], 0

) →(
C

n−1,Rn−1, 0
)
, and C ∈ C0

(
Dε,GLR(Cn−1)

)
, such that

ṽ(z) = C(z)f(z)

for all z ∈ D
+
ε . By assumption we have that ṽ(wν) = 0 for all ν ∈ N, where

wν → 0 in D
+ \ {0}. This implies f(wν) = 0 for all ν ∈ N and, hence,

f = 0. Consequently, ṽ = 0. Thus there exists an open neighbourhood V of
0 such that ϕ := v1 is analytic on the interior of V , see (4.4), and sends real
numbers to real numbers. Moreover, v = u ◦ϕ on V . Setting U = ϕ(V ) this
gives the claim. �

5. Mixed intersections

The aim of this section is to finish with the proof of Theorem 3.2 which
says that a simple holomorphic disc has the annulus property. First of all we
will use Lemma 4.3 to show that the set of accumulation points R1 cannot
contain a subset of the form c([−1, 1]) for any embedding c : [−1, 1] → A.

Proof of Lemma 3.3. Arguing by contradiction we suppose there is an
embedding c : [−1, 1] → A with c([−1, 1]) ⊂ R1. Set c(0) = z∗ and take
a positive real number δ with Bδ(z∗) ⊂ B∗

ε (z0). By shrinking δ > 0 we can
assume that Bδ(z∗) \ c([−1, 1]) has exactly two components Σ1 and Σ2. By
uniformization there are analytic embeddings

ϕj :
(
D

+, ∂D
+, 0

) −→ (
Σj , c([−1, 1]), z∗

)
,
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one for each j = 1, 2. Note that the images of the vector ∂s under the differ-
entials dϕ1 and dϕ2 point in opposite directions in Tz∗c([−1, 1]). Moreover,
by assumption the J-holomorphic half-discs

uj := u ◦ ϕj :
(
D

+, ∂D
+
) −→ (M,L)

intersect the given J-holomorphic disc u along the boundary, i.e.,

uj(∂D
+) ⊂ u(∂D).

Because u |B∗
ε (z0) is an embedding and z∗ /∈ Cr(u) we may assume (after

shrinking δ > 0 again if necessary) that this is a local intersection of three
embedded J-holomorphic half-discs along their boundaries. In particular,
for one j = 1, 2 the sign of boundary intersection δu,uj must be positive.
So we derived from Lemma 4.3 that two of the branches of u along the
boundary must overlap. However, this means that u cannot be simple. This
is a contradiction. �

As we already remarked we obtained in fact that the compact set S1 is
nowhere dense in A and does not contain embedded arcs. While the set of
interior intersections

Sinter
1 := proj1

(
Sinter(u)

) ∩ A =
{
x ∈ A

∣
∣ ∃y ∈ B1(0) : u(x) = u(y)

}

is discrete it seems that the set of mixed self-intersection points of u

Smix(u) := S(u) ∩ (
B1(0) × ∂D

)

is rather complicated. In order to understand the topology of the set

S1 = Smix
1 
 Sinter

1 ,

where

Smix
1 := proj1

(
Smix(u)

) ∩ A =
{
x ∈ A

∣
∣ ∃y ∈ ∂D : u(x) = u(y)

}
,

we need more information about the mixed self-intersections.
First of all we will extract an important subclass of accumulations of self-

intersection points. Namely, we consider the set ofmixed self-intersections of
virtual boundary type

Rvirt = Acc
(
S(u) ∩ A × ∂D

)

and denote the projection to the first coordinate by

Rvirt
1 := proj1Rvirt.

Observe that Rvirt
1 = Acc(Smix

1 ). Its complement, the set of accumulation
points which only can be reached from the interior, is denoted by

R̃1 := R1 \Rvirt
1 .
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The reason for these definitions is the following key property: by (3.2) we
have R1 ⊂ Smix

1 which implies

Acc(R1) ⊂ Rvirt
1 .(5.1)

In order to prove the theorem we are going to construct a covering of S1

using the decomposition of the accumulation points

R1 = R̃1 
Rvirt
1

into R̃1 and Rvirt
1 .

Lemma 5.1. Consider a point z∗ ∈ Rvirt
1 . Then for any ρ > 0 there exists

δ ∈ (0, ρ) such that

S1 ∩ ∂Bδ(z∗) = ∅.
In order to prove this fact we consider J-holomorphic embeddings

u :
(
B1(0), 0

) −→ (M,p) and v :
(
D

+, [−1, 1], 0
) −→ (M,L, p)

such that there are sequences zν → 0 in B1(0)\{0} and wν → 0 in ∂D
+\{0}

of complex numbers such that u(zν) = v(wν) for all ν ∈ N. We remark that
the condition on the points wν to lie on the boundary can be interpreted as
a virtual boundary condition.

