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Grid diagrams encode useful geometric information about knots in
S3. In particular, they can be used to combinatorially define the knot
Floer homology of a knot K ⊂ S3, and they have a straightforward
connection to Legendrian representatives of K ⊂ (S3, ξst), where ξst is
the standard, tight contact structure. The definition of a grid diagram
was extended, by Hedden and the authors, to include a description for
links in all lens spaces, resulting in a combinatorial description of the
knot Floer homology of a knot K ⊂ L(p, q) for all p �= 0. In the present
article, we explore the connection between lens space grid diagrams and
the contact topology of a lens space. Our hope is that an understanding
of grid diagrams from this point of view will lead to new approaches
to the Berge conjecture, which claims to classify all knots in S3 upon
which surgery yields a lens space.

1. Introduction

A grid diagram provides a simple combinatorial means of encoding the data
of a link in S3, as in Figure 1. Although grid diagrams first made an appear-
ance in the late 19th century [Bru98], they have enjoyed an abundance
of recent attention, due primarily to their connection to contact topology
[Lyo80, Cro95, Dyn06, Mat06, OST06] and combinatorial Heegaard
Floer homology [MOS06, MOST06].

The definition was extended in [BGH08] to provide a means of encoding
the data of all lens space links via grid diagrams, leading to a combinatorial
description of the knot Floer homology of a lens space knot. Figure 2 illus-
trates the notion of a lens space grid diagram; we delay its precise definition
until Section 4.

In the present article, we explore the connection between the contact
geometry of a lens space and grid diagrams for lens space links.

415
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Figure 1. An S3 grid diagram for a trefoil, along with two
views of the knot it represents.

Theorem 4.4. Associated to a grid diagram for a link K in the lens
space L(p, q) is a unique Legendrian representative of m(K) with respect
to (−L(p, q), ξUT).

Here, m(K) denotes the topological mirror of K and ξUT is a canonical co-
oriented contact structure on −L(p, q). See Section 2 for a detailed discussion
of notation and orientation conventions.

Our approach is similar in spirit to that taken by Matsuda and Menasco
[MM07]. In a very natural geometric fashion, a grid diagram describing a
lens space link corresponds to a Legendrian representative of the link with
respect to a canonical co-oriented tight contact structure on the lens space.
A contact structure ξ on a 3-manifold M is a smooth, nowhere integrable
2-plane field. A link in the contact manifold (M, ξ) is Legendrian if it is
everywhere tangent to ξ and transverse if it is everywhere transverse to ξ.
A contact structure ξ is said to be tight if the linking number of any trivial
Legendrian knot with its contact push-off is negative (equivalently, (M, ξ)
contains no overtwisted disks). Furthermore, a tight contact structure ξ on
a 3-manifold M is universally tight if the lift of ξ to the universal cover of
M is also tight.

By Honda’s classification [Hon00], each lens space L(p, q) has two distinct
(positive, co-oriented) universally tight contact structures when 0 < q < p−1
and just one when q = p−1. Given one universally tight contact structure on
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L(p, q), the other is obtained by flipping its co-orientation. When q = p − 1,
these two are isotopic.

Suppressing the specific lens space from the notation, we will denote a
particular co-oriented universally tight contact structure on L(p, q) by ξUT.
We explicitly construct ξUT in Section 3.1.

We use toroidal fronts to mediate between grid diagrams and Legendrian
lens space links. Just as planar fronts uniquely specify Legendrian links in
(R3, ξst) via projection to the xz-plane, toroidal fronts uniquely specify Leg-
endrian links in (L(p, q), ξUT) via projection to a standard Heegaard torus.
After defining toroidal fronts and their correspondence with Legendrian lens
space links in Section 3.2, we detail the relationship between toroidal fronts
and grid diagrams in Sections 4 and 5.

1.1. Motivation. One motivation for developing the connection between
grid diagrams and Legendrian lens space links (and their toroidal fronts)
is to provide the foundation for a systematic study of Legendrian links in
a collection of contact manifolds other than (S3, ξst). Furthermore, certain
elements in the knot Floer homology chain complex of (the mirror of) a lens
space knot associated to a grid diagram should yield powerful invariants of
the corresponding Legendrian or transverse representatives of the knot. In
particular, one ought to be able to use such invariants to detect transversely
non-simple knots in lens spaces, as Ng, Ozsváth, and Thurston did for knots
in S3 [NOT07].

Moreover, this work reveals an inlet for the use of contact struc-
tures in studying a fundamental question about the interconnectedness of
3-manifolds through Dehn surgery on knots. Lens spaces are precisely the
manifolds that may be obtained by Dehn surgery on the unknot in S3.
The resolutions of The Knot Complement Problem [GL89] and Property R
[Gab87] show that the unknot is the only knot in S3 on which a non-trivial
Dehn surgery may produce the lens spaces S3 and S1 ×S2, respectively. For
many other lens spaces, this is not the case. Indeed, all torus knots admit
lens space surgeries [Mos71], as do certain cables of torus knots (the only
satellite knots admitting lens space surgeries) [BL89] and many hyperbolic
knots [BR77, FS80, Ber]. The Berge Conjecture proposes a classification
of all knots in S3 and their Dehn surgeries that yield lens spaces. Originally
stated in terms of a homotopy condition for a knot embedded on the surface
of a genus 2 Heegaard surface in S3, the Berge Conjecture is most succinctly
stated as follows:

Berge Conjecture ([Ber]). If a knot K in a lens space L(p, q), with p �∈
{0, 1}, admits an S3 Dehn surgery, then it has grid number 1.

The grid number, gn, of a link is the minimum grid number over all grid
diagrams representing the link. See Definition 4.1 for the definition of the
grid number of a grid diagram, as well as Figure 2, which illustrates a grid
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number 5 grid diagram for the trefoil in S3. In light of the above, one might
hope for an upper bound on gn for knots admitting S3 surgeries.

For links in S3, Matsuda [Mat06] proves

gn(K) ≥ −tb(K) − tb(m(K)).

Here, tb denotes the classical Thurston–Bennequin number associated to
a Legendrian link in (S3, ξst), and tb(K) denotes the maximal Thurston–
Bennequin number over all Legendrian representatives of K.

Although this provides a lower bound on grid number, Ng speculates,
in [Ng06], that this bound may be sharp. A proof of this would imply
that tb(K) and tb(m(K)) determine gn(K), and thus an upper bound on
the maximal Thurston–Bennequin numbers of a link and its mirror would
produce an upper bound on the grid number.

For links in lens spaces, we prove an analog of Matsuda’s bound in
Section 6.

Corollary 6.10.
gn(K) ≥ −tb(K) − tb(m(K))

for each link K ⊂ L(p, q).

This requires an extension of the definition of tb(K) to all Legendrian
links in contact rational homology spheres, provided in Definition 6.6. See
[Özt05] for a related extension.

If Matsuda’s bound is sharp for lens space links, one can bound from
above the grid number of a knot admitting an S3 surgery by finding upper
bounds for the Legendrian contact invariants tb(K) and tb(m(K)). The hope
is that suitably understanding Legendrian representatives of knots in L(p, q)
with S3 surgeries will shed light on the Berge Conjecture.

2. Notation and orientation conventions

Throughout the paper, L(p, q) will denote the result of −p
q surgery on the

unknot, where p and q are coprime integers such that 0 ≤ |q| < p. We view
S3 as the lens space L(1, 0) and will not consider S1 × S2 = L(0, 1).

