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SPECTRAL MEASURES ON TORIC VARIETIES AND THE
ASYMPTOTIC EXPANSION OF TIAN–YAU–ZELDITCH

Rosa Sena-Dias

We extend a recent result of Burns, Guillemin and Uribe on the
asymptotics of the spectral measure for the reduction metric on a toric
variety to any toric metric on a toric variety. We show how this extended
result together with the Tian–Yau–Zelditch asymptotic expansion can
be used to deduce Abreu’s formula for the scalar curvature of a toric
metric on a toric variety in terms of polytope data.

1. Introduction

Recently, Burns, Guillemin and Uribe have described a procedure to give
the asymptotic expansion of the so-called spectral measure sequence on a
toric manifold. One obtains this sequence by choosing an orthonormal basis
for the space of holomorphic sections of large tensor powers of a quantizing
line bundle for the toric manifold and adding the square of the norms of
these elements of the basis. More precisely, suppose we are given a toric
symplectic manifold (X, ω). Let L → X be a line bundle whose first Chern
class is [ω]. There is a natural metric on X called the reduction metric
which is invariant by the torus action on X (see [G]). This metric allows
us to define a Hermitian metric on the bundle L. We simply ask that this
Hermitian metric h satisfies the following: i∂∂̄ log h is the Kähler metric on
X. The space of holomorphic sections of LN which we denote by H0(X, LN )
inherits a torus action and splits according to the action’s weights. Since we
have a Hermitian metric on L, we can choose an orthonormal basis {sm}
of H0(X, LN ) which is compatible with the splitting of H0(X, LN ). The
sequence of spectral measures is

μN =
∑

m

|sm|2ν,

where ν is the Liouville measure. One of the results in [BGU] describes the
asymptotic behavior of the sequence μN in N .
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It is well known (see [G]) that toric varieties have many toric metrics
(i.e., metrics invariant through the torus action) compatible with a given
symplectic structure. Each toric metric gives rise to a different Hermitian
metric on the bundle L hence to a different orthonormal basis from which
it is possible to construct a spectral measure depending on the initial toric
metric. It is then natural to ask if the results in [BGU] extend to such
metrics. The first purpose of this note is to show that this is true. For
example, we prove

Theorem 1.1. Let X be a toric variety with moment polytope � and con-
sider any toric metric on X. Let ψ ∈ C∞(�), and μN be the sequence of
spectral measures on X for the chosen toric metric. Then

∫
ψμN =

N∑

i=0

Pi(ψ)Nn−i,

where ψ can be seen as a function on X via the moment map and the Pi(ψ)’s
are integrals of differential operators acting on ψ.

The polynomials Pi depend on the polytope � and on the toric metric
on X. The pointwise asymptotic behavior of the sequence of functions

∑
|sm|2

has been extensively studied (see [C, L, T, Z]). It is known as the Tian–
Yau–Zelditch asymptotic expansion. Now when one applies the measures μN

to functions with compact support on the polytope, one should be able to
recover the pointwise asymptotic behavior of the function

∑
|sm|2 (at least

in “most” points). In this spirit, we use Theorem 1.1 in a precise version (or
rather the method that is used to prove this theorem and which appears in
[BGU]) to write down the term in Nn−1 in the expansion. By comparing
this term with the corresponding term of the pointwise Tian–Yau–Zelditch
asymptotic expansion (which was obtained by Lu in [L]) we recover a result
of Abreu’s (see [A1]) which gives a formula for the scalar curvature of any
toric metric on a toric variety in terms of polytope data. That is, we give a
different proof of the following theorem of Abreu.

Theorem 1.2. Let X be a toric variety with moment polytope � and con-
sider any toric metric on X with symplectic potential g. The scalar curvature
of the metric is given by

−1
2

∂2Gij

∂yi∂yj
,

where y is the moment map coordinate for g on �, Gij is the Hessian of g
in the y coordinates and Gij is its inverse.
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In the above theorem we are using Einstein’s convention: repeated indexes
mean a sum. We will use this convention throughout the paper unless stated
otherwise.

A brief outline of this paper is the following: In the first section we give
a very brief review of some old results on the Kähler structure of toric
varieties. The results described in that section first appeared in [A1, G].
The second section deals with the function ϕ which encodes the information
coming from the norms of a special basis of H0(X, LN ). In this section, we
basically prove that the function ϕ satisfies properties similar to the ones
appearing in [BGU] which ensure that the sections sm peak at some fiber
over a point in �. In the fourth section, we use these properties to write down
the asymptotic behavior of |sm| and of μN . Finally, in the fifth section we
compare these results with the well-known Tian–Yau–Zelditch asymptotic
expansion to get a formula for the scalar curvature of the toric metric in
terms of polytope data only. This formula was first obtained in [A1] using
a different approach.

2. Background

For the sake of completeness we give some background on Kähler toric vari-
eties (see [A1, A2, G] for more details and proofs). We will denote by Tn

the n dimensional real torus i.e.

Tn = R
n/Z

n.

2.1. Reduced Kähler toric metrics.

Definition 2.1. A Kähler toric manifold X2n is a closed connected Kähler
manifold (X, ω, J) with an effective Tn Hamiltonian action which is also
holomorphic.

Such an action admits a moment map φ : X → R
n, where we have

identified R
n with its dual.

Definition 2.2. Let (X, ω, J) be a toric manifold with moment map φ :
X → R

n. The set φ(X) is a convex polytope in R
n which we call the Delzant

polytope or moment polytope of X.