Lemma 5.2. For all ε > 0 there exist δ ∈ (0, ε) and an embedding

c :
(
[−1, 1], 0

) −→ (
Dδ, 0

)
,

where Dδ := Bδ(0), such that the following conditions are satisfied:
(i) the points zν lie on the image γ := Im(c) provided zν ∈ Dδ for all

ν ∈ N,
(ii) the intersection γ ∩ ∂Bδ(0) equals {c(±1)}, and is transverse,
(iii) each point ζ ∈ Dδ with u(ζ) ∈ L lies in fact on γ.

Proof. By Lemma 4.4 we can assume that v(z) = (z, 0, . . . , 0) in C × C
n−1

for all z ∈ D
+ and that u(zν) = v(wν) ∈ R

n. Writing u = (u1, ũ) with
respect to the splitting C × C

n−1 we see that u1(zν) ∈ R and ũ(zν) = 0 for
all ν ∈ N. Hence, dũ(0) = 0. Therefore, we can assume that the restricted
map u1 : (Dδ, 0) → (C, 0) is an embedding for some δ > 0. Therefore, in a
neighbourhood of zero we can invert u1, i.e., ϕ = u−1

1 exists. By shrinking
δ > 0 again if necessary, we can assume that R ∩ u1(Dδ) is connected with
transverse intersections at the boundary. We get the first claim by consid-
ering c := ϕ |R.

By making δ > 0 smaller if necessary we can assume that u(Dδ) is con-
tained in the domain (V, p) of that chart map we used to flatten v, see
Lemma 4.4. We can assume that V ∩ L is connected, i.e., in the chart we
have L = R

n. Hence, ζ ∈ Dδ with u(ζ) ∈ L implies u1(ζ) ∈ R and, therefore,
ζ = ϕ ◦ u1(ζ) ∈ γ. This proves the third claim. �
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Proof of Lemma 5.1. By Proposition 2.1 the cardinality of u−1
(
u(z∗)

)∩ ∂D

is finite, say k ∈ N. If we compose our holomorphic map u with local
parametrizations of D about the k intersection points we find holomorphic
maps v1, . . . , vk defined on half-discs to which we can apply Lemma 5.2. So
we find δ > 0 as small as we wish and an embeddings

c1, . . . , ck :
(
[−1, 1], 0

) −→ (
Bδ(z∗), z∗

)
,

such that (for each j = 1, . . . , k) the intersection of the image γj of cj with
the boundary ∂Bδ(z∗) is transverse, equals the set of endpoints {cj(±1)},
and

Smix
1 ∩Bδ(z∗) ⊂

(
γ1 ∪ . . . ∪ γk

)
=: Γ.

In other words, we get

Smix
1 ∩Bδ(z∗) = Smix

1 ∩ Γ.(5.2)

Now, by Lemma 3.3 the sets Smix
1 ∩ γj contain no interior point. We con-

clude that γj \ Smix
1 is an open and dense subset of γj for any j = 1, . . . , k.

Therefore, we find δ > 0 and δ1 ∈ (0, δ) such that

Smix
1 ∩ Aδ1,δ(z∗) = ∅

if we write

Aδ1,δ(z∗) := Bδ(z∗) \Bδ1(z
∗)

for the standard annulus. Moreover, Theorem 2.4 and (5.2) imply that

Acc
(
Sinter

1 ∩Bδ(z∗)
) ⊂ Smix

1 ∩ Γ.

Hence,

Sinter
1 ∩ Aδ1,δ(z∗)

is a finite set. Consequently, we find δ2 ∈ (δ1, δ) so that

Sinter
1 ∩ ∂Bδ2(z

∗) = ∅.
Taking δ2 instead of δ > 0 yields the claim. �

Lemma 5.3. Consider a point z∗ ∈ R̃1. Then for any ρ > 0 there exists
δ ∈ (0, ρ) such that S1 ∩ ∂Bδ(z∗) = ∅.
Proof. Because of (5.1) and Lemma 5.1, we can consider the case, where z∗ is
isolated in R1. This means, that we can find δ > 0 such that R1 ∩Bδ(z∗) =
{z∗}. With Theorem 2.4 we see, that S1 ∩ Aδ/2,δ(z∗) is a finite set. This
proves the claim. �

Lemma 5.4. Consider a point z∗ ∈ S1. Then for any ρ > 0 there exists
δ ∈ (0, ρ) such that S1 ∩ ∂Bδ(z∗) = ∅.
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Proof. Because of Acc(S1) = R̃1
Rvirt
1 , Lemmata 5.1 and 5.3 we can consider

the case, where z∗ is isolated in S1. This means, that we can find δ > 0 such
that S1 ∩Bδ(z∗) = {z∗}. This proves the claim. �

Proof of Theorem 3.2 (part II). Summing up, for each z∗ ∈ S1 there exists
δ > 0 such that

S1 ∩ ∂Bδ(z∗) = ∅ and ∂A ∩Bδ(z∗) is connected.(5.3)

By compactness of S1 we find N ∈ N, δ1, . . . , δN > 0 and z1, . . . , zN in S1

such that

S1 ⊂
N⋃

j=1

Bδj (zj)

and (5.3) holds with z∗ replaced by each of the z1, . . . , zN . Note, that by
openness of A \ S1 we find for each j = 1, . . . , N some δ̃j ∈ (0, δj) keeping
the mentioned properties in (5.3). By removing the annuli Bδj (zj) \Bδ̃j

(zj)
we find K ∈ N and pairwise disjoint, closed, simply connected subsets
B1, . . . , BK of A (with non-empty interior) covering S1 such that ∂A ∩ Bj

is connected for all j = 1, . . . ,K. Consequently, A \ (B1 ∪ . . . ∪ BK) con-
tains an embedded closed curve γ with winding number equal to 1 with
respect to z0. A tubular neighbourhood of γ yields an annulus Aε,z0 with
u−1

(
u(Aε,z0)

)
= Aε,z0 as desired. This finishes the proof of Theorem 3.2. �

Remark 5.5. One can show that R1 is totally path disconnected and that
R1 has 2-dimensional Lebesgue measure equal to zero.

6. The half-annulus property

Once shown the annulus property for simple holomorphic discs one naturally
asks for the situation at boundary points. Again we consider a J-holomorphic
disc u : (D, ∂D) → (M,L) in an almost complex manifold (M,J), which
takes boundary values in a totally real submanifold L of M . The content of
this section is a version of Theorem 3.2 valid for boundary points of those
holomorphic discs u.

Definition 6.1. We will say that u has the half-annulus property if for any
point z0 ∈ ∂D and any ε > 0 there exists a closed subset Aε,z0 diffeomorphic
to the annulus S1 × [0, 1] such that the following conditions are satisfied:

(i) Aε,z0 ⊂ B∗
ε (z0) (viewed as subsets of C), such that Aε,z0 ∩ ∂D has

exactly two components,
(ii) a boundary component of Aε,z0 has winding number 1 around z0,
(iii) u |A+

ε,z0
is an embedding, where A+

ε,z0
:= Aε,z0 ∩ D; and

(iv) u−1
(
u(A+

ε,z0
)
)

= A+
ε,z0

.
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Not every simple holomorphic disc has the half-annulus property. For
example, the map u : (D, ∂D) → (CP 1,RP 1) induced by z �→ z2 on the
upper half-plane is simple; but none of the boundary points is injective.
In view of the last two conditions this holomorphic disc cannot have the
half-annulus property. However, there is an interesting subclass of simple
holomorphic discs which will have the half-annulus property.

Definition 6.2. A J-holomorphic disc u is strongly simple along the bound-
ary or strongly ∂-simple if Inj(u) ∩ ∂D is dense in ∂D.

As we will see in Proposition 6.4 below all ∂-simple J-holomorphic discs
are simple. But there are simple J-holomorphic discs which cannot be simple
along the boundary as the above example u : (D, ∂D) → (CP 1,RP 1) shows.
So we introduced a more restrictive notion.

Moreover, any J-holomorphic disc u which has the half-annulus property
is ∂-simple. This is because for all z0 ∈ ∂D and for all ε > 0 the half-
annulus A+

ε,z0
is a subset of Inj(u). So any point in the boundary ∂D can be

approximated by those injective points of u which are boundary points at
the same time. In fact we have the following:

Theorem 6.3. A J-holomorphic disc is strongly ∂-simple if and only if it
has the half-annulus property.

Proof. We will show that any ∂-simple J-holomorphic disc u has the half-
annulus property. This of course is enough to prove the theorem. To establish
the half-annulus property of u, we will reduce the proof to the one of The-
orem 3.2.

For that we consider a point z0 ∈ ∂D and take ε > 0 such that D\∂Bε(z0)
is disconnected. By Proposition 2.1 we can choose ε > 0 so small such that

B∗
ε (z0) ∩ Cr(u) = ∅.(6.1)

In particular, u |B∗
ε (z0) is an immersion but potentially with self-intersections.

