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ON THE SYMPLECTIC FORM OF THE MODULI SPACE
OF PROJECTIVE STRUCTURES

Pablo Arés-Gastesi and Indranil Biswas

Let S be a C∞ compact connected oriented surface whose genus
is at least two. Let P(S) be the moduli space of isotopic classes of
projective structures associated to S. The natural holomorphic sym-
plectic form on P(S) will be denoted by ΩP . The natural holomorphic
symplectic form on the holomorphic cotangent bundle T ∗T (S) of the
Teichmüller space T (S) associated to S will be denoted by ΩT . Let
e : T (S) −→ P(S) be the holomorphic section of the canonical holo-
morphic projection P(S) −→ T (S), given by the Earle uniformization.
Let Te : T ∗T (S) −→ P(S) be the biholomorphism constructed using
the section e. We prove that T ∗

e ΩP = π · ΩT . This remains true if e is
replaced by a large class of sections that include the one given by the
Schottky uniformization.

1. Introduction

A projective structure on a smooth compact connected oriented surface S is
defined by giving a covering of S by coordinate charts, where the coordinate
functions are orientation preserving diffeomorphisms to open subsets of C,
such that all the transition functions are Möbius transformations. Two
projective structures are called equivalent if they differ by a diffeomorphism
of S homotopic to the identity map. Let P(S) denote the equivalence classes
of projective structures on S.

The Teichmüller space T (S) for S parametrizes all the equivalence classes
of complex structures on S compatible with its orientation; two complex
structures are called equivalent if they differ by a diffeomorphism of S homo-
topic to the identity map. Both P(S) and T (S) are complex manifolds,

239
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and dimP(S) = 2 · dim T (S). There is a natural surjective holomorphic
submersion

ϕ : P(S) −→ T (S)
that sends a projective structure on S to the underlying complex structure
on S.

The above projection ϕ makes P(S) a torsor over T (S) for the holomor-
phic cotangent bundle T ∗T (S). This means in particular that the fiber of
ϕ over any point X ∈ T (S) is an affine space for the space of all holo-
morphic quadratic differentials on the Riemann surface corresponding to X.
Consequently, any smooth section

f : T (S) −→ P(S)

of the above projection ϕ produces a diffeomorphism

Tf : T ∗T (S) −→ P(S)

that sends (X, ω) to the projective structure f(X) + ω, where X ∈ T (S)
and ω is a holomorphic quadratic differential on the Riemann surface X. If
the section f is holomorphic, then Tf is a biholomorphism.

Both T ∗T (S) and P(S) are equipped with natural holomorphic symplectic
structures. Let ΩT (respectively, ΩP ) denote the canonical symplectic form
on T ∗T (S) (respectively, P(S)).

Assume that genus(S) ≥ 2. We prove the following (Theorem 3.1):

Theorem 1.1. Let
e : T (S) −→ P(S)

be the holomorphic section given by the Earle uniformization. Then

T ∗
e ΩP = π · ΩT ,

where Te : T ∗T (S) −→ P(S) is the biholomorphism given by the section e.

Theorem 1.1 extends to sections f : T (S) −→ P(S) as above that sat-
isfy certain conditions (see Remark 3.2). Another example of f with this
property is the section given by the Schottky uniformization.

The proof of Theorem 1.1 is based on theorems of S. Kawai and C. T.
McMullen.

2. Symplectic structure on the moduli of projective structures

Fix a connected compact oriented C∞ surface S of genus g with g ≥ 2. Let
T (S) denote the Teichmüller space associated to S. Therefore,

(2.1) T (S) = Conf(S)/Diff0(S),

where Conf(S) is the space of all conformal structures on S compatible with
the orientation of S, and Diff0(S) is the group of all diffeomorphisms of
S homotopic to the identity map of S. The Teichmüller space T (S) is a
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complex manifold of complex dimension 3g − 3, and it is diffeomorphic to
R

6g−6.
Similarly, we have the moduli space of projective structures associated

to S. To explain this with more detail, we first recall the definition of a
projective structures on S.