Let GK be a grid diagram representing a link K ⊂ L(p, q′). Then GK will
naturally yield a Legendrian representative, which we will denote LK , of the
topological mirror of K, m(K) ⊂ (L(p, q), ξUT). Here, q satisfies qq′ ≡ −1
mod p. Note that, by the classification of lens spaces up to orientation-
preserving diffeomorphism, L(p, q) ∼= −L(p, q′). We describe ξUT as the ker-
nel of a globally defined 1-form in the next section.

The correspondence between a grid diagram (or, more generally, a Hee-
gaard diagram) compatible with a knot, K, and a Legendrian representa-
tive of m(K), although odd, is by now standard in the literature. See, e.g.,
[OST06], where a grid diagram for K ⊂ S3 is associated to a Legendrian
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representative of K with respect to ξst on S3 with the opposite orienta-
tion (i.e., a Legendrian representative of the mirror of K). See also [OS05],
which defines the contact invariant of a fibered link in M as an element of
the Heegaard Floer homology of −M .

This will have the unfortunate effect that the orientation on a Heegaard
torus associated to a grid diagram is opposite to the orientation on a Hee-
gaard torus associated to a toroidal front diagram. This situation, though
confusing, is unavoidable, since it is important to match the existing conven-
tion in the literature. To avert confusion, it will be convenient to define the
notion of a dual grid diagram (Definition 4.2), a grid diagram for the mirror
of a given link, K. In fact, after briefly recalling the original definition of
a grid diagram of a link, we will thereafter work exclusively with dual grid
diagrams — which may be canonically identified with toroidal front dia-
grams — throughout Section 4. We return to working with the original grid
diagrams in Section 5, after we have proven a correspondence between planar
subsets of toroidal fronts and planar fronts in Section 4.4. The coordinates
on a dual grid diagram will always be the (θ1, θ2) coordinates inherited from
the quotient map S3 → L(p, q) described in the next section.

3. ξUT and toroidal front diagrams for lens spaces

3.1. Construction of ξUT. We begin with a construction of the universally
tight contact structure ξUT on L(p, q). Whenever we refer to the contact
structure ξUT on L(p, q) we will mean the isotopy class of the one constructed
as follows.

Thinking of S3 as the unit sphere in C
2,

S3 =
{
(u1, u2) ∈ C

2 = C1 × C2| |u1|2 + |u2|2 = 1
}

,

the standard tight contact structure on S3 is given by (cf. [Gei06])

ξst = ker α,

where α is the 1-form

α = r2
1 dθ1 + r2

2 dθ2

in terms of polar coordinates (r1, θ1) = u1 ∈ C1, (r2, θ2) = u2 ∈ C2. Thinking
of S3 as R

3 ∪{∞}, it is natural to identify the circle corresponding to r1 = 1
with the z-axis ∪{∞} and the circle corresponding to r2 = 1 with the unit
circle on the xy-plane.

Let ωp = e
2πi
p . Then L(p, q) can be identified as the quotient:

L(p, q) = S3/(u1, u2) ∼ (ωpu1, ω
q
pu2).
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Noting that
{

(r1, θ1, r2, θ2) | θ1 ∈ [0, 2π), θ2 ∈
[
0,

2π

p

)}
⊂ S3

is a fundamental domain for the Zp action of ∼, and that the coordinate r2
may be recovered from the condition r2

1 + r2
2 = 1, we will specify points in

L(p, q) by

{
(r1, θ1, θ2) | r1 ∈ [0, 1], θ1 ∈ [0, 2π), θ2 ∈

[
0,

2π

p

)}
.

Let π : S3 → L(p, q) be the covering map induced by the ∼ equivalence.
Then ξUT = π∗(ξst) is a well-defined tight contact structure on L(p, q), since
the 1-form α is constant along tori of constant radius r1 and the Zp action
is just translation in the θ1 and θ2 coordinates.

Note that the global 1-form α induces a co-orientation on ξst on S3 and
hence on ξUT on L(p, q). The other universally tight contact structure on
L(p, q) (for 0 < q < p − 1) may be obtained by using −α in the above con-
struction. Regardless, most of this paper is insensitive to the co-orientation.

3.2. Toroidal front diagrams. Recall that a smooth link in a contact
3-manifold (M, ξ) is said to be Legendrian if its tangent vectors are every-
where tangent to the contact planes. A Legendrian isotopy is a smooth iso-
topy through Legendrian links, and the terminology Legendrian link refers
to the Legendrian isotopy class of a Legendrian link as well as a specific
representative.

The radial projection of a Legendrian link in (L(p, q), ξUT) onto the radius
r1 = 1√

2
Heegaard torus

Σ =
{

(r1, θ1, θ2)| r1 =
1√
2

}
⊂ L(p, q)

gives a toroidal front diagram (defined below) on Σ from which we may
recover the Legendrian link. Observe that Σ separates L(p, q) into the two
solid tori

V α =
{

(r1, θ1, θ2) | r1 ∈
[
0,

1√
2

]}
and V β =

{
(r1, θ1, θ2) | r1 ∈

[
1√
2
, 1

]}

which are oriented so that Σ = ∂V α = −∂V β. (In terms of the standard
surgery description of L(p, q), we may view V α as the surgered neighborhood
and V β as the exterior of the unknot in S3.)
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Remark 3.1. We use the notation α both to refer to the 1-form defining
ξst and to sometimes mark an object as being in, or associated to, one of the
two solid tori bounded by Σ. These two usages are common in the literature,
and context should prevent confusion.

Points on Σ may be uniquely specified by the fundamental domain
{

(θ1, θ2) | θ1 ∈ [0, 2π), θ2 ∈
[
0,

2π

p

)}
,

the intersection of a fundamental domain for L(p, q) with Σ. Then with
respect to the bases

{
∂

∂θ1
,

∂

∂θ2

}
and {dθ1, dθ2}

for the tangent and cotangent space at each point, Σ is naturally paralleliz-
able.

We are now ready to define toroidal front diagrams.

Definition 3.2. A toroidal front diagram (or simply a toroidal front) for a
Legendrian link L in (L(p, q), ξUT) is an immersion f : S1 
 . . . 
 S1 → Σ
with the following properties:

• f is an embedding except at finitely many transverse double points
and smooth except at finitely many cusps.

• The slopes dθ2
dθ1

of the tangent vectors at the smooth points satisfy
dθ2
dθ1

∈ (−∞, 0).
• Each cusp is semi-cubical. See the discussion following Lemma 2.45

in [Gei06] for the precise definition of a semi-cubical cusp.

Proposition 3.3. A toroidal front diagram uniquely specifies a Legendrian
link up to Legendrian isotopy.

Proof. Let γ be the image of f on Σ. We claim that γ is naturally the (θ1, θ2)
projection of a Legendrian link in (L(p, q), ξUT), where the r1 coordinate is
recovered from the Legendrian condition.

Set m = dθ2
dθ1

. Then the condition that the vectors tangent to a Legendrian

curve lie in kerα implies that r2
1 dθ1 + (1 − r2

1) dθ2 = 0 and hence r2
1

(r2
1−1) =

m. This gives the unique non-negative solution r1 =
√

m
m−1 . Because m ∈

(−∞, 0) at the smooth points of γ, we obtain r1 ∈ (0, 1) there. At the cusps,
the one-sided tangencies agree, giving a slope m ∈ (−∞, 0) and hence a
radius r1 ∈ (0, 1) there, too.

The condition that f is smooth away from the cusps ensures that the
corresponding Legendrian link is smooth away from the preimages of the
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cusps. The condition that the cusps of f are semi-cubical ensures that
the Legendrian link is smooth in a neighborhood of the preimage of the
cusps. �

Proposition 3.4. Every Legendrian isotopy class of Legendrian links in
(L(p, q), ξUT) has a representative admitting an associated toroidal front pro-
jection.