So it remains to discuss the double points.
First of all we remark that by Proposition 2.2 the set Inj(u)∩ ∂D is open

in ∂D. By the assumed strong ∂-simplicity of u it is dense in ∂D as well.
Therefore, we find 0 < ε1 < ε2 < ε such that Aε1,ε2(z0) ∩ ∂D is a subset of
Inj(u), where we set

Aε1,ε2(z0) := {ε1 ≤ |z − z0| ≤ ε2}.
In fact we find � ∈ (0, 1) such that for the neighbourhood A�,1(0) of ∂D we
have

Aε1,ε2(z0) ∩ A�,1(0) ⊂ Inj(u).(6.2)

This can be seen by a further application of Proposition 2.2.
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On the other hand, by Theorem 2.4, the set S(u) ∩ (
B�(0) × B�(0)

)
is

finite. Hence, we can take 0 < ε1 < ε2 < ε so small such that

S(u) ∩ (
Aε1,ε2(z0) × Aε1,ε2(z0)

)
= ∅.

In other words, u |Aε1,ε2 (z0) is injective, and, therefore, an embedding. In
addition observe that by (6.2)

u−1
(
u
(
Aε1,ε2(z0) ∩ A�,1(0)

))
= Aε1,ε2(z0) ∩ A�,1(0).

So it remains to study the subset u−1
(
u(A)

)
of D, where

A := Aε1,ε2(z0) ∩B�(0).

This can be done by similar arguments as used in Theorem 3.2. �

As we already remarked, the half-annulus property (or equivalently strong
∂-simplicity) implies simplicity. Using the fundamental work of Lazzarini [8]
this can be seen as follows:

Proposition 6.4. Any strongly ∂-simple holomorphic disc is simple.

Proof. Arguing by contradiction we suppose that the J-holomorphic disc u
is not simple. Then there exist disjoint open sets B1 and B2 in B1(0)\Cr(u)
such that u(B1) = u(B2), see Proposition 2.7. Denote by U1 and U2 the open
subsets of B1(0) \ Cr(u) such that B1 ⊂ U1, B2 ⊂ U2 and u(U1) = u(U2),
which are maximal in the following sense: if there are open subsets V1 and
V2 of B1(0) \ Cr(u) with U1 ⊂ V1, U2 ⊂ V2 and u(V1) = u(V2) then we have
U1 = V1 and U2 = V2. The existence is insured by Zorn’s lemma.

We consider a point (z1, z2) ∈ ∂U1 × ∂U2, where ∂Uj denotes the set-
theoretical boundary of Uj (for j = 1, 2). Additionally, we suppose that
du(zj) �= 0 for j = 1, 2. In particular we have z1 �= z2. Notice, by Lemma 2.6
(recalling that any analytic function is open) and maximality of the Uj the
case (z1, z2) ∈ B1(0) × B1(0) is excluded. So by symmetry there are two
cases left.

First of all we assume that (z1, z2) ∈ ∂D × B1(0). By the construction
of the Uj and [8, Proposition 4.5] we find open subsets V1 of D and V2 of
B1(0) such that zj ∈ Vj for j = 1, 2 and u(V1) ⊂ u(V2). Hence, V1 ∩ ∂D is
contained in ∂D \ Inj(u), which is not possible by strong ∂-simplicity of u.

We consider the case (z1, z2)∈ ∂D× ∂D. Because of (z1, z2)∈
Acc

(
Sinter(u)

)
there exists an non-zero real number δ such that ∂ru(z1) =

δ∂ru(z2) (see Lemma 4.2), where ∂r denotes the radial derivative. By the
proof of Lemma 4.3, this number δ must be positive, because in this par-
ticular situation the accumulation point is approached from inside. So, we
see (again with Lemma 4.3) there are open and disjoint subsets I1 and I2 of
∂D such that u(I1) = u(I2). But this contradicts the fact that u is strongly
∂-simple.
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Consequently, we infer that ∂Uj ⊂ Cr(u), which is a finite set. But this
is not possible, because the cardinality of the boundary of any open and
bounded subset of R

2 is infinite. (Indeed, any ray starting from a point in
Uj going through a point of a circle in the complement of Uj contains a
boundary point.) Therefore, u must be simple. �

7. Injective points along the boundary

In this section, we discuss a second notion for a holomorphic disc to be injec-
tive on boundary points. This allows us to verify the half-annulus property
in many cases, as we will see in the next sections. To motivate the definition
we consider the holomorphic disc (D, ∂D) → (CP 1,RP 1) defined by z �→ z3

on the upper half-plane. Restricted to the boundary this map is injective
and immersive except at 0 and ∞. But no boundary point is injective in the
sense of (2.1).

