
JOURNAL OF
SYMPLECTIC GEOMETRY
Volume 3, Number 4, 545–563, 2005

FLOER–NOVIKOV COHOMOLOGY AND SYMPLECTIC
FIXED POINTS

Kaoru Ono

We introduce variants of Floer-Novikov cohomology and give a
lower bound for the number of fixed points of time-one maps of time-
dependent symplectic flows under the non-degeneracy condition.

1. Introduction

In a previous paper [5], we studied an analog of Arnold’s conjecture for
fixed points of the time-one map of a time-dependent symplectic flow. We
constructed the so-called Floer–Novikov cohomology and established the
invariance under Hamiltonian deformations in a similar way to the case of
Hamiltonian diffeomorphisms [1], [3], [6]. However, we restricted ourselves
to the class of monotone or negatively monotone symplectic manifolds in
order to compute Floer–Novikov cohomology. The purpose of this note is
to give a lower bound for the rank of Floer–Novikov cohomology, which also
gives a lower bound for the number of fixed points of such a symplectomor-
phism without assuming ±-monotonicity of the symplectic manifold.

One of the difficulties arising in the computation is that the coefficient
ring (the Novikov ring) of Floer–Novikov cohomology depends on the flux
of the symplectic flow, hence we cannot directly compare Floer–Novikov
cohomologies of symplectomorphisms with different fluxes. The idea in this
paper is to construct the Floer–Novikov cohomology over a smaller coeffi-
cient ring. When two time-dependent flows are close to each other, we will
give a variant of Floer–Novikov cohomologies over the same coefficient ring
so that we can compare Floer cohomologies of different fluxes. Note that
it is not enough to construct the Floer–Novikov cohomology theory over a
common coefficient ring. In [2], we introduced the universal Novikov ring
Λnov. The Floer–Novikov cochain complex, hence the Floer–Novikov coho-
mology, can be extended to objects over Λnov. Although the coefficient ring
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is the same, this construction does not directly allow us to compare the
Floer–Novikov cohomologies with different fluxes.

The Floer cohomology of a symplectomorphism sufficiently C1-close to
the identity is calculated in terms of the Novikov cohomology of the flux.
Let M be a closed manifold. The Novikov cohomology HN∗(M ; a) is defined
for a ∈ H1(M ;R), and is a finitely generated module over the Novikov ring
Λa. The function a �→ rankΛa HN∗(M ; a) attains the absolute minimum
at generic a. Denote by min-novp(M) the minimum of rankΛa HNp(M ; a),
which we call the pth minimal Novikov number. One of results in this note
is the following:

Theorem 1.1. Let φ be the time-one map of a symplectic flow on (M, ω).
If all fixed points of φ are non-degenerate, the number of fixed points of φ is
not less than

∑
p min-novp(M).

Remark 1.2. In fact, the above estimate holds for the number of fixed
points, which correspond to contractible 1-periodic orbits of the time-
dependent symplectic flow. The proof of Theorem 1.1 is based on the
Floer–Novikov cohomology theory. In general, the Floer–Novikov cohomol-
ogy cannot be described in terms of the Novikov cohomology of the flux,
cf. Proposition 2 in [8]. (In [8], the Floer(–Novikov) cohomology uses all
components of the twisted path space (or the loop space), although we only
consider the component of contractible loops in this note.)

The contents are the following. In Section 2, we briefly recall Novikov
cohomology theory for closed 1-forms. In Section 3, we review Floer–Novikov
cohomology theory. Sections 4 and 5 are the main body of this note, where
we prove the main results.

2. Review on Novikov cohomology

We summarize Novikov cohomology theory for reader’s convenience. Let
M be a closed manifold and η a closed 1-form on M . We call η a Morse
1-form, when the cross-section η of T ∗M is transversal to the zero section,
i.e., all critical points of local primitive functions for η are non-degenerate.
Define the homomorphism Iη : π1(M) → R by integrating η along loops.
We consider the covering space π : M → M corresponding to ker Iη ⊂
π1(M). The Novikov ring Λ[η] is the completion of the group algebra of
Γ = π1(M)/ ker Iη with respect to the filtration induced by Iη, i.e.,

Λ[η] =
{∑

aigi|ai ∈ Q, gi ∈ Γ, satisfying the following finiteness condition
}

For each c ∈ R, the set {i|ai �= 0, Iη(gi) < c} is finite.

