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A NEW BOUND ON THE SIZE OF SYMPLECTIC
4-MANIFOLDS WITH PRESCRIBED

FUNDAMENTAL GROUP

Jonathan T. Yazinski

Given any finitely presented group with g generators and r relations,
we produce a symplectic 4-manifold of Euler characteristic 10+4(g+r)
and signature −2. This is an improvement on the result in [BK2], and
our construction utilizes a construction in [FPS].

1. Introduction

It is well known that any finitely presented group is the fundamental group
of a closed smooth 4-manifold. The less obvious result that any finitely pre-
sented group is the fundamental group of a closed symplectic 4-manifold is
shown in [G]. In [BK2], Baldridge and Kirk improve upon Gompf’s con-
struction, producing a smaller closed symplectic 4-manifold subject to the
constraint of having a specified fundamental group, where the size of a man-
ifold is measured by the magnitude of its signature and Euler characteristic.
In this paper, we improve upon this result even further. Our main theorem is

Theorem 1.1. Let G be a group with a presentation with g generators and
r relations. Then there is a symplectic 4-manifold X with π1(X) = G and
χ(X) = 10 + 4(g + r) and σ(X) = −2.

The construction here follows that in [BK2] closely. The main difference
is that we utilize a manifold constructed in [FPS] in lieu of a larger one. The
tricky point to consider is that the homology S2 × S2 manifolds of [FPS]
are not known to be simply connected; however, since killing one generator
of their fundamental group will make the group trivial, we can still carefully
utilize these manifolds to obtain the desired relation in the construction
below.

Remark 1.2. For any finitely presented group G, the manifold X of Theo-
rem 1.1 contains a symplectic torus such that the fundamental group of its
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26 JONATHAN T. YAZINSKI

complement is G. By performing a family of torus surgeries, one can obtain
a countably infinite family of manifolds with the same homology and fun-
damental group G, which are pairwise non-diffeomorphic, distinguished by
their Seiberg–Witten invariants. (See [MMS] and Section 2.8 of [FS], for
example.)

2. The construction

We will not carefully reiterate all of the work done in [BK2], as the con-
struction here is similar. We will only outline the construction and highlight
what is different.

First, let G be a finitely presented group with generators x1, . . . , xg and
relations w1, . . . , wr. Hence

(2.1) G = 〈x1, . . . , xg | w1, . . . , wr〉.
Recall that the construction in [BK2] involves considering N ×S1, where

N is a surface bundle over S1 with fiber a surface of genus gn, where

n = 1 +
r∑

i=1

ni

and ni is the length of the relation wi. The manifold N × S1 admits a
symplectic form [Th]. Let F be a surface of genus gn, which we think of
in the following way: Let R be the 2π

ng rotation of S2 ⊆ R
3 through the

axis passing through the points (0, 0,±1) in S2. Let D be a disc centered
at (1, 0, 0) whose translates under the action of 〈R〉 ⊆ SO(3) are disjoint.
Then if we connect sum S2 with a torus at each translate of D, we obtain
a surface F with a natural action of Z/(ng) on this surface. The surface
bundle N above is the bundle determined by the order n monodromy Rg.

The monodromy Rg has a fixed point (in fact, two fixed points), which we
call p. We can write N as (F × I)/ ∼, where (x, 0) ∼ (Rg(x), 1), and so we
let τ denote the loop in N that is the image of {p}× I under the projection
to N given by ∼. This is a loop since Rg(p) = p. We let t ∈ π1(N × S1)
denote the element obtained by including τ ⊆ N = N × {1} into N × S1.
Also, we let s denote a generator of {1}×Z ⊆ π1(N)×π1(S1) = π1(N ×S1).

Now we form a new presentation of G, by adding g generators, chang-
ing the relations, and adding g more relations. We add the g generators
y1, . . . , yg, and we add the g relations x1y1, . . . , xgyg, and for each relation
wi, we obtain a corresponding relation w̃i. The relation w̃i is obtained from
the relation wi by replacing occurrences of x−1

k with yk. Hence, each rela-
tion is expressed as a product of positive powers of the generators. The new
presentation for G is

G = 〈x1, . . . , xg, y1, . . . , yg | w̃1, . . . w̃r, x1y1, . . . , xgyg〉.
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Figure 1. Standard generators of a surface of genus gn.