A projective structure on S is given by data {Ui, φi}i∈I , where
• Ui ⊂ S are open subsets with

⋃
i∈I Ui = S, and

• φi : Ui −→ CP
1 are orientation preserving diffeomorphisms from Ui

to φi(Ui) satisfying the condition that for each ordered pair i, k ∈ I,
there is some element

Gi,k ∈ PGL(2, C) = Aut(CP
1)

such that the map

(2.2) φk ◦ φ−1
i : φi(Ui ∩ Uk) −→ φk(Ui ∩ Uk)

coincides with the restriction of the automorphism Gi,k of CP
1.

Two data {Ui, φi}i∈I and {Uj , φj}j∈J of the above type are called equivalent
if their union {Uk, φk}k∈I∪J also satisfies the above conditions. A projective
structure on X is an equivalence class of data. (See [2] for various alternative
descriptions of a projective structure.)

Define

(2.3) P(S) = Proj(S)/Diff0(S),

where Proj(S) is the space of all projective structures on S, and Diff0(S) is
the group in (2.1).

It is known that P(S) is a complex manifold of complex dimension 6g−6,
and it is diffeomorphic to R

12g−12. The complex manifold P(S) has a natural
holomorphic symplectic structure. We will briefly recall its description.

A projective structure P on S gives a flat principal PGL(2, C)-bundle
over S. For any given data {Ui, φi}i∈I of above type defining P , consider
the trivial principal PGL(2, C)-bundle Ui × PGL(2, C) on each Ui. For any
ordered pair i, k ∈ I, these trivial principal PGL(2, C)-bundles on Ui and Uk

may be glued together over Ui
⋂

Uk using Gi,k ∈ PGL(2, C) as the transition
function, where Gi,k ∈ PGL(2, C) is the element giving the map in (2.2).
This way we get a flat principal PGL(2, C)-bundle over S associated to P .
Consequently, we get a map

(2.4) h : P(S) −→ Hom(π1(S), PGL(2, C))/PGL(2, C)

from P(S) in (2.3) that sends any projective structure to the holonomy of
the corresponding flat principal PGL(2, C)-bundle on S.

We note that for two different base points s1 and s2 of S, there is an
identification of π1(S, s1) with π1(S, s2) unique up to an inner automor-
phism (by fixing a path connecting s1 to s2). Therefore, the quotient space
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Hom(π1(S), PGL(2, C))/PGL(2, C) in (2.4) does not depend on the choice
of the base point needed to define the fundamental group.

A homomorphism ρ0 : π1(S) −→ PGL(2, C) is called irreducible if the
subgroup image(ρ0) ⊂ PGL(2, C) does not fix any point of CP

1. Let

R ⊂ Hom(π1(S), PGL(2, C))/PGL(2, C)

be the space of all irreducible representations. This irreducible representa-
tion space R is a complex manifold of complex dimension 6g − 6 equipped
with a holomorphic symplectic structure [4]. The image of the map h in
(2.4) lies in R.

The map h is locally a biholomorphism, which means that h is holomor-
phic, and for each point P ∈ P(S), the differential of h at P is an isomor-
phism of tangent spaces [6, 7]. Therefore, the holomorphic symplectic form
on R pulls back, by h, to a holomorphic symplectic form on P(S). Let

(2.5) ΩP ∈ H0(P(S), Ω2
P(S))

be the holomorphic symplectic form on P(S) obtained this way.
There is a natural map from P(S) to the Teichmüller space

(2.6) ϕ : P(S) −→ T (S)

that sends any projective structure on S to the underlying complex struc-
ture on S. It is known that ϕ is a holomorphic surjective submersion. For
any X ∈ T (S), the fiber ϕ−1(X) is an affine space for the vector space
H0(X, K⊗2

X ) of all holomorphic quadratic differentials on the Riemann sur-
face X (see [2, 5, 7] for details).