Proof. The cores of the Heegaard solid tori V α and V β correspond to the
circles where r1 = 0 and 1, respectively. By a Legendrian isotopy, a Leg-
endrian link may be made disjoint from these two cores. This ensures that
the Legendrian link has a well-defined projection Π: (r1, θ1, θ2) �→ (θ1, θ2)
to the Heegaard torus Σ. By a further Legendrian isotopy, we may ensure
that the image of the projection is a smooth embedding except at finitely
many transverse double points and finitely many cusps. Such Legendrian
isotopies exist because the subspace of Legendrian representatives in a par-
ticular Legendrian isotopy class disjoint from the two cores and having a
generic projection, as above, is open, dense, and positive dimensional. We
claim that this projection is a toroidal front diagram for the Legendrian link.

Because each component of the Legendrian link is a smooth curve, its
projection under Π is smooth except for where the link has a tangent vector
that is parallel to ∂

∂r1
. For the points where the projection is smooth, the

Legendrian condition r2
1 dθ1 + (1 − r1)2 dθ2 = 0 implies that dθ2

dθ1
∈ (−∞, 0)

since r1 ∈ (0, 1). For the points where the projection is not smooth, the
Legendrian condition r2

1 dθ1 + (1 − r1)2 dθ2 = 0 implies that there are local
coordinates for the projection presenting a neighborhood of the non-smooth
point as a semi-cubical cusp [Gei06]. Since the projection is compact, there
can only be finitely many cusps. �

Remark 3.5. Note that toroidal fronts for Legendrian links in lens spaces
behave locally much like planar fronts for Legendrian links in R

3. For exam-
ple if two arcs a1 and a2 of a toroidal front transversally intersect at a point
P with slopes m1 and m2, respectively, such that −∞ < m1 < m2 < 0,
then the point projecting to P on a1 lies above (has greater r1 than) the
point projecting to P on a2. The correspondence between planar subsets of
toroidal front projections (which represent Legendrian tangles in (R3, ξst))
and standard planar front projections for Legendrian tangles in (R3, ξst) is
made explicit in Section 4.4.

4. Grid diagrams and Legendrian knots

Let us quickly remind the reader of the definition of a toroidal grid diagram
GK for a link K in L(p, q′).
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Definition 4.1. A (twisted toroidal) grid diagram GK with grid number n

for L(p, q′) consists of a five-tuple (T 2, 	α, 	β, 	O, 	X), illustrated in Figure 2,
where:

• T 2 is the standard oriented torus R
2/Z

2, identified with the quotient
of R

2 (with its standard orientation) by the Z
2 lattice generated by

the vectors (1, 0) and (0, 1).

• 	α = {α0, . . . , αn−1} are the n images αi in T 2 = R
2/Z

2 of the lines
y = i

n for i ∈ {0, . . . n − 1}. Their complement T 2 − α0 − . . . − αn−1
has n connected annular components, which we call the rows of the
grid diagram.

• 	β = {β0, . . . , βn−1} are the n images βi in T 2 = R
2/Z

2 of the lines y =
− p

q′ (x− i
pn) for i ∈ {0, . . . , n−1}. Their complement T 2−β0−. . .−βn−1

has n connected annular components, which we call the columns of
the grid diagram.

• 	O = {O0, . . . , On−1} are n points in T 2 − 	α − 	β with the property
that no two O’s lie in the same row or column.

Figure 2. An example of a toroidal grid diagram GK with
grid number n = 4 for a link L in L(5, 2). Here, C3 is one of
the four columns, while Ri are the rows.
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• 	X = {X0, . . . , Xn−1} are n points in T 2 − 	α − 	β with the property
that no two X’s lie in the same row or column.

We refer to the connected components of T 2 − 	α − 	β as the fundamental
parallelograms of the grid diagram.

Two five-tuples (T 2, 	α, 	β, 	O, 	X)1 and (T 2, 	α, 	β, 	O, 	X)2 are equivalent (and,
hence, represent the same grid diagram GK) if there exists an orientation-
preserving diffeomorphism (T 2)1 → (T 2)2 respecting the markings (up to
cyclic permutation of their labels).

One associates a unique (up to isotopy) oriented link K in L(p, q′) to a
grid diagram GK = (T 2, 	α, 	β, 	O, 	X) as follows:

(1) First attach solid tori V α and V β to the torus T 2 so that T 2 = ∂V α =
−∂V β, the α curves of GK are meridians of V α, and the β curves of
GK are meridians of V β. This forms the standard embedding of T 2

with its decorations into L(p, q′).
(2) Connect each Xi to the unique Oj lying in the same row as Xi by an

oriented “horizontal” arc embedded in that row of T 2, disjoint from
the 	α curves.

(3) Next, connect each Oj to the unique Xm lying in the same column
as Oj by an oriented “slanted” arc embedded in that column of T 2,
disjoint from the 	β curves.1

(4) The union of these two collections of n arcs forms an immersed
(multi)curve γ in T 2. Remove all self-intersections of γ by pushing
the interiors of the horizontal arcs slightly down into V α and the
interiors of the slanted arcs slightly up into V β.

It will often be convenient to pick a particular fundamental domain for
the grid diagram and “straighten” it out so that the image of the α curves
are horizontal, the β curves are vertical, and each row is connected in the
fundamental domain, as in Figure 3. From now on, we will always represent
a grid diagram in this manner.

In accordance with Section 2, we make the following definition in order to
identify a grid diagram for a link K in L(p, q′) with a Legendrian represen-
tative of the link in the contact manifold (L(p, q), ξUT). As before, qq′ ≡ −1
mod p.

Definition 4.2. Given a grid diagram GK representing a link in L(p, q′),
let G∗

K denote the dual grid diagram, obtained as follows and illustrated in
Figure 4.

(1) Begin with any straightened fundamental domain for GK .

1If an Oi and an Xj coincide, then we may take the slanted arc connecting them to be
trivial joining with the horizontal arc to form a full circle.
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Figure 3. A grid number 2 diagram for a link in L(5, 2) is
shown before and after straightening. One obtains the torus
represented by the grid diagram GK by identifying oppo-
site edges of the square on the left-hand side in the stan-
dard manner. One can construct the same object, beginning
with the rectangle on the right-hand side, by first identifying
the two vertical edges and then the two boundary circles of
the resulting annulus with an appropriate twist so that the
thick black dots all represent the same point after the
identifications.

(2) Rotate the fundamental domain 90◦ clockwise; the α curves of the
old fundamental domain are now vertical, and the β curves are now
horizontal.

(3) Chop the rotated fundamental domain along the newly horizontal
arcs of the bottom-most β curve. Then reglue the resulting pieces
together appropriately along the newly vertical arcs of the α curve
on their sides. This produces a new straightened fundamental domain
for the torus whose rows are connected.

(4) Relabel all horizontal circles on the torus as α circles and all vertical
circles as β circles, and vice versa.

(5) Relabel all X’s as O’s and vice versa.
(6) The decorated, straightened fundamental domain represents G∗

K .

Note that G∗
K defines a link in L(p, q), by the same procedure described

above (connect X’s to O’s in each row and O’s to X’s in each column, with
vertical passing over horizontal).