The r + g relations give us r + g immersed curves {γi} on the surface F.
We identify F with a fiber of N to view γi ⊆ N, and then the product of
these curves with S1 give us r + g tori Ti := γi × S1 ⊆ N × S1. Figure 1
below is taken from [BK2], and here we see examples of how occurrences
of xi and yj give us curves on this surface. Concatenating these words as
specified by the relations determines the curves γi.

We supress the details, as they are given explicitly in [BK2], but we
mention that the positivity of the powers of the generators in the relations
ensures that we can perturb these tori, so that they are symplectic. In order
to make the construction work, the tori Ti need to be disjoint, and these
curves need to be mapped into different parts of the surface. In [BK2], a
second subscript is used, as is seen in Figure 1, to keep track of this data, but
only the first subscript will determine to which element a loop corresponds
in the fundamental group, as we demonstrate below. In this notation, a
presentation for π1(F ) is given by

(2.2) π1(F ) =

〈
x1,1, y1,1, . . . , xg,1, yg,1,

x1,2, y1,2, . . . , xg,2, yg,2, . . . ,
x1,n, y1,n, . . . , xg,n, yg,n

∣∣∣∣∣

n∏

l=1

g∏

k=1

[xk,l, yk,l]

〉
.
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There is one more torus T0 which we consider, defined as the product of
the circle τ and the circle {∗} × S1 corresponding to s.

The presentation for π1(N × S1) is
〈
π1F, t | Rg

∗(x) = txt−1 for x ∈ π1F
〉 × 〈s〉 .

The idea underlying the construction is to take the symplectic sum of
N × S1 along the tori T0, . . . , Tr+g with other symplectic manifolds to kill
the homotopy classes of loops that generate π1(Ti) while not introducing
additional generators to the fundamental group of our manifold.

Recall that the symplectic sum [G] involves removing the tubular neigh-
borhoods of two symplectic surfaces in two symplectic 4-manifolds and iden-
tifying their boundaries in a fiber-preserving manner, covering a diffeomor-
phism of the surfaces. The resulting 4-manifold admits a symplectic form,
agreeing with the symplectic forms of the original two symplectic 4-manifolds
away from the surfaces where the symplectic sum was performed. In order
to perform this operation, the symplectic surfaces in each manifold must
have normal bundles of oppositely signed Euler class, but this condition is
satisfied in this case, since our tori in each manifold have trivial normal
bundles.

Note that symplectic summing in such a manner along T0 to kill s and t
gives us a presentation

〈π1F | Rg
∗(x) = x for x ∈ π1F 〉 .

This is actually a consequence of Lemma 4.1. The surface F has genus
ng, and so π1(F ) has 2ng generators. After quotienting by the rela-
tion Rg

∗(x) = x, 2g generators remain, which we naturally identify with
x1, . . . , xg, y1, . . . , yg. Note that once we sum along the tori Tr+1, . . . , Tr+g,
the relations xiyi = 1 imply the surface relation of π1(F ), since the surface
relation is a product of commutators [xi, yi]. Hence, once we sum along the
remaining tori, T1, . . . , Tg, we have a symplectic 4-manifold with fundamen-
tal group generated by x1, . . . , xg, y1, . . . , yg and relations w̃1, . . . , w̃r, so that
this group is G. We elaborate on these latter details in Section 4.

3. Symplectic manifolds that kill π1

The construction utilizes two previous constructions of symplectic mani-
folds. The first is a symplectic manifold homeomorphic to 3CP

2#5CP
2 con-

structed in [BK1], which we will denote by Y. The useful thing about this
manifold is that it contains two essential symplectic tori with trivial normal
bundles and simply connected complement. This is the statement of Theo-
rem 18 of [BK1]. The others are symplectic manifolds constructed in [FPS]
which are homology S2 × S2’s. The utilization of the former manifold will
be straightforward, but we need to discuss the latter in a little detail.



�

�

�

�

�

�

�

�

THE SIZE OF NON-SIMPLY CONNECTED SYMPLECTIC 4-MANIFOLDS 29

Figure 2. Tori in Σ2 × Σ2 which yield a homology S2 × S2

when surgered.