One should note here that this image is only defined up to translation to
start with because φ is only defined up to a constant. In fact, the Delzant
polytope of a toric manifold is a convex polytope of a special type. Namely,
it is what is called a polytope of Delzant type.
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Definition 2.3. A convex polytope � in R
n is of Delzant type if

(1) there are n edges meeting at each vertex,
(2) it is possible to choose a set of primitive exterior normals to facets in

Z
n and

(3) for any vertex, the set of outward normals corresponding to the facets
meeting at that vertex forms an integral basis for Z

n.

Given a convex polytope in R
n which is of Delzant type, Delzant has given

a canonical way to associate to it a Kähler toric manifold which we write
(X, ω0, J0).

Theorem 2.1 (Delzant). Given a Delzant polytope � in R
n, there is a

Kähler manifold (X, ω0, J0) and a Tn action on X which is effective, Hamil-
tonian and holomorphic such that the image of the moment map of the Tn

action with respect to ω0 is �.

The results in [BGU] concern this Kähler manifold. The symplectic form
ω0 and the metric associated with ω0 and J0 are called reduced. Delzant’s
construction can be made explicit and shows that one can see X, the toric
manifold associated to a Delzant polytope, as a symplectic quotient of a
torus action on C

d. The reduced Kähler metric on X comes from the “stan-
dard” metric C

d. For more details on this see [G]. Note also that Delzant’s
construction is described in [BGU, Section 2]. In fact, Delzant also proved
that the Delzant polytope of a toric manifold determines its symplectic type.

Theorem 2.2 (Delzant). Any two toric Kähler manifolds with the same
Delzant polytope (up to translation) are equivariantly symplectomorphic.
2.2. General Kähler toric metrics. We are interested in more general
metrics on toric manifolds which are invariant under the torus action.

Definition 2.4. A toric metric on the toric symplectic manifold (X, ω0, J0)
is a metric compatible with the symplectic form ω0 which is invariant under
the torus action.

There are two ways of thinking of toric metrics on X starting with
(X, ω0, J0).

• One can think of equipping X with a different symplectic form ω
which is compatible with J0 and Tn invariant. The pair (ω, J0) will
give rise to a toric metric via the formula ω(�, J0�).

• Alternatively, one can think of fixing ω0 and equipping X with a
different integrable complex structure J which is Tn invariant and
compatible with ω0. Again the formula ω0(�, J �) will give rise to a
toric metric.

These two points of view are equivalent when ω and ω0 are cohomologous
and J and J0 are in the same diffeomorphism class. For more on this dual-
ity see [A2]. For example, assume one starts with a triple (X, ω, J0). A
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well-known trick in symplectic geometry, namely Moser’s trick, gives a sym-
plectomorphism F : (X, ω0) → (X, ω). One can use F to pullback J0 onto
an integrable complex structure J which will then be compatible with ω0
(and will of course be in the same diffeomorphism type as J0, since in par-
ticular F is a diffeomorphism). In this way we get a triple (X, ω0, J). In
particular, this shows that the image of the moment map for (X, ω) is the
same as that of the image of the moment map for (X, ω0) (up to transla-
tion). We will give further details on this ahead. One can reverse the above
process starting with (X, ω0, J) as long as J is in the same diffeomorphism
class as J0.

Remark 2.1. Let (X, ω0, J0) and (X, ω, J0) be two toric Kähler manifolds.
If ω0 and ω are cohomologous then the moment maps for the Tn action with
respect to ω0 and ω have the same image up to translation.

Although all Kähler toric manifolds with a given Delzant polytope are
symplectomorphic to (X, ω0) they are by no means Kähler isomorphic to
(X, ω0, J). That is, the symplectic isomorphism between (X, ω) and (X, ω0)
can, in general, not be taken to be holomorphic. In a dual way, we can
also say that all Kähler toric manifolds with a given Delzant polytope are
biholomorphic to (X, J) but the biholomorphism cannot be taken to be
symplectic.

2.3. Complex and symplectic coordinates. Consider a Kähler toric
manifold (X, ω, J). One can use J to complexify the torus action so that
X also admits a holomorphic Tn

C
action. We have

Tn = R
n/Z

n ⊂ Tn
C .

It is an important feature of toric manifolds that this complexified Tn
C

action
admits an open orbit which is dense in X. Although we will not take that
approach here, toric manifolds are sometimes defined as suitable compact-
ifications of complex tori. Let us call the open dense Tn

C
orbit X0. On X0

there are two natural sets of coordinates (see [A2] for more details):

(1) Complex coordinates coming from the fact that the Tn
C

on X0 is free
so that X0 � Tn

C
. Let us call these coordinates z = u + iv. These are

simply coordinates on Tn
C
. In these coordinates, the real torus acts by

translation in the v variables so that v takes values in R
n/Z

n

(2) There are also symplectic coordinates on X0 that make the symplectic
form standard. Consider the moment map on X from the torus action.
Its image lies in the Delzant polytope of X in R

n which we call �. Let
y be the moment map coordinates on this polytope, then, letting v be
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as before the real torus coordinate, (y, v) are symplectic coordinates
on X0, that is

ω =
∑

dyi ∧ dvi.

In these coordinates, the complex structure takes a non-standard form
(

0 hess g
−hess g 0

)
.

for some function g which is called the symplectic potential. For a
proof of this fact see [A2]. Even though g is really determining a
complex structure we will often refer to g as the symplectic potential
for the toric metric associated with ω and J . Note that, since the
complex structure is torus invariant, g is really only a function of the
y coordinates.

As before, for the first set of coordinates one wants to think of J as being
standard, whereas in the second one, one wants to think of ω as being
standard. There is a relation between complex and symplectic coordinates
(see [A2, G]), namely the Legendre transform

(2.1) u = gy.