4.1. Identifying G∗
K with the constant radius Heegaard torus Σ.

The torus arising in the definition of a grid diagram is, in fact, a Heegaard
torus associated to a Heegaard decomposition of the appropriate lens space.
Therefore, if we begin with a grid diagram GK representing a link K ⊂
L(p, q′), then it is natural to identify the torus associated to the dual grid
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Figure 4. Constructing a dual grid diagram, G∗
K , from a

grid diagram, GK .

diagram, G∗
K , with the torus

Σ =
{

(r1, θ1, θ2) | r1 =
1√
2
, θ1 ∈ [0, 2π), θ2 ∈

[
0,

2π

p

)}
⊂ L(p, q)

defined in Section 3.2 (where the coordinates give an implicit choice of funda-
mental domain for Σ) so that each horizontal α curve of slope 0 corresponds
to a circle of constant θ2 and that each slanted β curve of slope −p

q corre-
sponds to a circle of constant θ1 taken mod 2π

p . (In the fundamental domain
the β curves correspond to a union of the p lines in Σ with θ1 coordinate in
the set a =

{
a + 2πk

p

}
, for k ∈ {0, . . . p − 1} and some fixed a ∈

[
0, 2π

p

)
.) In

particular, the α curves are meridians of V α and the β curves are meridians
of V β.

We choose the identification of T 2 with Σ such that, within each row,
the unique O and X have the same θ2 coordinate and, within each column,
the unique O and X have the same θ1 coordinate mod 2π

p . Furthermore,
if a pair of an O and an X lie in the same fundamental parallelogram,
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then it is natural to associate to the pair a trivial Legendrian unknot.2 In
what follows, we may therefore assume, without loss of generality, that no
fundamental parallelogram contains both an X and an O.

Remark 4.3. It is worthwhile to remark at this point that there is a natural
correspondence between Legendrian links in (L(p, q), ξUT) and Zp-symmetric
Legendrian links in (S3, ξst) obtained via the covering operation. This cor-
respondence matches the correspondence between grid diagrams GK for
K ⊂ L(p, q) and their lifts to grid diagrams G

˜K
for K̃ ⊂ S3. See [BGH08].

We are now ready to state and prove the main theorem. Statements
and proofs of many of the supporting lemmas and propositions occupy the
remainder of this section:

Theorem 4.4. Associated to a grid diagram for a link K in the lens space
L(p, q′) is a unique Legendrian representative LK of the topological mirror
m(K) with respect to (−L(p, q′), ξUT). Conversely, every Legendrian link
LK in (−L(p, q′), ξUT) representing m(K) can be specified by means of a
grid diagram for K in L(p, q′).

Proof. Let q satisfy qq′ ≡ −1 mod p (see Section 2 for a discussion of ori-
entation conventions). Beginning with GK , a grid diagram for K ⊂ L(p, q′),
we produce the dual grid diagram G∗

K associated to m(K) ⊂ L(p, q) using
the procedure described in Definition 4.2. Lemma 4.5 then explains how to
obtain a toroidal front from a rectilinear projection associated to G∗

K , and
Proposition 3.3 associates a unique Legendrian link in (L(p, q), ξUT) to this
toroidal front on Σ, a coordinatized Heegaard torus for L(p, q). Proposition
4.6 then proves that the choice of rectilinear projection does not affect the
Legendrian isotopy class of the resulting Legendrian link.

Conversely, if we begin with a Legendrian link LK representing m(K) ⊂
L(p, q), Proposition 3.4 associates to it a toroidal front on Σ. Lemma 4.8
then explains how to obtain a grid diagram G∗

K representing m(K) in L(p, q)
from the toroidal front. By reversing the procedure described in Definition
4.2, one obtains a grid diagram GK representing K in L(p, q′). �

4.2. Constructing a toroidal front from a grid diagram. To a grid
number n grid diagram we can associate 22n possible piecewise linear projec-
tions to T 2 (there are two choices for each of the 2n horizontal and vertical
arcs). We will call any such projection a rectilinear projection.

Lemma 4.5. A rectilinear projection associated to a grid diagram G∗
K for

a link K ⊂ L(p, q) uniquely specifies a toroidal front for LK , a Legendrian
link in (L(p, q), ξUT).

2More precisely, one isotops the component to lie in a Darboux ball and chooses the
Legendrian isotopy class contactomorphic to the tb = −1 unknot in (S3, ξst).
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Figure 5. The smoothings and cuspings of corners in the
rectilinear projection associated to a grid diagram GK on Σ.

Proof. We continue to view the grid diagram G∗
K on Σ as described in Sec-

tion 4.1. Recall that we have chosen the identification so that the O and X
in each row have the same θ2 coordinate and the O and X in each column
have the same θ1 coordinate mod 2π

p .
To obtain a diagram for the link K on Σ corresponding to G∗

K , we may
join each O and X in a row by a horizontal arc of constant θ2 and join each
O and X in a column by a vertical arc of constant θ1 mod 2π

p .
We now perturb this rectilinear projection to yield a toroidal front projec-

tion as follows. The corners of the rectilinear diagram coincide with the O’s
and X’s. Replace each NW and SE corner with a semi-cubical cusp just out-
side the corner; replace each NE and SW corner with a rounding just inside
the corner. See Figure 5. These may be done so that they are tangent to the
induced line field (of slope −1) on Σ and so that the associated Legendrian
curve intersects Σ near the original O’s and X’s. Furthermore, the smoothed
and cusped corners may now be joined by curves with finite negative slopes
(in (−∞,−1] for corners in a column and in [−1, 0) for corners in a row)
producing a toroidal front. These choices may be made so that the toroidal
front is arbitrarily close to the original rectilinear projection. Furthermore,
the toroidal front isotopy class of the result is unique. �

By Proposition 3.3, there is a Legendrian link associated to the front
obtained above. Figure 6 shows two toroidal front diagrams obtained
by smoothing two rectilinear projections obtained from the same grid
diagram.
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Figure 6. Here are two rectilinear projections for the same
grid diagram of grid number 2 for L(5, 2) and their associated
toroidal front diagrams on Σ.

4.3. Legendrian isotopy class invariance of constructed toroidal
front.

Proposition 4.6. The Legendrian isotopy class of the link obtained from a
grid diagram G∗

K does not depend upon the choice of rectilinear projection
used to define the toroidal front.

Proof. It suffices to show that the toroidal fronts obtained from two rec-
tilinear projections differing in a single row represent Legendrian isotopic
links; the case for columns is completely analogous. The top rows of Fig-
ures 7 and 8 show the two choices of horizontal arcs for an O and an X
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Figure 7. The left- and right-hand sides of this figure show
the Legendrian isotopy equivalence of the Legendrian curves
obtained from the two choices of horizontal arc in the recti-
linear projection connecting an O and an X in a row of a grid
diagram. The rectilinear projections on the upper level may
both be smoothed to toroidal fronts as in the middle level.
These two toroidal fronts can be moved by toroidal front iso-
topies to diagrams (bottom row) which, though not toroidal
fronts, represent the same, smooth Legendrian link.

in a row in a rectilinear projection. Figure 7 shows when the vertical arcs
are incident to the horizontal arcs from the same side; Figure 8 shows when
the vertical arcs are incident to the horizontal arcs from opposite sides. The
middle rows illustrate the corresponding toroidal fronts obtained from the
rectilinear projections as in Lemma 4.5.

A toroidal front isotopy naturally induces a Legendrian isotopy of the cor-
responding Legendrian link; we proceed by moving the two toroidal fronts,
by toroidal front isotopies, to limiting diagrams which, though not toroidal
fronts, still represent the same smooth Legendrian link. These two diagrams,
pictured in the bottom rows of Figures 7 and 8, both naturally represent
a Legendrian link which passes through the core of the solid torus. The
projection has slope dθ2

dθ1
= 0 at the two black dots, p1, p2, which are posi-

tioned at distance θ1 = π away from each other on Σ. In other words, in
both diagrams, the entire horizontal arc connecting p1 and p2 represent a
single point, p, on the core of the solid torus, and the points near p1 and p2
with non-zero slope are the projections of points nearby p (which project to
opposite sides of the Heegaard torus, as pictured). This Legendrian link will
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Figure 8. See the caption for Figure 7. To pass from the
rightmost middle row to the bottom row, one needs to use
a local Legendrian Reidemeister I move (see Section 5) in
addition to a toroidal front isotopy. See Figure 9 for more
details.