As described in [FPS], we will consider a product Σ2 × Σ2 of genus
2 surfaces, and a configuration of eight disjoint Lagrangian tori. We let
a1, a2, b1, b2, c1, c2, d1, d2 denote generators of π1 (Σ2 × Σ2), but we do not
want the basepoint used to specify the fundamental group to be (x, y), the
usual basepoint. We address this issue later in Section 3. See Figure 2, which
is taken from [FPS].

By performing Luttinger surgery ([ADK], [Lut]) on seven of these tori, we
obtain a symplectic manifold, which we call V, with a pair of dual Lagrangian
tori and fundamental group generated by the eight elements mentioned, and
having the relations

a1 =
[
b−1
1 , d−1

1

]
b1 =

[
a−1

1 , d1

]
c1 =

[
d−1

1 , b−1
2

]
d1 =

[
c−1
1 , b2

]

b2 =
[
a−1

2 , d2

]
c2 =

[
d−1

2 , b−1
1

]
d2 =

[
c−1
2 , b1

](3.1)

in addition to some other relations.
The relations (3.1) result from performing surgeries on tori, each surgery

being a “parametrized Dehn surgery.” Each one of these surgeries can be
described by specifying a triple consisting of the torus surgered, the curve
along which the surgery is performed, and a rational number describing
which surgery to perform, in the same way that a rational number specifies
a Dehn surgery. Specifically, the relations of (3.1) result from performing the
seven respective surgeries

(a′1 × c′1, a′1,−1) (b′1 × c′′1, b′1,−1) (a′2 × c′1, c′1, +1) (a′′2 × d′1, d′1, +1)
(b′2 × c′′2, b′2,−1) (a′1 × c′2, c′2, +1) (a′′1 × d′2, d′2, +1).

The seven relations of (3.1) and corresponding surgeries are taken verba-
tim from [FPS], resulting from performing seven of the eight torus surgeries
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as done in [FPS]. Note that if we introduce the relation a2 = 1, then we
will obtain a presentation of the trivial group. We will use this observation
shortly.

Now let V ′ denote the complement of one of the two essential Lagrangian
tori (call it L) in V. Specifically, let L be the torus a′2 × c′2 in Figure 2. Note
that this is the torus used to kill a2 in homology in [FPS]. Then π1(V ′) is
generated by the eight elements a1, . . . , d2 and several elements ε1, . . . , εk,
each of which is conjugate to μ, a fixed, based meridian of the removed
Lagrangian torus L. To be careful, we consider these elements in π1(V ′) to
be based at a point v ∈ ∂(νL).

Let β be a path in V ′ from (x, y) to v ∈ ∂(νL) contained in the b2 × d2

torus, which intersects L transversely in one point. Then conjugating the
standard paths representing generators of π1(Σ2×Σ2, (x, y)) by β, we obtain
paths based at v. In Section 4, the symbols a1, a2, b1, b2, c1, c2, d1, d2 refer to
elements of π1(V ′, v). Note that with this new basepoint v, the relations of
(3.1) still hold in V ′.

4. Putting the pieces together

In Section 2, we identified symplectic tori T0, . . . , Tr+g in N × S1. Recall
that Y contains a symplectic torus of algebraic square 0, with simply con-
nected complement. We symplectic sum Y with N × S1 along T0, giving us
a symplectic manifold W .

Lemma 4.1.
π1(W ) =

〈
π1

(
N × S1

) | s, t
〉
.

Proof. Note that here it is important that the complement of the symplectic
torus T in Y is simply connected. To be precise, we apply the Seifert–van
Kampen Theorem to compute π1(W ). [H] The two manifolds that we use
are N×S1\νT0 and Y \νT , where νT0 and νT denote tubular neighborhoods
of T0 and T , respectively, and the intersection of these manifolds is an open
neighborhood of T 3. Applying the Seifert–van Kampen Theorem,

π1(W ) =
π1(N × S1 \ νT0) ∗ π1(Y \ νT )
〈〈i1(α)i2(α)−1 : α ∈ π1(T 3)〉〉 ,

where T 3 denotes the identified 3-torus boundaries of N × S1 \ νT0 and
Y \ νT , and i1 : π1(T 3) → π1(N × S1 \ νT0) and i2 : π1(T 3) → π1(Y \ νT )
denote the maps on π1 induced by the inclusions T 3 ↪→ N × S1 \ νT0 and
T 3 ↪→ Y \ νT , respectively. The double angled brackets indicate the normal
subgroup generated by those elements.