Also on the open dense subset X0, the Kähler form admits a Kähler poten-
tial. That is, there exists f , a function of z, such that the Kähler form
is −2i∂∂̄f . This follows from the ∂∂̄ lemma. The invariance of the Kähler
metric with respect to the torus action implies that f is actually only a func-
tion of u. The functions f and g are related to each other by the following
relations (see [G]):

(2.2) f(u) + g(y) = y · u, y = fu, u = gy.

2.4. General symplectic potentials. We are going to assume that our
polytope is integral, namely, we are going to assume that the polytope �
can be described by a set of inequalities

� = {y ∈ R
n : y · ui − ci ≤ 0, i = 1, . . . , d},

where ci is an integer and ui ∈ Z
n is a primitive outward normal to the

ith facet of �. The integrality condition on the polytope ensures that the
cohomology class of ω/2π is in H2(X, Z). In fact, it is known (see [G]) that
the cohomology class of ω is given by

[ω]
2π

= −
∑

ciAi,
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where Ai is the cohomology class in H2(X, Z) dual to the submanifold of X
obtained as the pre-image of the ith facet via the moment map. This fact is
going to be of importance to us because if [ω]/2π is integral then there is a
line bundle L → X whose first Chern class is [ω].

Set li(y) = ci − y · ui. In [G], Guillemin proves the following.

Theorem 2.3 (Guillemin). The reduction metric corresponding to ω0 has
symplectic potential

g0 =
1
2

d∑

i=1

(li log li − li).

This formula has played an important role in studying Kähler toric man-
ifolds.

Abreu showed that the symplectic potential of a general toric metric is
given by g = g0 + gr, where gr is smooth in a neighborhood of � (see
[A2]). In particular, the singular behavior of the potential on the faces of
the polytope is that of g0. Not all functions of the form g = g0 +gr, where gr

is smooth, are symplectic potentials though (see Theorem 2.8 in [A2]). In
particular, g needs to be such that hess(g) is positive definite on the interior
of �. This Hessian will have a certain behavior on the faces. For example, as
one reaches a point in the interior of an (n−1)-dimensional facet, the inverse
matrix of the Hessian converges but acquires a kernel which is generated by
the ui corresponding to that facet. As one approaches an (n−2)-dimensional
face, the inverse of the Hessian still converges but this time acquires a two-
dimensional kernel etc.

2.5. Holomorphic sections on toric manifolds. We will assume from
now on that � is an integral polytope and that [ω]/2π is in H2(X, Z). There
is a line bundle L → X whose first Chern class is [ω]. In the toric case, by
using Delzant’s explicit construction of X as a symplectic quotient of C

d, L
can be obtained in an explicit way as well from the trivial bundle over C

d.
The Tn action lifts to L but not in a canonical way. In fact the following
lemma holds.

Lemma 2.1. For each lift of the Tn action to L there is a holomorphic line
bundle structure on L and a Tn invariant section 1 such that H0(X, L) is
spanned by

em·z1,

where m is in Z
n ∩ �.

For a proof of this lemma see [BGU, Section 3]. Even though our form
ω may not be ω0, the construction is exactly the same as that of [BGU]. In
fact, L and its holomorphic structure only depend on the cohomology class
of ω. What will depend on the form ω is the Hermitian structure on L.
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Remark 2.2. The above-mentioned Tn invariant section 1 is not necessarily
holomorphic. If we assume that 0 ∈ � then 1 it is indeed holomorphic (we
are allowed to choose m = 0 then).

The Tn action on X also induces an action on H0(X, LN ), the space of
holomorphic sections on LN . This vector space must split according to the
weights of the action. It is not hard to see that any holomorphic section of
LN can be written as a linear combination of the sections em·z1N i.e.,

H0(X, LN ) = span{em·z1k, m ∈ Z
n ∩ N�}.

We set Z
n ∩ N� = [N�]. This basis decomposes H0(X, LN ) into one-

dimensional weight spaces for the torus action. Namely,

eiθem·z = eim·θem·z,

where θ is in R
n and we write em·z for em·z1N . The set {em·z, m ∈ Z

n ∩
N�} forms an orthogonal basis of H0(X, LN ). This is simply because

∫

T n

eim·vdv = 0,

unless m = 0.
In what follows, we will mostly assume that our toric metrics come from a

toric Kähler manifold of the form (X, ω, J0) where J0 is the reduced complex
structure from Delzant’s construction, ω is compatible with J0 and in the
same cohomology class as ω0, the reduced symplectic form. But in fact we
will often use the “symplectic potential” of ω to describe our Kähler toric
manifold (X, ω, J0). This is really an abuse of notation as “symplectic poten-
tial” really means the symplectic potential of the complex structure J one
gets by applying Moser’s trick to (X, ω, J0). Since the two view points, that
of fixing the symplectic structure and varying the complex structure and
that of fixing the complex structure and varying the symplectic structure,
are equivalent (in the same cohomology class for the symplectic forms and
the same diffeomorphism class for complex structures) this does not cause
any problems. Also, the reader may think that we are simply varying the
symplectic form (and letting the complex structure fixed) but we param-
etrize such variations in a slightly “exotic” way — namely via symplectic
potentials.