Figure 9. An intermediate isotopy of the lower two right-
hand regions of Figure 8 is through a Legendrian Reidemeis-
ter I move.

be smooth at all points away from p, since the toroidal front projection is
smooth at all points away from p1, p2. To ensure that the Legendrian link
is smooth at p, one need only arrange for all higher order derivatives of θ2
with respect to θ1 to match at p1, p2, which can be done by smooth toroidal
front isotopy.

Different choices of horizontal or vertical arcs thus produce toroidal fronts
of Legendrian isotopic Legendrian links. �

Remark 4.7. It is natural to view a rectilinear projection for a Legen-
drian link as a front diagram for a certain bivalent Legendrian graph whose
smoothings produce the toroidal fronts we have been discussing. Note that
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radial arcs in L(p, q), i.e., those whose tangent vectors satisfy ∂
∂θ1

= ∂
∂θ2

= 0,
are Legendrian. Therefore, a grid diagram defines a bivalent Legendrian
graph made up of a union of radial trajectories between the cores of the two
solid tori, passing through Σ at the 2n basepoints. A horizontal arc on Σ has
slope 0, and thus the points of its interior all define a single point on the core
of V α at radius r1 = 0, irrelevant θ1, and specified θ2. Similarly a vertical
arc has slope ∞ and thus the points of its interior all define a single point on
the core of V β at radius r1 = 1, specific θ1 mod 2π

p , and irrelevant θ2. At the
endpoints of these horizontal and vertical arcs are the O’s and X’s. Since the
one-sided tangencies at these points sweep through negative slopes between
horizontal and vertical, these points define the radial Legendrian arcs.

To complete the correspondence between grid diagrams and Legendrian
links, we now need only show that any toroidal front diagram is isotopic,
through toroidal fronts, to one obtained from a grid diagram:

Lemma 4.8. Given a toroidal front diagram on Σ, there exists a grid dia-
gram G∗

K representing the associated Legendrian link.

Proof. Let γ be a toroidal front on Σ. Perturb γ slightly by a toroidal front
isotopy so that all tangencies of slope −1 are isolated. If γ has a tangency of
slope −1 at a non-cusp point with neighboring points having slopes either
all strictly greater than −1 or all strictly less than −1, then a slight isotopy
of γ in this neighborhood will eliminate the −1 sloped tangency. Isotop to
remove all such tangencies. Thus on the arcs along γ between consecutive
tangencies of slope −1 and cusps, the tangencies to γ have slopes in the
range (−∞,−1) or (−1, 0).

Similarly, if γ has a cusp with neighboring points having slopes either all
strictly greater than −1 or all strictly less than −1, then we may arrange,
via a slight isotopy, that γ instead looks locally like Figure 10 near the cusp.
As a consequence, the tangency at each cusp has slope −1. Furthermore, if

Figure 10. Arrange cusps by Legendrian isotopies to have
slope −1.
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p is a point of γ whose tangent has slope −1, then points on γ near p to one
side have slopes > −1, and points near p to the other side will have slopes
< −1.

Mark each tangency of slope −1. We will refer to consecutive markings as
a horizontal pair if the arc of γ joining them has slopes in the range (−1, 0);
similarly, we will call consecutive markings a vertical pair if the arc joining
them has slopes in the range (−∞,−1). Arrange, by toroidal front isotopy,
that the arc joining each horizontal pair is very close to slope 0.

It is now straightforward to approximate the toroidal front by a rectilin-
ear projection composed of horizontal and vertical segments in such a way
that the associated toroidal front smoothing is isotopic, through toroidal
fronts, to the original toroidal front. Note that each horizontal pair can be
approximated by a single horizontal segment, while the vertical pairs may
be approximated by zig-zags which, when perturbed to yield a toroidal front
diagram, produce no cusps. �

4.4. Constructing a planar front from a grid diagram. For K a link
in S3, Ozsváth et al. [OST06] describe how one associates to a grid diagram
GK for K a standard planar front diagram for a Legendrian representative
of the topological mirror of K, m(K). In this section, we prove that the
planar front diagram described in [OST06] can actually be viewed as a
toroidal front diagram supported in a planar region on the Heegaard torus
for S3 with the reverse orientation. As a straightforward consequence of our
argument, one can associate to any planar subset of a toroidal front diagram
a planar front diagram representing a Legendrian tangle in (B3, ξst). This
will be of use in defining Legendrian Reidemeister moves for lens spaces, as
we do in Section 5.

Let GK be a grid diagram for K ⊂ S3 and G∗
K the grid diagram for

m(K) ⊂ −S3. By distinguishing an α curve and a β curve on G∗
K , we may

choose the horizontal and vertical arcs connecting the X’s and O’s so that
they are disjoint from the two distinguished curves. (This may be done since
each α and β curve on a genus 1 Heegaard diagram for S3 intersect just once.)
We thus obtain a toroidal projection that is confined to a planar subset of the
torus. By the results of the previous section, we know that the Legendrian
isotopy class of the knot is unaffected by this choice. See Figure 11.

We may assume that our distinguished α and β curves correspond to
the circles θ2 = ±π and θ1 = ±π on the Heegaard torus, so that all the
basepoints of our grid diagram have coordinates (θ1, θ2) ∈ (−π, π)×(−π, π).
After smoothing to obtain a toroidal front for the Legendrian link associated
to the grid diagram, any tangency is neither horizontal nor vertical. Then
using our familiar coordinates (r1, θ1, θ2) for points in S3, our Legendrian
link is supported in the open tetrahedron

W = {(r1, θ1, θ2) | r1 ∈ (0, 1), θ1 ∈ (−π, π), θ2 ∈ (−π, π)}.
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Figure 11. A grid diagram whose basepoints are supported
in a small planar region of the Heegaard torus.

The map f : W → R
3 defined by

f(r1, θ1, θ2) =
(

1
2
(θ1 − θ2) , 1 − 2r2

1 ,
1
2
(θ1 + θ2)

)

induces a contactomorphism from ξst|W to ξR3 |f(W ). Recall ξst = ker(r2
1dθ1

+ (1 − r2
1) dθ2) is the standard contact structure on S3 (and hence on W )

while ξR3 = ker(dz − y dx) is the standard contact structure on R
3.

The square Wr1=1/
√

2 that is the complement of the distinguished α and
β curves is mapped to the open diamond in the xz-plane of R

3 with vertices
at (±π, 0, 0) and (0, 0,±π). In this manner the map f carries a toroidal front
for a Legendrian link in S3 to a standard front for a Legendrian link in R

3.
Indeed, the image f(W ) is the open rectangular solid obtained by sweeping
this open diamond in the xz-plane along the interval (−1, 1) of the y-axis.

By Legendrian isotopies, we may arrange that any Legendrian link in
R

3 is contained in f(W ). Accordingly, by scaling and vertical compression,
we may arrange a front to be contained within this diamond, so that every
tangent line has slope in the range (−1, 1). Hence (after any necessary scaling
and compression) the map f−1 carries a front for a Legendrian link in R

3

to a toroidal front.
In other words, f sends our toroidal front to a standard planar front.