To study this phenomenon more systematically we consider a J-holomor-
phic discs u : (D, ∂D) → (M,L) for an almost complex structure J as usual.
Following Oh [13] we call a point z ∈ ∂D satisfying

u−1
(
u(z)

) ∩ ∂D = {z} and du(z) �= 0(7.1)

an injective point of u|∂D. The set of all injective points of u|∂D is denoted by

Inj(u|∂D) :=
{
z ∈ ∂D

∣
∣ z is an injective point of u|∂D

}
.

We remark that any injective point of u on the boundary is an injective
point of u|∂D, i.e.,

Inj(u) ∩ ∂D ⊂ Inj(u|∂D).(7.2)

But in general equality does not hold as the above example shows.
Similar to Proposition 2.2 we have:

Proposition 7.1. The set Inj(u|∂D) is open in ∂D.

A J-holomorphic disc u is called somewhere injective along the boundary
if u|∂D has an injective point, i.e., if Inj(u|∂D) �= ∅. Similar to Section 2 this
notion is related to the set of self-intersection points

S∂(u) := S(u) ∩ (
∂D × ∂D

)

of u|∂D, which we call the set of boundary-self-intersection points of u. We
denote by

S∂
1 (u) := proj1 S∂(u)

the projection to the first coordinate. As in the non-boundary case we have

S∂(u) ⊂ S∂(u) 
 ΔCrit(u|∂D),(7.3)
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because a singular point of u|∂D is singular, i.e.,

Crit(u) ∩ ∂D = Crit(u|∂D).

In general, the inclusion in (7.3) is strict. For example, consider the injective
map

H ∪ {∞} −→ (
C ∪ {∞}) × (

C ∪ {∞})

z �−→ (z2, z3)

which has singularities on the boundary. The complement of the set of injec-
tive points along the boundary has the following description:

∂D \ Inj(u|∂D) = Crit(u|∂D) ∪ S∂
1 (u) ⊃ S∂

1 (u).(7.4)

Therefore, we see again that Inj(u|∂D) is open.

8. Different notions of simplicity along the boundary

In this section, we give a first criterion for a simple holomorphic disc to
have the half-annulus property. By Theorem 6.3 the half-annulus property is
equivalent to be strongly simple along the boundary which implies simplicity
as we saw in Proposition 6.4. So we will find out when a simple holomorphic
disc is strongly simple along the boundary.

Recall, that a holomorphic disc u is called strongly simple along the
boundary if Inj(u) ∩ ∂D is dense in ∂D. Ignoring mixed self-intersections
of u we find a second notion of simplicity.

Definition 8.1. We call a J-holomorphic disc u weakly simple along the
boundary or weakly ∂-simple if Inj(u|∂D) is dense in ∂D.

This is the version of simplicity which corresponds to the notion of being
somewhere injective along the boundary. By (7.2) we have that any strongly
∂-simple J-holomorphic disc is weakly ∂-simple. The converse is not true,
as the map z �→ z3 defined on the upper half-plane shows. This holomorphic
disc is weakly ∂-simple but not even simple (while it is somewhere injective).
So, we introduced in fact a weaker notion.

Proposition 8.2. Any simple and weakly ∂-simple holomorphic disc is
strongly ∂-simple.

Proof. Before we come to the actual proof we remark that a holomorphic
disc u is not strongly ∂-simple if and only if Inj(u) ∩ ∂D is not dense in
∂D. This is the same as the complement ∂D \ Inj(u) has an interior point.
Because of the fact that Crit(u) is finite, u is not strongly ∂-simple if and
only if S1(u)∩ ∂D has an interior point in ∂D, see (2.3). Hence, there exists
a non-empty open subset I of ∂D such that u |I is an embedding, and such
that u(I) ⊂ u(D \ I).
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Now the aim is to show that a weakly but not strongly ∂-simple holo-
morphic disc cannot be simple. So we assume that the holomorphic disc u
from our preparatory remark is weakly ∂-simple as well. that is, we assume
in addition that Inj(u|∂D) is dense in ∂D. By Proposition 7.1 this set is open
in ∂D too, so that the intersection Inj(u|∂D) ∩ I is an open and non-empty
subset of ∂D. But this means, we can assume that u−1

(
u(I)

) ∩ ∂D = I. In
particular, this excludes the case u(I) ⊂ u(∂D \ I). Consequently, the open
subset I of ∂D satisfies u(I) ⊂ u

(
B1(0)

)
. It follows from Lemma 8.4 below

that u cannot be simple. �
Lemma 8.3. Let (M,J) denote an almost complex manifold of real dimen-
sion 2n which contains a totally real submanifold L. Let

u :
(
B1(0), 0

) −→ (M,p) and v :
(
D

+, [−1, 1], 0
) −→ (M,L, p)

be J-holomorphic embeddings. If v([−1, 1]) ⊂ u
(
B1(0)

)
then there exists an

open neighbourhood V of zero in D
+ such that v(V ) ⊂ u

(
B1(0)

)
.