3. The function ϕ

Our setting is almost the same as the setting in [BGU]. Let X be a Kähler
toric manifold of complex dimension n such that the symplectic form on
X, ω has integral cohomology class. For example, one can assume that
� is integral and that ω is cohomologous to ω0 and compatible with J0.
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Some of our results hold in greater generality but we will in general require
this assumption. There is a line bundle L → X whose first Chern class is [ω].
What is more, there is a connection on L whose curvature is ω. Consider
the Hermitian metric on L, h associated to that connection (it is unique
up to a multiplicative constant). In fact, the Kähler metric on X is given
by i∂∂̄ log h. Pick an orthonormal basis for H0(X, LN ) which is an eigenba-
sis for the torus action, say {sm}. As in [BGU], we are interested in the
asymptotic behavior of the spectral measure

μN =
∑

m

|sm|2ν,

where ν is the Liouville measure. In [BGU], Burns, Guillemin and Uribe
consider the case where the symplectic form on X is the so-called reduced
symplectic form. Here we are concerned with the general case. To this end,
we look at the norms of the sections em·z with respect to the Hermitian
metric associated to ω and thus define the function ϕ which encodes the
information from all of these norms.

3.1. Definition. Suppose we have a fixed Kähler toric metric on X. This
metric allows us to define a Hermitian metric on the bundle L. Simply set

ω = i∂∂̄ log h,

where h is the norm of the torus invariant section we have called 1. The
function h is torus invariant. We note here that the norm of any of the em·z

is also torus invariant. This is because

|em·z|2h = e2m·uh,

which does not depend on the v coordinate. We define

ϕ
(m

N
, y

)
=

1
2N

log |em·z|2h ◦ φ−1(y),

where m ∈ Z
n ∩ N� and φ is the moment map for the torus action with

respect to ω. Even though φ−1 is not a well-defined function, as a function of
y, ϕ is well defined at least on the interior of � where we know that em·z is
non-zero. To be more precise, suppose that two points in X have the same
image via the moment map in the polytope. Then, they are in the same
torus orbit and therefore, since |em·z|2h is torus invariant, the above quantity
is well defined. We will see later that in fact if m/N is in a face of �, ϕ
can be extended to the interior of that face. In [BGU], Burns, Guillemin
and Uribe consider the case where the symplectic form is the reduction
symplectic form. Then we have

ϕ0

(m

N
, y

)
=

1
2N

log |em·z|2h0
◦ φ−1

0 (y),
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where h0 is the Hermitian metric corresponding to the reduction symplectic
form and φ0 is the moment map of the torus action associated with the
reduction symplectic form. We will see later that, as ϕ0, ϕ also extends as
a function of the first variable to R

n.

3.2. ϕ and ϕ0. We can write down a relation between the functions ϕ and
ϕ0. For that we need to consider the map

α(y) = φ0 ◦ φ−1(y).

This is well defined because if two points have the same image via φ then
they lie in the same torus orbit above that image and therefore they have the
same image via φ0. Note that in the interior of � there an explicit expression
for α, namely

α(y) = f0u ◦ f−1
u .

Another way to think of α is the following. From Moser’s trick, assuming
that ω is compatible with J0, we know that there is an equivariant symplec-
tomorphism F : (X, ω0) → (X, ω). Let ξ be in Tn and let Xξ be the vector
field induced by the action of ξ on X. Then

Xξ�ω0 = d〈φ0, ξ〉
and

Xξ�ω = Xξ�(F−1)∗ω0 = d〈φ, ξ〉,
which shows that φ0 = φ ◦ F (up to translation). So that α = φ0 ◦ F ◦ φ−1

0 .
For later use we prove the following simple lemma

Lemma 3.1. The function α sends each codimension r face in � onto itself.

Proof. The proof is just a generalization of the fact that α takes � onto
itself. The point is that each codimension r face is the moment polytope of
a toric submanifold of our toric manifold. The image of a toric manifold via
its moment map does not depend on the symplectic form but only on its
cohomology class up to translation. The restrictions of ω and ω0 to a toric
submanifold are cohomologous so we can assume that the two moment maps
have the same image (by normalizing the moment maps “in the same way”)
and α preserves any given face. �

The forms ω0 and ω, are cohomologous therefore there is a globally defined
function on X, say ρ, such that

ω = ω0 + 2∂∂̄ρ.

Seen as a function of z in the open dense orbit, ρ only depends on u because
it must be invariant by the torus action.

Lemma 3.2. The functions ϕ and ϕ0 are related via

ϕ(x, y) = ϕ0(x, α(y)) + ρ(α(y)).
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Proof. This is straightforward. We must have

h = e2ρh0,

up to a constant, hence

|em·z|2h = |em·z|2h0
e2Nρ

and

ϕ(x, y) =
1

2N
log |em·z|2h ◦ φ−1

0 (φ0 ◦ φ−1(y)),

where x = m/N . That is

ϕ(x, y) =
1

2N
log

(
|em·z|2h0

e2Nρ
)

◦ φ−1
0 (α(y)),

and the result follows. �

3.3. ϕ and g. Let g denote, as before, the symplectic potential for (X, ω, J)
where (X, ω, J) is a Kähler toric manifold (i.e., g determines the complex
structure J in symplectic coordinates for ω). It is possible to write down ϕ
in terms of g alone.

Lemma 3.3. Let g be the symplectic potential for (X, ω, J), we have

ϕ(x, y) = g(y) + (x − y) · gy(y).

Proof. We start by determining an expression for the Hermitian metric
h. Since both −2f and log h are potentials for the Kähler metric on X
we must have

h = e−2f .

Therefore
|em·z|2h = e2m·ue−2Nf .

Replacing f by the expression given in Equation (2.2) and using Equation
(2.1) we have

|em·z|2h(y) = e2N(g(y)+(m
N

−y)·gy(y)),

where y = φ(z). We have

ϕ
(m

N
, y

)
=

1
2N

log |em·z|2h ◦ φ−1(y)

and the result follows. �
Let us check that this fits in well with the expression in [BGU] for ϕ0.