Up to planar front isotopy, this is equivalent to rotating the planar subset
of the toroidal front 45◦ counterclockwise. To verify that our construction
matches the one desribed in [OST06], begin by rotating a planar rectilinear
projection for GK 90◦ clockwise to produce a planar rectilinear projection
for G∗

K . This has the effect of changing all crossings of the associated link.
Then rotate the toroidal front 45◦ counterclockwise to produce a planar
front. This is precisely the procedure described in [OST06].
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5. Topological and Legendrian equivalence under grid moves

Now that we have established a relationship between a grid diagram GK for a
link K ⊂ L(p, q′) and a Legendrian representative LK of K in (L(p, q), ξUT),
we turn to the question of the uniqueness of this representation. Our goal is
to provide an elementary set of moves, as in [Cro95, MOST06, OST06],
allowing one to move between any two grid diagram representatives of the
same topological or Legendrian knot type.

The main theorem of this section is the following:

Theorem 5.1. Let GK and G′
K be grid diagrams representing smooth links

K and K ′ in L(p, q′) (resp., Legendrian links LK and LK′ in (L(p, q), ξUT)).
(1) K and K ′ are smoothly isotopic if and only if there exists a sequence

of elementary topological grid moves connecting GK to G′
K .

(2) LK and LK′ are Legendrian isotopic if and only if there exists a
sequence of elementary Legendrian grid moves connecting GK to G′

K .

Figures 12–14 illustrate the elementary topological grid moves: (de)stabili-
zations and commutations. These moves look locally like those described in
[OST06] for S3 knots. The elementary Legendrian grid moves form a subset
of the elementary grid moves, including commutations and (de)stabilizations
of types X:NW, X:SE, O:NW, O:SE. We will say that two grid diagrams are
topologically (resp., Legendrian) grid-equivalent if they are related by a finite
sequence of elementary topological (resp., Legendrian) grid moves.

Proof Item 1: Smooth isotopy. The Reidemeister theorem for links in S3

states that two links are smoothly isotopic if and only if their planar pro-
jections are related by planar isotopies and Reidemeister moves. Since each
such move corresponds to a local isotopy (supported in R

3), it is immediate
that grid-equivalent grid diagrams for links in lens spaces represent smoothly
isotopic links. Furthermore, the observation that all Reidemeister moves are
local, coupled with the natural correspondence between planar subsets of
toroidal projections of lens space links and standard planar projections of
tangles in R

3, immediately implies a version of Reidemeister’s theorem for
lens space links:

Figure 12. An illustration of a NW stabilization at an X
basepoint for a grid number 1 knot in L(5, 1). One introduces
new α–β and X–O pairs in the rectangle specified by the
chosen basepoint.A destabilization is the inverse of this oper-
ation.
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Figure 13. Local pictures for all eight different types of sta-
bilizations. Starting from the left on the top row, these are
denoted O:NE, O:SE, O:SW, and O:NW. Along the bottom
row, we have X:NE, X:SE, X:SW, and X:NW.

Figure 14. A before (top) and after (bottom) snapshot of
a first and second column commutation on a grid number
3 diagram for a link in L(5, 1). Since the basepoint pairs in
these columns do not interleave, we can exchange the mark-
ings as shown. A row commutation is the obvious analog for
two adjacent rows. In general, a row or column commutation
can be performed on any two adjacent rows or columns as
long as the markings in the two columns do not interleave.

Proposition 5.2. Two smooth links K1 and K2 in L(p, q) are smoothly
isotopic if and only if their toroidal projections are related by a sequence
of smooth isotopies and Reidemeister moves I, II, III, and IV , picture in
Figure 15.



GRID DIAGRAMS AND LEGENDRIAN LENS SPACE LINKS 437

Figure 15. An illustration of the lens space Reidemeister
moves. Moves I, II, III look locally like the S3 Reidemeister
moves, but should be thought of here as occurring in a suf-
ficiently small disk on the Heegaard torus. Move IV corre-
sponds to replacing an arc of the boundary of a meridional
disk (in either solid handlebody) with the complementary
arc. Here, we have pictured this move for a meridional disk
in V β in the lens space L(3, 1).

To prove that any two smoothly isotopic links K1 and K2 have topologi-
cally grid-equivalent grid diagrams, we use the argument outlined by Dyn-
nikov in [Dyn06]. First, we represent K1 and K2 by (rectilinear) toroidal
projections, using Lemma 4.2 of [BGH08]. By the Reidemeister theorem for
lens space links, we can move from one toroidal projection to the other by
a sequence of smooth isotopies and moves of type I–IV. By the same argu-
ments used in the proofs of Lemma 4.2 and Proposition 4.3 of [BGH08], we
can approximate each stage of this process using a grid diagram. Provided
that each intermediate step is sufficiently simple (subdivide the compact
isotopy further if not), it is easy to verify that each step can be accom-
plished using elementary grid moves. Reidemeister move IV does not require
a grid move; rather, one chooses an alternative projection of the link to the
Heegaard torus. Figures 16–18 enumerate all possible versions of the other
Reidemeister moves, indicating how they can be obtained via grid moves.

Figure 16. Reidemeister I via grid moves.



438 KENNETH L. BAKER AND J. ELISENDA GRIGSBY

Figure 17. Reidemeister II via grid moves.

Figure 18. Reidemeister III via grid moves.

Item 2: Legendrian isotopy. In [Świ92], Swiatkowski proves that two Leg-
endrian links in S3 are Legendrian isotopic if and only if their corresponding
planar fronts are related by a sequence of planar isotopies and Legendrian
Reidemeister moves as in Figure 19. Since each of his Reidemeister moves
corresponds to a local Legendrian isotopy (i.e., takes place in a Darboux
ball), his result will immediately imply that Legendrian grid-equivalent grid
diagrams represent Legendrian-isotopic lens space links, once we understand
the relationship between planar subsets of toroidal fronts and standard pla-
nar fronts. This relationship, explained in detail in Section 4.4, coupled with
Swiatkowski’s result, yields a Legendrian Reidemeister theorem for Legen-
drian links in (L(p, q), ξUT):

Figure 19. Legendrian Reidemeister moves for planar fronts.
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Figure 20. Legendrian Reidemeister moves for toroidal fronts.

Proposition 5.3. Two toroidal front diagrams represent Legendrian-
isotopic links in (L(p, q), ξUT) if and only if they can be connected by a
sequence of toroidal front isotopies, Legendrian Reidemeister moves, and
Legendrian slides across meridional disks (which we will call Legendrian
Reidemeister moves of type IV ), as in Proposition 4.6.

The Legendrian Reidemeister moves I–IV on a toroidal front are illustrated
in Figure 20.

To prove that Legendrian-isotopic links K1 and K2 have Legendrian grid-
equivalent grid diagrams, one first uses Proposition 3.4 to represent both by
toroidal fronts on Σ. By the Legendrian Reidemeister theorem for links in
lens spaces, we can move between the two fronts by a sequence of toroidal
front isotopies and Legendrian Reidemeister moves. An argument exactly
as in the proof of Lemma 4.8 produces a dual grid diagram G∗

Ki
for each

stage of the Legendrian isotopy. It is then straightforward, using arguments
analogous to those given in the verification of topological grid equivalence,
to show that the associated grid diagrams GKi (not the dual grid diagrams
G∗

Ki
) associated to each stage of the Legendrian isotopy are Legendrian grid

equivalent. �

6. The Thurston–Bennequin invariant and bounds on
grid number

Let LK be an oriented Legendrian link in a contact rational homology
sphere (Y, ξ) repesenting the topological oriented link K with components
K1, . . . , K�. We begin by defining the Thurston–Bennequin number, tb(LK),
a classical Legendrian invariant. Traditionally tb is defined when K is a null-
homologous link in a contact 3-manifold, see, e.g., [FT97]. The definition
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extends in a natural way to rationally null-homologous oriented links. Please
see [Özt05] for an alternative approach.