Proof. The proof is essentially the same as for Lemma 4.3. By [11, Lemma
2.4.2] we can assume that the map u satisfies u(z) = (z, 0, . . . , 0) for all z ∈
B1(0) and the almost complex structure J is equal to i on B1(0)×{0}, where
the splitting is taken w.r.t. C×C

n−1. Writing v = (v1, ṽ) the projected map
ṽ has in general no totally real boundary condition. But using the condition
v([−1, 1]) ⊂ u

(
B1(0)

)
as posted in the lemma we have ṽ([−1, 1]) = {0}. By

the same computation as in the proof of Lemma 4.3 we get

0 = ∂sṽ + i∂tṽ + B̃ṽ

for a suitable smooth (real) C
n−1-endomorphism field B̃ along an open

neighbourhood V in D
+ about 0. The relative Carleman similarity principle

(see [1, Theorem A.2]) implies now that ṽ = 0 on V . Hence, the embedding
ϕ := v1 is analytic on the interior of V . We get v = u◦ϕ on V , which proves
the claim. �

With this observation done we can finish the proof of Proposition 8.2 with
the following lemma. The reason why we cannot apply Lemma 8.3 directly
is that we have to make sure that u(I) is contained completely in a sheet of
u
(
B1(0)

)
.

Lemma 8.4. Let u be a J-holomorphic disc. If there exists an open non-
empty subset I of ∂D such that u(I) ⊂ u

(
B1(0)

)
then u is not simple.

Proof. By finiteness of Cr(u) we can assume that I ∩ Cr(u) = ∅. Addition-
ally, we can assume that u |I is an embedding. In view of Proposition 2.1


(z) := #
(
u−1

(
u(z)

) ∩B1(0)
)

is for all z ∈ I a (finite) number.
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We claim that we can take z0 ∈ I in such a way that 
(z0) = 1. Otherwise,
we have that 
(z) ≥ 2 for all z ∈ I. In particular, we find sequences zν → z0
in I and w1

ν → w1, w2
ν → w2 in D such that w1

ν �= w2
ν lie in B1(0) and

u(zν) = u(w1
ν) = u(w2

ν) for all ν ∈ N. Because of I ∩ Cr(u) = ∅ the points
z0, w1 and w2 are pairwise distinct. Further, non of the wj is contained in
∂D, because otherwise by Lemma 4.4 we would get du(wj) = 0. But this is
not possible because of I ∩Cr(u) = ∅ and u(z0) = u(wj). So both points w1

and w2 are in B1(0). Lemma 2.6 shows now that u is not simple and we are
done. So we are left with the case, where 
(z0) = 1.

Fix z0 ∈ I with 
(z0) = 1. There exist a positive real number ε and an
interior point z1 in B1(0), such that Bε(z1) ⊂ B1(0),

u−1
(
u(z0)

) ∩B1(0) = {z1}(8.1)

and u |Bε(z1) is an embedding. We will show that we can shrink the interval
I ⊂ ∂D such that u(I) is contained in u

(
Bε(z1)

)
. Suppose there is a sequence

zν in I such that zν → z0 and

u(zν) /∈ u
(
Bε(z1)

)
(8.2)

for all ν ∈ N. Because of u(I) ⊂ u
(
B1(0)

)
we find a sequence

wν ∈ B1(0) \Bε(z1) such that u(zν) = u(wν)

for all ν ∈ N. We can assume that

wν −→ w0 in D \Bε(z1).

Hence, u(z0) = u(w0) and with (8.1) we have w0 ∈ ∂D, a mixed boundary-
intersection. Again with Lemma 4.4 this implies that du(w0) = 0, i.e., that
z0 ∈ Cr(u). This is a contradiction. So (8.2) must be wrong and we obtain

u(I) ⊂ u
(
Bε(z1)

)
.

Now the claim follows from Lemma 8.3. �

Together with Proposition 6.4 we obtain:

Corollary 8.5. For a simple holomorphic disc both notions of simplicity
along the boundary coincide; the disc is weakly ∂-simple if and only if the
disc is strongly ∂-simple.