Since

g0 =
d∑

i=1

li log li − li,

we have

g0y = −
d∑

i=1

ui log li,



130 R. SENA-DIAS

and therefore

g0 + (x − y) · g0y =
∑

li(x) log li(y) − li(y),

because x − y · ui = li(x) − li(y). The above expression coincides with the
expression appearing in [BGU] for ϕ0.

Later we are going to be interested in an orthonormal basis for H0(X, LN ).
This is simply the set {sm}, where

sm =
em·z

||em·z|| ,

where ||.|| refers to the L2 norm and we can write

|sm|2h(y) =
e2Nϕ(m

N
,y)

∫
� e2Nϕ(m

N
,y)dy

, m ∈ [N�].

3.4. Two lemmas on ϕ. The point here is that independently of g, the
function ϕ satisfies two lemmas which appear in [BGU] for the case g = g0.

Lemma 3.4. Let x be a point in the interior of � and g be a symplectic
potential on �. Then, the function ϕ regarded as a function of y = fu(u) has
a unique critical point at x = y and this unique critical point is the unique
global maximum of the function ϕ on �.

Proof. We first note that as y tends to ∂�, α(y) also tends to ∂�. Consider
the formula

ϕ(x, y) = ϕ0(x, α(y)) + ρ(α(y)).

We know that ϕ0(x, y) tends to −∞ as y tends to ∂� because

ϕ0(x, y) =
∑

li(x) log li(y) − li(y).

As for ρ, since it is a globally defined function on X it must have a finite
limit as y tends to ∂�. We conclude that ϕ(x, y) tends to −∞ as well on
∂�. On the other hand, it is bounded from above on � since the li and ρ
are. Therefore, it has a maximum on the interior of �. This maximum is a
critical point of ϕ. Using

ϕ(x, y) = g(y) + (x − y) · gy(y),

we see that

(3.3)
∂ϕ

∂y
= hess(g)(x − y).

Now from the properties of g mentioned in Section 2.4 we know that hess(g)
is positive definite on the interior of � and the result follows. �

A similar result can be proved when x is in the boundary of � namely
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Lemma 3.5. Let x be a point in the interior of a face F of � and g be
a symplectic potential on �. Then, the restriction to F of the function ϕ
regarded as a function of y has a unique critical point at x = y and this
unique critical point is the unique global maximum of the restriction to F of
the function ϕ on �. Moreover, the derivatives of ϕ in the directions normal
to F are not zero at this maximum.

Proof. Let I = {i ∈ {1, . . . , d} : x /∈ l−1
i (0)}, where d is the total number of

facets in �. That is, I is the set of indexes of the facets to which x does not
belong. We start by showing that ϕ(x, ·) actually extends to F . This follows
from the formula

ϕ(x, y) =
∑

i∈I

li(x) log li(α(y)) −
d∑

i=1

li(α(y)) + ρ(α(y))

which in turn is a consequence of the expression

ϕ0(x, y) =
∑

i∈I

li(x) log li(y) −
d∑

i=1

li(y),

from [BGU]. Again as y tends to ∂F , so does α(y) and it follows from the
expression above that ϕ0(x, ·) tends to −∞. Therefore ϕ(x, ·) is −∞ on the
boundary of F . It is also bounded from above on this facet so there must be
a maximum on the interior of F and this maximum must be a critical point
of the restriction of ϕ to F as a function of y. Consider the expression

(3.4) x − y = (hessy(g))−1 ∂ϕ

∂y
,

which holds true on the interior of �. We know from the properties of g
described in Section 2.4 and discussed in [A2] that (hessy(g))−1 extends to
F with a kernel generated by {ui, i ∈ Ic}. As for ∂ϕ

∂y it is given by

∂ϕ

∂y
(y) = Dα(y)

(
∂ϕ0

∂y
(x, α(y)) +

∂ρ

∂y
(α(y))

)

and

∂ϕ0

∂y
= −

∑

i∈I

li(x)
li(y)

ui +
d∑

i=1

ui,

which clearly extends to the interior of F . Hence we conclude that ∂ϕ
∂y itself

extends to the interior of F . So Equation (3.4) holds even for y in F . Suppose
that the point y ∈ F is critical for the restriction of ϕ to F . This means that

∂ϕ

∂y
∈ T⊥F = span{ui, i ∈ Ic},
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hence

(hessy(g))−1 ∂ϕ

∂y
= 0

which implies that x = y. Next, we would like to see that ∂ϕ
∂y cannot be zero

at x = y. Define

g0Ic =
∑

i∈Ic

li log li − li.

We have g = g0Ic ◦α+(g0 −g0Ic)◦α+gr. The functions gr and (g0 −g0Ic)◦α
extend smoothly to the interior of F so we must check that for some sequence
of y’s tending to x

hessy(g0Ic ◦ α)(x − y)

tends to something which is not zero. We have

(3.5) hess(g0IC ◦ α)(y) = Dαt(y)hess(g0IC )(α(y))Dα(y) + R(y),

where the i, j entry of the matrix R is given by

Rij(y) =
∂g

∂ya
(α(y))

∂αa

∂yi∂yj
(y).

We will deal with each of the terms in the sum above separately.

• We start with the second term in the sum (3.5). Now since

∂g

∂ya
◦ α =

∑

r

ua
r log(lr ◦ α),

we have

Rij =
∑

r

ua
r log(lr ◦ α)

∂αa

∂yi∂yj
.

Also, because α(x) is in F

lr(α(y)) = lr(α(y)) − lr(α(x)) = ur · (α(y) − α(x))

so that

log(lr(α(y)))(xi − yi) = log(ur · (α(y) − α(x)))(xi − yi).