Let T ∗T (S) be the total space of the holomorphic cotangent bundle of
T (S). Therefore, the fiber of T ∗T (S) over any X ∈ T (S) is H0(X, K⊗2

X ).
Take any smooth section

(2.7) f : T (S) −→ P(S)

of the projection ϕ in (2.6); so ϕ ◦ f = IdT (S). Using f we have a diffeomor-
phism

(2.8) Tf : T ∗T (S) −→ P(S)

that sends any (X, ω) ∈ T ∗T (S), where ω is a holomorphic quadratic differ-
ential on the Riemann surface X, to the projective structure f(X) + ω on
X. If f is a holomorphic section, then the diffeomorphism Tf is a biholo-
morphism.

The complex manifold T ∗T (S) being the total space of the cotangent bun-
dle of a complex manifold has a canonical holomorphic symplectic structure.
To describe this symplectic form, let σ be the tautological Liouville one-form
on T ∗T (S) that sends any tangent vector v at a point (z, w) ∈ T ∗T (S),
where z ∈ T (S) and w ∈ T ∗

z T (S), to w(dp(v)) ∈ C; here

dp : TT ∗T (S) −→ p∗TT (S)
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is the differential of the natural projection

p : T ∗T (S) −→ T (S).

The two-form dσ defines a holomorphic symplectic structure on T ∗T (S).
This symplectic form dσ on T ∗T (S) will also be denoted by ΩT .

For particular choices of the section f in (2.7) we may ask whether the
diffeomorphism Tf in (2.8) takes the symplectic form ΩT on T ∗T (S) defined
above to a constant multiple of the symplectic form ΩP constructed in (2.5).

If we fix a base point X0 ∈ T (S), there a section

(2.9) B := BX0 : T (S) −→ P(S)

constructed by Bers using the notion of simultaneous uniformization. More
precisely, for any X ∈ T (S), the projective structure BX0(X) is given by the
quasifuchsian group that uniformizes X and X0, where X0 is the quotient
of the lower half plane by the Fuchsian group for X0 (see [1]). In [8], Kawai
showed that when f in (2.7) is the section B in (2.9), then

(2.10) T ∗
BΩP = π · ΩT ,

where TB is constructed as in (2.8) (see [8, p. 165, Theorem]).

3. Earle uniformization

In [3], Earle constructed a canonical holomorphic section

(3.1) e : T (S) −→ P(S).

The section e depends on the marked surface defined by the fixed surface
S as well as on the choice of an involution of the fundamental group of S
induced by some orientation reversing diffeomorphism of S. In particular,
unlike the section B in (2.9) constructed by Bers, the section e does not
require fixing a base point of T (S) for its definition. In this sense, this
section e is intrinsic (see the first paragraph of [3, p. 527]). It should be
clarified that this section e is not equivariant for the natural actions of the
mapping class group Diff+(S)/Diff0(S) on T (S) and P(S) (here Diff+(S)
is the group of orientation preserving diffeomorphisms of S). Let

(3.2) Te : T ∗T (S) −→ P(S)

be the biholomorphism constructed as in (2.8) from the section e in (3.1).

Theorem 3.1. For the biholomorphism Te in (3.2),

T ∗
e ΩP = π · ΩT ,

where ΩP and ΩT are the natural holomorphic symplectic forms on P(S)
and T ∗T (S), respectively.



244 P. ARÉS-GASTESI AND I. BISWAS

Proof. Let

(3.3) θ := e − B ∈ C∞(T (S), T ∗T (S))

be the smooth (1, 0)-form on T (S), where e and B are the sections in (3.1)
and (2.9) respectively. Recall that the space of projective structures on a
given Riemann surface compatible with its complex structure is an affine
space for the space of all holomorphic quadratic differentials on it, which
implies that e−B is a (1, 0)-form on T (S). We will first show the following.