9. Self-matching holomorphic discs

In this section, we give a second characterization for a simple holomorphic
disc to have the half-annulus property. The obstruction to have it is essen-
tially explained by the following example: consider the holomorphic half-
discs defined by u(z) = z and v(z) = −z for all z ∈ D

+. The images of u
and v intersect along the real line such that they match to get the analytic
function w(z) = z for z ∈ D.
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More generally we have the following gluing result:

Lemma 9.1. Let M be an almost complex manifold and L be a totally real
submanifold of M . Consider embedded holomorphic half-discs

u, v :
(
D

+, [−1, 1], 0
) −→ (M,L, p)

and assume that v([−1, 1]) = u([−1, 1]). If the sign of the boundary-
intersection δu,v at (0, 0) is negative then there exist a smooth map w :
(D, 0) −→ (M,p), a diffeomorphism ϕ between pointed neighbourhoods in C

of zero, and an open neighbourhood U of zero in C such that w(U+) = u(U+)
and w(U−) = v ◦ ϕ(U−), where U± := D

± ∩ U .

Proof. As in the proof of Lemma 4.3 (using the notation from there as well)
we can assume that u is flat, i.e., u(z) = (z, 0, . . . , 0) in C × C

n−1 for all
z ∈ D

+, and that v1 is an embedding. By assumption δu,v is negative so
that we can assume v1(z) ∈ {�m(z) < 0} for all z ∈ {�m(z) > 0} ∩
D

+. Moreover, our first assumption translates into v1([−1, 1]) = [−1, 1] and
ṽ([−1, 1]) = {0}. Consequently,

v ◦ ϕ(z) =
(
z, ṽ ◦ ϕ(z)

)

with
ϕ := v−1

1 : v1(D+) −→ D
+

for all z ∈ D
+, for which |z| small enough. Because of J = i on D

+×{0} and
the boundary condition ṽ([−1, 1]) = {0} all partial derivatives of ṽ vanish
along [−1, 1], as an induction shows. This implies that the map w defined
by

w(z) :=

{
u(z) = (z, 0), for all z ∈ {�m(z) ≥ 0} ∩Bε(0)
v ◦ ϕ(z), for all z ∈ {�m(z) < 0} ∩Bε(0)

is a smooth embedding for ε > 0 small enough. This proves the claim. �
Remark 9.2. On the open set U we can define a smooth complex
structure by

j := dw−1
w ◦ Jw ◦ dw

such that j = i on U+. By the theorem of Newlander–Nirenberg (see [11,
Theorem E.3.1]) we find a diffeomorphism ψ of U such that w ◦ ψ is holo-
morphic on U .

In other words, if for a holomorphic disc u there are two disjoint boundary
segments on which u is immersed and takes the same values there are two
possibilities for u. Either, the sign is negative and (by the proceeding lemma)
the holomorphic disc u is self-gluing along the boundary segments, or the
sign is positive and (by Lemma 4.3) the holomorphic disc u overlaps. In either
case the holomorphic disc u can not be weakly simple along the boundary:
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Proposition 9.3. A J-holomorphic disc u is weakly ∂-simple if and only if
there are no two non-empty disjoint open subsets I1 and I2 of ∂D such that
u(I1) = u(I2).

Proof. Recall that weak ∂-simplicity is equivalent to the fact that Inj(u|∂D)
is dense in ∂D, i.e., the complement ∂D \ Inj(u|∂D) has no interior point.
Therefore, (and by finiteness of Crit(u|∂D)) u is not weakly simple along the
boundary if and only if S∂

1 (u) has an interior point in ∂D, see (7.4), i.e., if
there exists an open, non-empty, and connected subset I of ∂D such that

u(I) ⊂ u(∂D \ I).(9.1)

Therefore, it is enough to show that if (9.1) holds true we find non-empty
disjoint open subsets I1 and I2 of ∂D such that u(I1) = u(I2).

So let us assume (9.1). In addition, we can assume that I ∩Cr(u) = ∅ and
that u |I is an embedding. In view of Proposition 2.1

k(z) := #
(
u−1

(
u(z)

) ∩ (∂D \ I)
)

is a (finite) number for any z ∈ I.
If k(z0) ≥ 2 for some z0 ∈ I, we find sequences zν → z0 in I and w1

ν → w1,
w2

ν → w2 in ∂D \ I such that w1
ν �= w2

ν and u(zν) = u(w1
ν) = u(w2

ν) for all
ν ∈ N. Because of I ∩ Cr(u) = ∅ the points z0, w1, and w2 are pairwise
distinct. Hence, there are three intersection pairs

{
(z0, w1), (z0, w2), (w1, w2)

}

such that Lemma 4.3 applies at least to two of them. Consequently, the
overlapping regions already imply the existence of I1 and I2 as stated in the
proposition.