Since π1(Y \ νT ) = 1, we have

π1(W ) =
π1(N × S1 \ νT0)

〈〈i1(α) : α ∈ π1(T 3)〉〉 .
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Let the generators of π1(T 3) be denoted by sT , tT , and μT , where sT and
tT are homotopic to s and t, respectively, in N×S1\νT0. In π1(N×S1\νT0),
there is a normal generator μ of the meridian of T0, but notice that in π1(W ),
μ = i1(μT ) = 1. Also, since s = i1(sT ) = 1 and t = i1(tT ) = 1, we have
proven the lemma. �

Recall that a presentation of π1(N × S1) is

π1(N × S1) =
〈
π1F, t | Rg

∗(x) = txt−1 for x ∈ π1F
〉 × 〈s〉 .

so that after applying Lemma 4.1, killing the generators s and t, we have

(4.1) π1(W ) = 〈π1F | Rg
∗(x) = x for x ∈ π1F 〉 .

In the notation of (2.2), Rg
∗(xk,l) = xk,l+1 and Rg

∗(yk,l) = yk,l+1, where
the addition on the second factor is taken modulo n (with n + 1 = 1).
Incorporating the presentation of π1(F ) from (2.2), we have this presentation
of π1(W ):

π1(W ) =

〈
x1,1, y1,1, . . . , xg,1, yg,1,

x1,2, y1,2, . . . , xg,2, yg,2, . . . ,
x1,n, y1,n, . . . , xg,n, yg,n

∣∣∣∣∣
Rg

∗(xk,l) = xk,l+1,
Rg

∗(yk,l) = yk,l+1,

n∏

l=1

g∏

k=1

[xk,l, yk,l]

〉
.

Hence, we assign the notation xk = xk,l and yk = yk,l, as these elements
are equal in π1(W ) for different l, and we obtain the simplified presentation
of the following lemma.

Lemma 4.2.

π1(W ) =

〈
x1, y1, x2, y2, . . . , xg, yg

∣∣∣∣∣

n∏

l=1

g∏

k=1

[xk, yk]

〉
.

The next step is to perform the remaining r +g symplectic sums to intro-
duce the relations that will yield our presentation of G. We perturb the
symplectic form on V , as described in [G], so that the torus L ⊆ V is
now symplectic. Now based curves in V representing generators of π1(L)
are homotopic to a2 and c2 in π1(V ). We also see that we can choose μ
to be

[
b−1
2 , d−1

2

]
, as can be seen in Figure 2. Recall that V ′ denotes the

complement of L in V .
We perform symplectic sums of W with r + g copies of V (each copy

denoted by Vi), via the diffeomorphism that identifies the {∗} × S1 curve
in Ti with a2,i in Vi, and the γi × {∗} curve in Ti with c2,i in Vi. Here a2,i

and c2,i denote Lagrangian pushoffs of a′2 and c′2, respectively, contained in
∂(νLi) in Vi. Let φi denote this diffeomorphism between ∂V ′ and the ith
boundary component of

W ′ := W \
r+g⋃

i=1

νTi.
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It is known that this construction can be performed symplectically [G], but
we only need to consider it topologically to determine π1.

Lemma 4.3. Let X be the result of performing the symplectic sum of W
with the r + g manifolds Vi. Then the fundamental group of X is

(4.2) π1(X) =
π1(W ′) ∗ π1 (V ′

1) ∗ · · · ∗ π1

(
V ′

r+g

)
〈〈

a2,iŝ
−1
i , c2,iγ̂

−1
i , μim̂

−1
i

〉〉 .

In the statement of Lemma 4.3,
〈〈

a2,iŝ
−1
i , c2,iγ̂

−1
i , μim̂

−1
i

〉〉
is the normal

subgroup of π1(W ′) ∗ π1 (V ′
1) ∗ · · · ∗ π1

(
V ′

r+g

)
generated by, for each i, the

elements a2,iŝ
−1
i , c2,iγ̂

−1
i , and μim̂

−1
i , where μi denotes an element repre-

sented by a based meridian of Li in V ′
i . There is a subscript i since we are

performing r + g symplectic sums with V. Here γ̂i is represented by a based
loop in W ′ which is (freely) homotopic to a curve γi × {∗} in the boundary
of a regular neighborhood of Ti = γi ×S1. Also, ŝi is represented by a based
curve in W ′, which is (freely) homotopic to {∗} × S1 on the boundary of a
regular neighborhood of Ti = γi × S1. Finally, each m̂i is a based meridian
of the torus Ti in W ′.