6.1. Contact framing, Seifert framing, and the Thurston–Benne-
quin number. Let N(K) denote a small tubular neighborhood of the link
K with N(Ki) denoting the component that is a neighborhood of Ki. Let
μi be an oriented meridian of the closure of N(Ki) so that it links Ki once
positively. Typically, a framing for Ki is a choice of a slope on ∂N(Ki) that
algebraically intersects the meridian μi once. We shall relax this notion of
framing so that it may be a collection of parallel slopes on ∂N(Ki) that each
algebraically intersect the meridian μi a fixed number of times.

The Thurston–Bennequin number tb(LK) measures the discrepancy
between the contact framing and the Seifert framing of the oriented Leg-
endrian link LK .

Definition 6.1. The contact framing for LK is the tuple

γ = ([γ1], . . . , [γ�]) ∈
�⊕

i=1

H1(T 2
i ; Z)

defined by pushing the oriented components Ki of K into T 2
i = ∂(Y −

N(Ki)) ⊂ ∂(Y − N(K)) along the contact planes.

Definition 6.2. The Seifert framing for K is the tuple

λ = ([λ1], . . . , [λ�]) ∈
�⊕

i=1

H1(T 2
i ; Z)

such that

(1) λi is a collection of parallel, coherently oriented, simple closed curves
on T 2

i = ∂N(Ki),
(2) μi · λi = d for each i, where d is the order of [K] ∈ H1(Y ; Z), and
(3) via the induced maps on homology coming from the inclusions T 2

i ↪→
Y − N(K), we have

∑�
i=1 λi = 0 ∈ H1(Y − N(K); Z).

It is clear that the contact framing is well defined, but it may not be so
clear that the Seifert framing is well defined for non-nullhomologous oriented
links in rational homology spheres.

Lemma 6.3. The Seifert framing is well defined.

Proof. To simplify notation, curves will be identified with the homology
classes they represent in various spaces.

Given an oriented link K = K1 ∪ · · · ∪ K� in a rational homology sphere
Y with oriented meridians μi as above, observe that H1(Y − N(K); Q) ∼=
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Q
�. Moreover, the homology classes of the oriented meridians form a basis

{μ1, . . . , μ�}. Set

μ = (μ1, . . . , μ�) ∈
�⊕

i=1

H1(Y − N(K); Q).

We construct the Seifert framing as follows. For each component Ki of K
pick an oriented push-off, λ′

i, of Ki on ∂N(Ki). Note that λ′
i is a framing in

the usual sense. Write

λ′ = (λ′
1, . . . , λ

′
�) ∈

�⊕

i=1

H1(Y − N(K); Q).

Since each λ′
i may be expressed as a Q-linear combination of the μj , there

exists an 
 × 
 matrix A with rational coefficients such that

λ′ = Aμ.

Let d be the smallest positive integer such that dA has integral coefficients,
and let λΣ denote the image of λ under the natural map

�⊕

i=1

H1(Y − N(K); Z) → H1(Y − N(K); Z)

which sends

(λ1, . . . , λ�) �→
�∑

i=1

λi.

Then, we see that

dλ′Σ − d(Aμ)Σ = 0 ∈ H1(Y − N(K); Z).

Furthermore, by collecting like terms, one produces a unique element

λ = (λ1, . . . , λ�) ∈
�⊕

i=1

H1(T 2
i ; Z).

More precisely,

λi = d(λ′
i −

�∑

j=1

Ajiμi).

To see that the resulting element of
⊕�

i=1 H1(T 2
i ; Z) is independent of the

original choices of the push-offs λ′
i, simply note that for each Ki, any other

choice λ′′
i will be related to the λ′

i by λ′′
i = λ′

i + kiμi for some ki ∈ Z. The
corresponding matrix A′′ is given by

A′′
ji =

{
Aji for i �= j

Aii + ki for i = j.
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Hence
λ′′

i −
∑

j

A′′
jiμi = λ′

i −
∑

j

Ajiμi

and so
λ′′ − A′′μ = λ′ − Aμ,

as desired.
Observe that d is the order of K in H1(Y ; Z). �

Definition 6.4. Let λ ∈
⊕�

i=1 H1(T 2
i ; Z) be a Seifert framing, as con-

structed above. Then λΣ bounds an oriented surface, F , properly embedded
in Y − N(K). We will call any such surface, F , a (rational) Seifert surface
for the link K. One may also consider contracting N(K) radially to K so
that the interior of F is embedded while ∂F is a d-fold cover of K. (Again,
d is the order of [K] in H1(Y ; Z).)

Remark 6.5. If Y is not a rational homology sphere, then there may be a
Q-linear dependence among the homology classes of the meridians of K in
H1(Y −N(K); Q). Such an occurrence would cause the Seifert framing to be
ill-defined. As an example, consider the nullhomologous link S1 ×x∪S1 × y
in S1 × S2 for distinct points x, y ∈ S2. The ambiguity may be resolved by
specifying the second homology class of the Seifert surface.

We are now ready to define the Thurston–Bennequin number of a Legen-
drian link LK .

Definition 6.6. Let LK be a Legendrian representative of a link K =⋃�
i=1 Ki of order d in a contact rational homology sphere (Y, ξ), γ its contact

framing, and λ its Seifert framing. Then the Thurston–Bennequin number
of LK , tb(LK) ∈ Q, is

tb(LK) =
1
d
(γ · λ).

As is standard, we use γ · λ to denote an inner product of algebraic
intersection numbers. More precisely,

γ · λ :=
�∑

i=1

[γi] · [λi],

where “·” on the right-hand side refers to algebraic intersection number.
Note that an overall reversal of orientations on LK will not alter

tb(LK). However, changing the orientation of one component of a multi-
component link could drastically alter the Seifert framing and thus change
the Thurston–Bennequin number.

The following relationship between tb(LK) and tb(L
˜K
) under a contact

cover of degree m is immediate.
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Lemma 6.7. Let LK be a Legendrian link in the contact rational homology
sphere (Y, ξ) and L

˜K
its lift to a Legendrian link in an m-fold contact cover

(Ỹ , ξ̃). Then

tb(LK) =
1
m

tb(L
˜K
).

Proof. Note that Ỹ will also be a rational homology sphere. By construction,
λ is the image, under the map induced by the projection π : Ỹ → Y , of the
Seifert framing λ̃ for K̃. Similarly, γ is the image, under π∗, of the contact
framing γ̃ for K̃.

Since
γ · λ = (π∗γ̃) · (π∗λ̃) = π∗(γ̃ · λ̃),

we see that
tb(LK) =

1
m

tb(L
˜K
)

as desired. �

6.2. Computing tb(LK) from grid diagrams. Since tb behaves simply
when taking contact covers (Lemma 6.7), we can compute tb(LK) from com-
binatorial data on GK for any grid diagram representing LK . Recall that
GK represents LK if a toroidal front diagram for LK can be obtained from
GK by the procedure described in the proof of Theorem 4.4. Since this com-
binatorial data are most easily expressed in the language of Heegaard Floer
homology, we will now mention Heegaard Floer homology to the extent nec-
essary to identify the relevant combinatorial data. See [BGH08] for more
details.

Associated to a grid number n grid diagram GK for K ∈ L(p, q) is a
combinatorial Heegaard Floer chain complex, CF−(GK), whose generators
correspond to one-to-one matchings between the α and β curves. Each gen-
erator, x, furthermore comes equipped with a combinatorially defined homo-
logical grading, M(x) ∈ Q, as described in Section 2.2.2 of [BGH08].

Now let z− be the generator of CF−(GK) in the SW (lower left) corner
of the X basepoints and z+ be the generator of CF−(GK) in the NE (upper
right) corner of the X basepoints. Abusing notation so that GK refers to
the Legendrian link represented by GK , we have:

Proposition 6.8.

tb(GK) =
M(z−) + M(z+)

2
− d(p, q, q − 1) − 1

Here, d(p, q, q−1) denotes the correction term d(−L(p, q), q−1) as defined
inductively in [OS03].