So we are left with the case z0 ∈ I and k(z0) = 1. We claim that there
is an open subset S of ∂D such that u |S is an embedding, I ∩ S = ∅ and
u(I) = u(S). Now, there exists a positive real number ε and a boundary
point z1 in ∂D \ {z0} such that u(z0) = u(z1),

Iε(z1) := ∂D ∩Bε(z1)

is contained in ∂D \ I, and u |Iε(z1) is an embedding. We will show that we
can shrink the interval I ⊂ ∂D such that u(I) is contained in u

(
Iε(z1)

)
.

Suppose that there is a sequence zν in I such that zν → z0 and

u(zν) /∈ u
(
Iε(z1)

)
(9.2)

for all ν ∈ N. Because of (9.1) we find a sequence

wν ∈ ∂D \ (
I ∪ Iε(z1)

)
such that u(zν) = u(wν)

for all ν ∈ N. We can assume that

wν −→ w0 in ∂D \ (
I ∪ Iε(z1)

)
.



�

�

�

�

�

�

�

�

160 KAI ZEHMISCH

Hence, u(z0) = u(w0) but w0 /∈ {z0, z1} implying that k(z0) ≥ 2. In view of
(9.2) this contradiction shows

u(I) ⊂ u
(
Iε(z1)

)
.

The claim follows then by setting:

S :=
(
u |Iε(z1)

)−1(
u(I)

)
.

This completes the proof. �
We have shown that any weakly ∂-simple holomorphic disc u is not self-

matching and vice versa. Here is the relevant definition:

Definition 9.4. We will say that a J-holomorphic disc u is self-matching
if there are non-empty open connected disjoint subsets I1 and I2 of ∂D \
Crit(u|∂D) such that u(I1) = u(I2).

This terminology (and Proposition 8.2) finally gives us a criterion for a
holomorphic disc to have the half-annulus property, i.e., to be simple along
the boundary. It says that in order to verify the half-annulus property it is
the same to verify simplicity (in the sense of Proposition 2.7) for interior
and boundary points separately.

Corollary 9.5. A J-holomorphic disc is strongly ∂-simple if and only if it
is simple and not self-matching.

Proof. By Proposition 6.4 any strongly ∂-simple holomorphic disc is simple.
This shows the first half of the “only if” part. For the rest recall that by
Corollary 8.5 for a simple holomorphic disc being weakly or strongly simple
along the boundary is the same. But by Proposition 9.3 weak ∂-simplicity
is characterized by the not self-matching property. �
Proof of Theorem 1.3. It is claimed that a holomorphic disc u has the half-
annulus property (which is equivalent to the strong simplicity along the
boundary by Theorem 6.3) if and only if u is simple and not self-matching.
Therefore, the theorem follows from Corollary 9.5 above. �

References

[1] C. Abbas, Pseudoholomorphic strips in symplectisations. III. Embedding properties
and compactness, J. Symplectic Geom. 2 (2004), 219–260.

[2] T. Carleman, Sur un problème d’unicité pur les systèmes d’équations aux dérivées
partielles à deux variables indépendantes, Ark. Mat., Astr. Fys. 26B (1939), 1–9.

[3] Ya. Eliashberg, Filling by holomorphic discs and its applications, in ‘Geometry of
Low-Dimensional Manifolds’, vol. 2 (Durham, 1989), London Math. Soc. Lecture
Note Series 151, Cambridge University Press, (1990), 45–67.

[4] U. Frauenfelder and F. Schlenk, Volume growth in the component of the Dehn-Seidel
twist, Geom. Funct. Anal. 15 (2005), 809–838.



�

�

�

�

�

�

�

�

THE ANNULUS PROPERTY OF SIMPLE HOLOMORPHIC DISCS 161

[5] M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82
(1985), 307–347.

[6] H. Hofer, Holomorphic curves and dynamics in dimension three, in ‘Symplectic geom-
etry and topology’ (Park City, UT, 1997), vol. 7 of IAS/Park City Math. Ser., Amer.
Math. Soc., Providence, RI, 1999, 35–101.

[7] D. Kwon and Y.-G. Oh, Structure of the image of (pseudo)-holomorphic discs with
totally real boundary condition, Appendix 1 by Jean-Pierre Rosay, Comm. Anal.
Geom. 8 (2000), 31–82.

[8] L. Lazzarini, Existence of a somewhere injective pseudo-holomorphic disc, Geom.
Funct. Anal. 10 (2000), 829–862.

[9] D. McDuff, The local behaviour of holomorphic curves in almost complex 4-manifolds,
J. Differential Geom. 34 (1991), 143–164.

[10] D. McDuff, Singularities and positivity of intersections of J-holomorphic curves, with
an appendix by Gang Liu, in: ‘Holomorphic curves in symplectic geometry’, vol. 117
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