Proof of Lemma 4.3. Here we need to be careful with our application of the
Seifert–van Kampen Theorem. The sets in question must be open and share
a common basepoint. To ensure this, we choose a basepoint w0 ∈ W ′, and
we have points vi ∈ ∂νLi ⊆ ∂V ′

i corresponding to the basepoint v mentioned
in Section 3, and we fix paths ηi from w0 to φ(vi). We set V̄i ⊆ X equal
to V ′

i union a neighborhood of ηi. Hence V̄i contains the basepoint w0, and
π1(V̄i, w0) ∼= π1(V ′, v). Furthermore, we use the same notation for an element
of π1(V̄i, w0) as we do for a corresponding element of π1(V ′

i , vi), under the
usual correlation of conjugating by the path ηi.

Now we are in a position to apply the Seifert–van Kampen Theorem,
using the open sets W ′, V̄1, . . . , V̄r+g, which intersect pairwise in connected
sets. The Seifert–van Kampen Theorem gives us that

(4.3) π1(X) =
π1(W ′) ∗ π1

(
V̄1

) ∗ · · · ∗ π1

(
V̄r+g

)
〈〈

ιW (γ)ιV i(γ)−1 | γ ∈ π1(W ′ ∩ V̄i)
〉〉 ,

where ιW : π1(W ′ ∩ V̄i) → π1(W ′) and ιV i : π1(W ′ ∩ V̄i) → π1(V̄i) are the
maps on π1 induced by the inclusions W ′ ∩ V̄i ↪→ W ′ and W ′ ∩ V̄i ↪→ V̄i,
respectively. Note that these are the only elements that we will have in the
quotient by applying the Seifert–van Kampen Theorem, because the other
intersections between V̄i and V̄j for i 
= j are contractible.

For a fixed i, let us consider the group

(4.4)
〈〈

ιW (γ)ιV i(γ)−1 | γ ∈ π1(W ′ ∩ V̄i)
〉〉

.
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As W ′∩V̄i is homotopy equivalent to a 3-torus, π1(W ′∩V̄i, w0) is generated
by three elements. Let us denote these three elements by a, c, and μ, so that,
using our earlier notation, ιV i(a) = a2,i, ιV i(c) = c2,i, and ιV i(μ) = μi. By
the definition of φi, this means that ιW (a) = ŝi, ιW (c) = γ̂i, and ιW (μ) = m̂i.
Therefore (4.4) is the same as

〈〈
a2,iŝ

−1
i , c2,iγ̂

−1
i , μim̂

−1
i

〉〉
.

This completes the proof of Lemma 4.3. �

We will now show that ŝi is homotopic to s. This follows since both ŝi

and s are curves in W ′ of the form {∗} × S1, and we can certainly find a
path between the points in the first factor. To be precise, let

W ′′ := (N × S1) \
r+g⋃

i=0

νTi.

Each Ti ⊆ N × S1 is a torus of the form γ × S1 for some curve γ ⊆ N .
So, finding a homotopy between ŝi and s in W ′′ reduces to finding a path
between two points in N minus a union of circles. This is certainly possible,
as circles have codimension 2 in N . As W ′′ ⊆ W ′, this gives us a homotopy
in W ′ as well, but in W ′, s is nullhomotopic. The argument used here only
shows that these curves are freely homotopic, but that is sufficient for our
purposes since s is nullhomotopic and so ŝi, being freely homotopic to s, is
also based nullhomotopic.

We now continue to simplify our expression of π1(X).

Lemma 4.4.

π1(X) =
π1(W ′)
〈〈γ̂i, m̂i〉〉 .