Proof. In what follows, let G̃K denote the S3 grid diagram constructed from
GK as in Lemma 6.1 of [GRS07] (see also the discussion following the
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statement of Lemma 4.6 in [BGH08]), and let z̃− (resp., z̃+) denote the
preimage of z− (resp., z+) in G̃K . We combine Theorem 1.1 from [OST06]
and equation (2) from [BGH08] to conclude that

M(z−) + M(z+) =
1
p

(
M(z̃−) + M(z̃+)

)
+ 2d(p, q, q − 1) +

2(p − 1)
p

=
2
p

(
tb(G̃K) + 1 + p · d(p, q, q − 1) + (p − 1)

)
.

Lemma 6.7 then implies that

tb(GK) =
tb(G̃K)

p
=

M(z−) + M(z+)
2

− d(p, q, q − 1) − 1.

�

The classical Thurston–Bennequin invariant is particularly relevant to the
Berge conjecture because of the following relationship, a generalization of a
result of Matsuda [Mat06]. Recall that G∗

K denotes the grid diagram dual
to GK (see Section 2). In particular, if GK represents a Legendrian link
with respect to (L(p, q), ξUT), then G∗

K corresponds to a Legendrian link
with respect to (L(p, q′), ξUT), where qq′ ≡ −1 mod p.

Proposition 6.9.

tb(GK) + tb(G∗
K) = −gn(GK).

Proof. Let n = gn(GK) = gn(G∗
K). Then GK and G∗

K lift to grid dia-
grams for K̃ ⊂ S3 and m(K̃) ⊂ S3, respectively, where m(K̃) denotes the
topological mirror of K̃ in S3. Both grid diagrams have grid number np.
Then, as proved in Section 2 of [Mat06] (see also the paragraph following
equation (1) of [Ng06]), we see that

tb(G̃K) + tb((G̃K)∗) = −np.

Coupled with Lemma 6.7, this implies that

tb(GK) + tb(G∗
K) = −n,

as desired. �

Let tb(K) denote the maximum tb of a Legendrian representative of K.
Recalling that if GK represents K ⊂ L(p, q′), then G∗

K represents m(K) ⊂
L(p, q) (qq′ ≡ −1 mod p), we see that Proposition 6.9 implies:

Corollary 6.10.
gn(K) ≥ −tb(K) − tb(m(K))

for each link K ⊂ L(p, q′).
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7. Calculations

We conclude with some simple observations about Legendrian realizations
of knots in L(p, q) for which some integral surgery yields S3.

Proposition 7.1. Let K be a knot in L(p, q) upon which integral surgery
yields an integer homology sphere S and K a Legendrian representative of
K with respect to (L(p, q), ξUT). Then

p · tb(K) ≡ ±1 mod p.

Furthermore, if the corresponding contact surgery coefficient yielding S is k,
then p · tb(K) = −kp ± 1.

Proof. Let T 2 = ∂(L(p, q) − K) be the torus boundary of a neighborhood of
K. We denote by

• μ ⊂ T 2 an oriented meridian of K in L(p, q),
• γ ⊂ T 2 the contact push-off of K,

Assume that the surgery we perform upon K ⊂ L(p, q) to obtain S has
coefficient k ∈ Z with respect to the contact framing, i.e., if we denote the
meridian and standard (not necessarily Seifert) longitude of the glued-in
solid torus by μ′ and λ0, then

μ′ ≡ kμ + γ, λ0 ≡ −μ.

Let K ′ := S1 × {0} denote the induced knot in the surgered manifold,
S. Since S is an integer homology sphere, H1(L(p, q) − N(K)) = H1(S −
N(K ′)) ∼= Z, generated by μ′, implying that there is a unique r ∈ Z such
that

λ′ := λ0 + rμ′ = (kr − 1)μ + rγ = 0 ∈ H1(L(p, q) − N(K)).

Hence, μ = rμ′ − λ′.
Since surgery upon K ′ yields L(p, q), r = ±p. Furthermore, since (μ′, λ′)

form a symplectic basis for H1(T 2), we have μ · λ′ = r. The definition of the
Seifert framing requires that μ · λ′ = p. So if r = −p, we replace (μ′, λ′) by
(−μ′,−λ′) (which reverses the orientation on the induced knot, K ′). Hence

μ′ = ±(kμ + γ), λ′ = (kp ∓ 1)μ + pγ.

Since K has order p in H1(L(p, q)),

p · tb(K) = γ · λ′ = −kp ± 1,

as desired. �

Note that if K ⊂ L(p, q) has an integral surgery yielding S3, then K ⊂
L(p, q′) (the topological mirror of K) also has an integral surgery yielding
S3. The following is an easy corollary of the preceding proposition:
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Corollary 7.2. If GK is a diagram of grid number 1 for a Legendrian knot
LK ⊂ (L(p, q′), ξUT), p > 2, whose underlying topological knot has an integral
surgery slope yielding S3 and G∗

K is the dual gn1 diagram representing a
Legendrian knot LK∗ in (L(p, q), ξUT), the corresponding contact surgeries
on LK and LK∗ which yield S3 are those with surgery coefficients 0 and +1,
respectively (or vice versa).

If p = 2, then there is only one Legendrian knot LK with a grid number
1 diagram and GK = G∗

K . The 0 and +1 contact surgeries on LK are the
integral surgeries which yield S3.

Note that for p = 1 there is no grid number 1 diagram of a knot (as
defined in this article).

Proof. Assume p > 2. By Proposition 6.9,

(�) tb(LK) + tb(LK∗) = −1.

Exchanging the roles of LK and LK∗ if necessary, we know, by Proposition
7.1, that

tb(LK) =
k1p + 1

p
,

and

tb(LK∗) =
k2p − 1

p
,

where k1, k2 ∈ Z. By equation (�), k1 + k2 = −1.
Since any Stein filling of S3 is diffeomorphic to B4 [Eli90], (L(p, q), ξUT)

is Stein fillable for all L(p, q) [Hon00], and any negative contact surgery can
be turned into a sequence of −1 contact surgeries [DG04], we can conclude
that k1, k2 ≤ 0, since positive ki would yield a negative contact surgery
coefficient by Proposition 7.1, leading to a non-standard Stein filling of S3.

Therefore, k1 + k2 = −1 implies that k1 = 0 and k2 = −1, or vice versa.
In other words, contact 0 surgery on one of the two Legendrian knots and
contact +1 surgery on the other yields S3.

Now assume p = 2. One readily observes that there is a single knot K
with a grid number 1 diagram GK and this diagram equals its dual. The
associated Legendrian knot LK admits a toroidal front diagram with no
cusps or crossings, hence it is a simple closed curve on the Heegaard torus
and the contact framing is the surface framing. Since the knot crosses each
α and β just once, contact 0 surgery yields S3. The contact +1 surgery may
be viewed as effecting a Dehn twist upon α along K with the result crossing
β only once, hence producing S3.

Any other integral surgery K cannot create S3. Other than the meridian
μ of K, there is a single curve λ on ∂N(K) that intersects both the 0 and
+1 contact surgery slopes once. The exterior of K is a solid torus and λ is
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its meridian. The slope of a surgery creating S3 necessarily intersects λ just
once. The only slopes that also intersect μ once are the 0 and +1 contact
slopes. �
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[NOT07] L. Ng, P. Ozsváth, and D. Thurston, Transverse knots distinguished by knot
Floer homology, math.GT/0703446, 2007.
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