The expression for R(x − y) then becomes

Rij(xi − yi) =
∑

r

ua
r

∂αa

∂yi∂yj
log(ur · (α(y) − α(x)))(xi − yi).

There is constant A such that for any index i in {1, . . . , d}

|xi − yi| ≤ A|α(x) − α(y)|.
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Now for the right choice of y (for example as long as α(y) − α(x)
remains in a cone with axis ur)

|α(x) − α(y)| ≤ B|ur · (α(x) − α(y))|,

for some constant B, so that

|Rij(xi − yi)| ≤ −C
∑

r

log(ur · (α(y) − α(x)))|ur · (α(y) − α(x))|,

for a constant C. So the second term in the sum (3.5) tends to zero
at least for some choice of sequence of y’s tending to x.

• We now analyze the first term in the sum (3.5). We have

hess(g0IC ) =
∑

i∈Ic

uiu
t
i

li(y)
,

hence

hess(g0IC )(α(y))Dα(y)(x − y) =
∑

i∈Ic

ui · (Dα(x) − Dα(y))
li(α(y))

ui.

Now we use the fact that α(x)−α(y) = Dα(x)−Dα(y)+O(|x− y|2)
so the expression above becomes

∑

i∈Ic

ui · (α(x) − α(y))
li(α(y))

ui + smaller order terms.

Also

ui · (α(x) − α(y)) = li(α(x)) − li(α(y)) = −li(α(y)).

Then we have

hess(g0IC ◦ α)(y)Dα(y)(x − y) = −
∑

i∈Ic

ui + smaller order terms,

which is non-zero because of the Delzant condition. Therefore the
limit of

Dαt(y)hess(g0IC )(α(y))Dα(y)(x − y)

is also non-zero as y tends to x. Note that this is true for any sequence
of y’s tending to x.

We thus conclude that the sum (3.5) tends to a non-zero vector for at least
some choices of sequences y tending to x and therefore the derivative cannot
be zero. �
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4. The results

As in [BGU] we are interested in the spectral measures of the manifold X.
These are defined by

μN =
∑

|sm|2hν,

where ν is the Liouville measure. Let ψ be a smooth function on �. Then
the goal is to write an asymptotic formula for

∫

�
ψμN ,

in N , as N tends to ∞. We have
∫

�
ψμN =

∑

m∈[N�]

ψ�
(m

N

)
,

where

ψ�(x) =
∫

�

ψ(y)e2Nϕ(x,y)
∫
� e2Nϕ(x,y) dy.

The results in [BGU] use two main ingredients:

• The first in an asymptotic formula for sums of the form
∑

m∈[N�]

ψ
(m

N

)

for any continuous function ψ on � (see [L2]). This argument clearly
does not depend on the symplectic potential g.

• The second ingredient is an application of the Euler–McLaurin for-
mula to the function ψ as it appears in the integral

∫

�

ψ(y)e2Nϕ(x,y)
∫
� e2Nϕ(x,y)dy

dy

around the point x which is the point where ϕ attains its maximum.
Again this argument works for general g since Lemmas 4.1 and 4.2 of
[BGU] carry over to this case. Their generalizations to this setting
are Lemmas 3.4 and 3.5 from the previous section. We will carry out
this method explicitly in the next section for the case when ψ has
compact support in �.

We can summarize the results obtained by applying this method in the
following generalization of the main theorem in [BGU]:
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Theorem 4.1. Let X be a toric variety with moment polytope � endowed
with a toric metric. Let ψ ∈ C∞(�), and μN be the sequence of spectral
measures on X for the chosen toric metric. Then

∫
ψμN =

N∑

i=0

Pi(ψ)Nn−i,

where ψ can be seen as a function on X via the moment map and the Pi(ψ)’s
are integrals of differential operators acting on ψ.

The other asymptotic results appearing in [BGU] hold true in this new
setting provided one is careful to note that the coordinates y are now given
by the new moment map φ corresponding to ω. We have for example:

Theorem 4.2. Let x be in � and suppose m = Nx ∈ Z
n ∩ N�. The

sequence of sections sm converges to a delta function on the fiber φ−1(x).

Proof. This is exactly as in [BGU]. We note that
∫

�
eNϕ(x,y)dy �

(
2π

N

)n/2

h(x)−1/2eNϕ(x,x),

where h(x) is the determinant of hess(g). Therefore,

|sm|2 �
(

N

2π

)n/2

h(x)1/2eN(ϕ(x,y)−ϕ(x,x)).

Since for y not equal to x we have ϕ(x, y)−ϕ(x, x) < 0, the above converges
to zero except if x = y, that is on the x fiber of φ. �

5. Abreu’s scalar curvature formula

5.1. An explicit calculation using [BGU] approximation method.
In the previous section, we roughly described the method first presented in
[BGU] to obtain the asymptotic behavior of the integral

∫

�
ψμN .

In the case where ψ has compact support in �, the method simplifies con-
siderably. We are going to write down explicitly the first two terms in the
expansion and see how, from the second term, we can recover Abreu’s for-
mula (see [A1]) for the scalar curvature of a toric manifold.

Let ψ be in C∞
0 (�). First write

∫

�
ψμN =

∑

m∈[N�]

ψ�
(m

N

)
.
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From [L2] it is known that

(5.6)
1

Nn

∑

m∈[N�]

ψ�
(m

N

)
∼ τ

(
1
N

∂

∂h

) ∫

�h

ψ�(h = 0),

where h ∈ R
d. By �h, we mean the dilated polygon

�h = {y ∈ R
n : y · ui − ci ≤ hi, i = 1, . . . , d}.