Proof. Notice that π1 (V ′
i ) is generated by a1,i, . . . , d2,i, ε1,i, . . . , εki,i, where

each εl,i is conjugate to μi. As mentioned in Section 3, the relations (3.1)
hold in π1(V ′

i , vi).
In π1(X), a2,i = ŝi = 1 (since ŝi is nullhomotopic). We can work our way

through the relations (3.1) to show that the elements a1,i, . . . , d2,i are trivial
in π1(X). Starting with the fact that a2,i = 1, we have b2,i = [a−1

2,i , d2,i] =
[1, d2,i] = 1. Next, c1,i = [d−1

1,i , b
−1
2,i ] = [d−1

1,i , 1] = 1 and d1,i = [c−1
1,i , b2,i] =

[c−1
1,i , 1] = 1. So far we have killed three of the generators using the relations

of (3.1). Using that d1,i = 1, b1,i = [a−1
1,i , d1,i] = [a−1

1,i , 1] = 1. It follows that
a1,i = [b−1

1,i , d
−1
1,i ] = [1, 1] = 1. It remains to show that c2,i and d2,i are trivial,

which follows since c2,i = [d−1
2,i , b

−1
1,i ] = [d−1

2,i , 1] = 1, and d2,i = [c−1
2,i , b1,i] =

[1, 1] = 1.
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Now μi = [b−1
2,i , d

−1
2,i ] = 1, and so ε1,i, . . . , εki,i are all 1 as well. Hence we

have killed all of the generators of π1(V ′
i ), and applying Lemma 4.3, noting

in particular that c2,i = 1, we have shown that

π1(X) =
π1(W ′) ∗ 1 ∗ · · · ∗ 1〈〈

c2,iγ̂
−1
i , μim̂

−1
i

〉〉 =
π1(W ′)
〈〈γ̂i, m̂i〉〉 .

�

After each of these steps, we are finally in a position to show that the
construction yields the desired fundamental group.

Theorem 4.5. π1(X) = G.

Proof. Let H be a set of curves in W based at w0 which miss the tori Ti,
such that H generates π1(W ). We can consider H to be a set of elements in
π1(W ′) as well. Observe that π1(W ′) is generated by H∪{δ1, . . . , δk} , where
each δi is conjugate to one of the fixed set of meridians m̂1, . . . , m̂r+g, where
we recall m̂i is a based meridian of Ti. From the fact that each m̂i = 1, we
have that {δ1, . . . , δk} = {1}.

Note that a representative curve γ̂i is homotopic to γi in W , but some
of these homotopies may intersect the tori Ti. Hence, what we have is that
γ̂i and a conjugate of γi differ by a product of conjugates of m̂l. As each of
these m̂l = 1, we have that γ̂i is conjugate to γi in π1(X).

So, now we have from Lemma 4.4 that

(4.5) π1(X) = π1(W )/ 〈〈γi〉〉 ,

and as we have explained in Section 2, the γi were chosen so that this group
is G.

To make this precise, we work from the presentation of Lemma 4.2. Com-
bining Lemma 4.2 with (4.5), and expanding γi in our notation,

(4.6) π1(X) =

〈
x1, y1, x2, y2, . . . , xg, yg

∣∣∣∣∣

n∏

l=1

g∏

k=1

[xk, yk]

〉

〈〈w̃1, . . . , w̃r, x1y1, . . . , xgyg〉〉 .

As explained at the end of Section 2, the relations {xiyi} imply the surface
relation

∏n
l=1

∏g
k=1 [xk, yk], and furthermore, the relations {xiyi} can be used

both to reduce w̃i back to wi and to eliminate g of the generators y1, . . . , yg.
Hence we have from (4.6) that

(4.7) π1(X) =
〈x1, x2, . . . , xg〉
〈〈w1, . . . , wr〉〉 .
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Now we see that the presentation of π1(X) in (4.7) is the same as the
presentation of G in (2.1). �

It remains to compute χ(X) and σ(X) to complete the proof of Theo-
rem 1.1. The Euler characteristic and signature add under symplectic sums
along tori. Additionally, Luttinger surgeries preserve Euler characteristic
and signature, and so we compute that

χ(V ) = χ(Σ2 × Σ2) = 4

σ(V ) = σ(Σ2 × Σ2) = 0.

Now we use the additivity of Euler characteristic and signature to
compute:

χ(X) = χ(N × S1) + χ(Y ) +
r+g∑

i=1

χ(V )

= 0 + 10 + (r + g) × 4,

and

σ(X) = σ(N × S1) + σ(Y ) +
r+g∑

i=1

σ(V )

= 0 + (−2) + (r + g) × 0.
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