For the biholomorphism Te in (3.2),

(3.4) T ∗
e ΩP = π · ΩT

if and only if

(3.5) dθ = 0,

where θ is constructed in (3.3).
To prove this, let

(3.6) Fθ : T ∗T (S) −→ T ∗T (S)

be the diffeomorphism defined by (X, η) �−→ (X, η + θ(X)), where θ is the
(1, 0)-form in (3.3). It is easy to see that

(3.7) TB ◦ Fθ = Te,

where TB (respectively, Te) is the diffeomorphism in (2.10) (respectively,
(3.2)), and Fθ is constructed in (3.6).

From (3.7), we have
T ∗

e ΩP = F ∗
θ (T ∗

BΩP ).

Therefore, in view of (2.10), we now conclude that (3.4) holds if and only if

F ∗
θ ΩT = ΩT .

On the other hand, from the definition of Fθ it follows that

(3.8) F ∗
θ ΩT − ΩT = p∗dθ,

where p is the natural projection from T ∗T (S) to T (S). To prove (3.8),
we recall that the canonical symplectic form on the total space T ∗M of
the cotangent bundle of a C∞ manifold M is the exterior derivative of a
tautological one-form αM on T ∗M . For any smooth one-form μ on M , the
diffeomorphism

Dμ : T ∗M −→ T ∗M

defined by (x, ω) �−→ (x, ω + μ(x)) has the property that

D∗
μαM = αM + q∗μ,

where q : T ∗M −→ M is the natural projection. The identity (3.8) follows
immediately from this fact.



SYMPLECTIC FORM AND PROJECTIVE STRUCTURES 245

Since p in (3.8) is a submersion, the two-form p∗dθ vanishes if and only
if dθ vanishes. Consequently, using (3.8) we now conclude that (3.4) holds
if and only if (3.5) holds.

To prove that (3.5) holds, we first note that since both B and e are
holomorphic sections of the projection ϕ in (2.6), the (1, 0)-form θ in (3.3)
is holomorphic. Hence dθ is a (2, 0)-form, or in other words,

(3.9) dθ ∈ C∞(T (S), Ω2,0
T (S)).

Let

(3.10) φ : T (S) −→ P(S)

be the smooth section given by the Fuchsian uniformization. Let

(3.11) α := e − φ ∈ C∞(T (S), T ∗T (S))

and

(3.12) β := B − φ ∈ C∞(T (S), T ∗T (S))

be the smooth (1, 0)-forms on T (S), where φ, e and B are the sections in
(3.10), (3.1) and (2.9), respectively.

From a theorem due to McMullen, [9, p. 350, Theorem 7.1], we have that

(3.13) dβ ∈ C∞(T (S), Ω1,1
T (S))

(in fact, dβ =
√

−1 ·ωWP, where ωWP is the Weil–Petersson symplectic form
on T (S)). Moreover, Theorem 9.2 in [9, p. 355] states that

(3.14) dα = dβ.

We note that in [9, Theorem 9.2], this statement is proved for the Schottky
uniformization. However, the proof remains unchanged for any smooth sec-
tion f (as in (2.7)) as long as f is holomorphic and Theorem 9.1 of [9, p. 355]
applies to it1. Both the sections e and B clearly satisfy these two conditions.
(We also note that [9, Theorem 9.2] gives an alternative proof of a theorem
of Takhtazan and Zograf in [10].)

We note that θ in (3.3) satisfies the identity

θ = α − β,

where α and β are constructed in (3.11) and (3.12), respectively. Therefore,
from (3.13) and (3.14), we have

dθ ∈ C∞(T (S), Ω1,1
T (S)).

Comparing this with (3.9) we now conclude that

dθ = 0.

1We thank Curtis T. McMullen for clarifying this.
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As we observed earlier, this implies that (3.4) holds. This completes the
proof of the theorem. �
Remark 3.2. Take any section f : T (S) −→ P(S) as in (2.7) such that

1) f is holomorphic, and
2) Theorem 9.1 of [9, p. 355] applies to f .

Consider the biholomorphism Tf constructed in (2.8). The proof of Theorem
3.1 gives

T ∗
f ΩP = π · ΩT .

Apart from the section T (S) −→ P(S) given by the Earle uniformization, the
section given by the Schottky uniformization also satisfies the two conditions
stated above.
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