The function τ is defined by

τ(s) :=
s

1 − es
= 1 +

s

2
+ O(s2)

and

τ

(
1
N

∂

∂h

)
= τ

(
1
N

∂

∂h1

)
· · · τ

(
1
N

∂

∂hd

)
,

so that

τ

(
1
N

∂

∂h

)
= 1 +

1
N

(
∂

∂h1
+ · · · +

∂

∂hd

)
+ O

(
1

N2

)
.

We now move on to write the asymptotics for

(5.7) ψ�(x) =
∫

�

ψ(y)e2Nϕ(x,y)
∫
� e2Nϕ(x,y)dy

dy.

Proposition 5.1. The first terms in the asymptotic expansion for ψ� are
given by

ψ�(x) = ψ(x) +
1

2N

(
1
2

∂2ψ

∂ya∂yb
Gab +

∂ψ

∂ya

∂Gab

∂yb

)
+ O

(
1

N2

)
.

Proof. We can write the Taylor expansion for ψ around x

ψ(y) = ψ(x) +
∂ψ

∂ya
(ξ(x, y))(ya − xa),

where ξ is a smooth function satisfying

ξ(x, y) ∈ x̄y,

ξ(x, x) = x

and
ξ(x, y) = ξ(y, x).

Here, x̄y denotes the set {tx+(1 − t)y, t ∈ [0, 1]}. These properties imply that
∂ξa

∂yb
(x, y) =

δab

2
.

From Equation (3.3) we can write

y − x = −(hess(g))−1 ∂ϕ

∂y



SPECTRAL MEASURES ON TORIC VARIETIES 137

or, writing (hess(g))−1 = (Gab)

ya − xa = −Gab ∂ϕ

∂yb
,

so that in the Taylor expansion for ψ we can write

ψ(y) = ψ(x) − ∂ψ

∂ya
(ξ(x, y))Gab ∂ϕ

∂yb
.

Now

∂ϕ

∂yb
e2Nϕ(x,y) =

1
2N

∂e2Nϕ(x,y)

∂yb
.

We can replace for ψ in Equation (5.7) and write

ψ�(x) = ψ(x) −
∫

�

1∫
� e2Nϕ(x,y)dy

∂ψ

∂ya
(ξ(x, y))Gab 1

2N

∂e2Nϕ(x,y)

∂yb
dy.

Next we integrate by parts. We do not pick any boundary terms. Note that
even for y in the boundary of �, ξ(x, y) is not necessarily in the boundary
so that ψ(ξ(x, y)) is not necessarily 0. But the term Gab does vanish on
the bth facet of �. The easiest way to see this is to choose coordinates so
as to standardize the bth facet to have normal ub = eb. Then the boundary
behavior of Gab implies that Gabub = 0 on the bth facet and therefore Gab = 0
on the bth facet. Note also that for fixed b we need only to integrate by parts
in the variable b.

Lemma 5.1. In integrating

∫

�

∂ψ

∂ya
(ξ(x, y))Gab ∂e2Nϕ(x,y)

∂yb
dy

by parts, we do not pick any boundary terms.

Proof. Fix b. We choose coordinates y1, . . . , yn centered at one of the vertices
in Fb so that

• In these coordinates, � is a subset of the positive octant of R
n.

• For all i = 1, . . . , n, each facet Fi = l−1
i (0) is contained in the set

{(y1, . . . , yn) : yi = 0}.

Let Q denote a rectangle in R
n of the form [0, α1] × · · · × [0, αn] containing

�. One can find such a Q as long as the αi’s are big enough. Extend ψ by
zero to all of Q. This extension is still smooth because the support of ψ is
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contained in the interior of �. We will also need to extend Gab to Q in a
smooth way so that it is zero when one of the yb’s is αb. Now consider

(5.8)
∫

�

∂ψ

∂ya
(ξ(x, y))Gab ∂e2Nϕ(x,y)

∂yb
dy.

Note that in this proof b is fixed, we are not using Einstein’s notation and
the above does not denote a sum. We can rewrite this integral as

∫

Q

∂ψ

∂ya
(ξ(x, y))Gab ∂e2Nϕ(x,y)

∂yb
dy.

We will do integration by parts by using a special order in the integration
variables namely we are going to integrate with respect to the bth variable
first. That is, we choose to write the above integral as

∫

̂Qb

∫ αb

0

∂ψ

∂ya
(ξ(x, y))Gab ∂e2Nϕ(x,y)

∂yb
dybdŷ,

where

Q̂b = [0, α1] × · · · × [̂0, αb] × · · · × [0, αn]

and

dŷ = dy1 ∧ · · · ∧ d̂yb ∧ · · · ∧ dyn.

Integrating
∫ αb

0

∂ψ

∂ya
(ξ(x, y))Gab ∂e2Nϕ(x,y)

∂yb
dyb,

by parts we get

−
∫ αb

0

∂

∂yb

(
∂ψ

∂ya
(ξ(x, y))Gab

)
e2Nϕ(x,y)dyb

and two boundary terms
[

∂ψ

∂ya
(ξ(x, y))Gabe2Nϕ(x,y)

]

yb=αb

and

−
[

∂ψ

∂ya
(ξ(x, y))Gabe2Nϕ(x,y)

]

yb=0
.

Integral (5.8) must then be equal to

−
∫

�

∂

∂yb

(
∂ψ

∂ya
(ξ(x, y))Gab

)
e2Nϕ(x,y)dyb,
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plus two sums of boundary terms
∫

yb=αb

∂ψ

∂ya
(ξ(x, y))Gabe2Nϕ(x,y)

and

−
∫

yb=0

∂ψ

∂ya
(ξ(x, y))Gabe2Nϕ(x,y).

The first of these boundary terms is zero because Gab = 0 when yb = αb.
Now consider the second boundary term. The set where yb = 0 contains the
facet Fb. For this facet, we can take ub = eb. We know Gabub = 0 on the
facet Fb, this means that

Gab(y) = 0, ∀y ∈ Fb,

and the second boundary term is also zero. Now since for each b we dot pick
boundary terms, we do not pick boundary terms when integrating the sum
for all b of the above expressions. �

After the integration by parts, Equation (5.7) becomes

ψ�(x) = ψ(x) +
1

2N

∫

�

1∫
� e2Nϕ(x,y)dy

∂

∂yb

(
∂ψ

∂ya
(ξ(x, y))Gab

)
e2Nϕ(x,y)dy.

Now we apply this process again. Set

ψ1(x, y) =
∂

∂yb

(
∂ψ

∂ya
(ξ(x, y))Gab

)
.

We write the Taylor expansion for ψ1 in y around x

ψ1(x, y) = ψ1(x, x) +
∂ψ1

∂ya
(ξ1(x, y))(ya − xa),

but we are only interested in the first term of this expansion since the second
will bring an O

( 1
N2

)
term to Equation (5.7). Now

ψ1(x, x) =
1
2

∂2ψ

∂ya∂yb
Gab +

∂ψ

∂ya

∂Gab

∂yb
,

where we have used the calculation of the derivatives of ξ at points of the
form (x, x). Replacing again in Equation (5.7) we find

ψ�(x) = ψ(x) +
1

2N

(
1
2

∂2ψ

∂ya∂yb
Gab +

∂ψ

∂ya

∂Gab

∂yb

)
+ O

(
1

N2

)
. �
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We use the equation in the above lemma to substitute for ψ� in (5.6). We
get the asymptotic behavior we are interested in, up to terms in O

( 1
N2

)
:

(
1 +

1
N

(
∂

∂h1
+ · · · +

∂

∂hd

)) ∫

�h

(
ψ(x) +

1
2N

(
Gab

2
∂2ψ

∂ya∂yb
+

∂ψ

∂ya

∂Gab

∂yb

))
,

evaluated at h = 0. But since ψ has compact support in � we must have

∂

∂hi

∫

�h

ψ = 0

because this derivative is calculated as the limit, as hi tends to zero, of the
expression

∫
�hi

\� ψ

hi

and the numerator is zero since for small enough hi, ψ is zero on the set
�hi

\ � (note that we may have to consider the set � \ �hi
instead). The

term in 1
N in the expansion of

∫
� ψμN is therefore

1
2

∫

�

Gab

2
∂2ψ

∂ya∂yb
+

∂ψ

∂ya

∂Gab

∂yb
dy,

and we can integrate by parts. Since ψ and its derivatives have compact
support in � we do not pick boundary terms. We get

−1
4

∫

�
ψ

∂2Gab

∂ya∂yb
.

5.2. The Tian–Yau–Zelditch asymptotic expansion. The pointwise
asymptotics of the function

∑
|sm|2, where {sm} is an orthonormal basis

for the space H0(X, LN ) was studied in [C, L, T, Z]. The following theorem
holds:

Theorem 5.1 (Catlin, Lu, Tian, Zelditch). Let X be a Kähler mani-
fold whose symplectic form, ω, has integral cohomology class and L → X
a line bundle with a Hermitian metric coming from the metric on X. Con-
sider an orthonormal basis for the space H0(X, LN ), {sm}. Then there is
an asymptotic expansion

∑
|sm|2 ∼ A0(ω)Nn + A1(ω)Nn−1 + · · ·

and

A0(ω) = 1, A1(ω) =
s(ω)

2
,
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where s is the scalar curvature. More precisely, there exist constants Kr

such that
∣∣∣∣∣

∣∣∣∣∣
∑

|sm|2 −
r∑

i=0

Ai(ω)Nn−i

∣∣∣∣∣

∣∣∣∣∣
C0(X)

≤ KrN
n−r−1.

Using this result on our toric variety X, since our symplectic coordinates
are well defined and smooth on our dense open subset, it is easy to conclude
that for a compactly supported ψ

∫

�

∑
|sm|2ψdy ∼ Nn

∫

�
ψ + Nn−1

∫

�
ψ

s

2
+ · · · .

We note here that
∑

|sm|2 is actually a function of y only. This is because the
torus action on L preserves the Hermitian metric and thus leaves

∑
|sm|2

invariant. Comparing this result with the result obtained in the previous
subsection we conclude that

∫

�
ψ

s

2
= −1

4

∫

�
ψ

∂2Gab

∂ya∂yb
.

Thus, since this holds for all compactly supported ψ, we must have

s = −1
2

∂2Gab

∂ya∂yb
,

on X, which is Abreu’s formula for scalar curvature from [A1].

6. Concluding remark

One could, in principle, use the very explicit method described in the last
section to obtain more terms in the asymptotic expansion of the spectral
measure. This would allow one to write down formulas for other Ai’s appear-
ing in the Catlin, Lu, Tian, Zelditch Theorem and these formulas would be
in terms of polytope data only. For example, it is know (see [L]) that

A2(ω) =
1
3
�s +

1
24

(|R|2 − 4|Ric|2 + 3s2),

where �s is the Laplacian of the scalar curvature, R is the curvature tensor
and Ric is the Ricci curvature. Therefore, the term in Nn−2 in the measure
asymptotics would allow one to write down an expression for the quantity

|R|2 − 4|Ric|2

in terms of polytope data only.
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