Since π∗η is exact, there exists a smooth function f such that df = π∗η.
For each p ∈ Zero(η), the Morse index at p is defined by the Morse index of
f at p̃, where p̃ is any element in π−1(p).
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Pick a Riemannian metric g on M so that the gradient flow of f with
respect to π∗g is of Morse–Smale type. Choose also an orientation of the
local stable manifold at each p ∈ Zero(η). Then the Novikov cochain
complex (CN∗(M, η, g), δ) is defined as follows.

CNk(M, η, g) =

{
∑

i

aip̃i| ai ∈ Q, p̃i ∈ Crit(f),

satisfying the following conditions

}

• The index at p̃i is k for all i.
• For each c ∈ R, the set {i|ai �= 0, f(p̃i) < c} is finite.

δp̃ =
∑

j

〈p̃, q̃j〉q̃j ,

where q̃j runs over critical points of f of index p + 1. Denote by M(p̃, q̃; g)
the moduli space of gradient flow lines, with respect to π∗g, joining p̃ to
q̃. Since the gradient flow is of Morse–Smale type, M(p̃, q̃; g) is transversal
and an oriented compact 0-dimensional manifold. Here the orientation is
determined by the orientations of the local stable manifolds at p and q.
Then we define 〈p̃, q̃〉 as the signed number of points in M(p̃, q̃; g). We call
the image of a gradient flow line by π a local-gradient flow line. It is easy to
see that δ preserves the finiteness condition for elements in CN∗(M, η, g) and
δ ◦δ = 0. The resulting cohomology group is called the Novikov cohomology
HN∗(M, η) for the closed 1-form η, which enjoys the following properties:

• HN∗(M, η) does not depend on the Riemannian metric g on M .
• For cohomologous Morse 1-forms η1 and η2, the Novikov cohomologies

HN∗(M, η1) and HN∗(M, η2) are canonically isomorphic as modules
over Λ[η1] = Λ[η2].

Although the Novikov cochain complex and the Novikov ring depend on
the cohomology class [η] sensitively, we have the following:

Theorem 2.1 (cf. Theorem C.1 in [5, Appendix C]). Let η1 and η2 be
closed 1-forms such that the corresponding abelian coverings are the same,
i.e., ker Iη1 = ker Iη2. Then the ranks of the Novikov cohomologies are the
same, i.e., for each p,

rankΛ[η1] HNp(M, η1) = rankΛ[η2] HNp(M, η2).

Since we will use the idea of the proof, we briefly recall the argument.
Denote by π: M → M the covering space corresponding to ker Iη1 = ker Iη2 .
The covering transformation group is G = π1(M)/ ker Iη1 . Let f be a Morse
function on M and g a Riemannian metric on M such that the gradient
flow of f with respect to g is of Morse–Smale type. Then we have the
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Morse complex (CM∗(π∗f), δ), where the differential is defined by counting
the gradient flow lines in M . Note that CM∗(π∗f) is a module over the
group ring Q[G] and δ is a Q[G]-module homomorphism. Since the Novikov
ring Λη1 is the completion of Q[G] with respect to Iη1 , we get the extension
(CM∗(π∗f), δ) ⊗Q[G] Λη1 . Then we find the following isomorphism:

HN∗(M, η1) ∼= H∗((CM∗(π∗f), δ) ⊗Q[G] Λη1).

This follows from the following observation. Without changing the coho-
mology class of η1, we may assume that η1 vanishes in a neighborhood of each
critical point of f . For a sufficiently large N , the local-gradient flow lines of
N · df + η1 with the relative index 1 are in one-to-one correspondence with
the gradient flow lines of f with the relative index 1. Therefore, the Novikov
complex (CN∗(M, N · df + η1), δ) is isomorphic to (CM∗(π∗f), δ) ⊗Q[G] Λη1 .
Since Λη1 is a field, which is flat over Q[G], we have

H∗((CM∗(π∗f), δ) ⊗Q[G] Λη1) ∼= H∗(CM∗(π∗f), δ) ⊗Q[G] Λη1 .

Combining these, we find

rankΛη1
HN∗(M, η1) = rankΛη1

H∗(CM∗(π∗f), δ) ⊗Q[G] Λη1

= rankF(Q[G]) H∗(CM∗(π∗f), δ) ⊗Q[G] F(Q[G]).

Here, we denote by F(R) the fractional field of an integral domain R.
Similarly, we find

rankΛη2
HN∗(M, η2) = rankF(Q[G]) H∗(CM∗(π∗f), δ) ⊗Q[G] F(Q[G]).

Thus, we get Theorem 2.1.
We also proved the following:

Theorem 2.2 (cf. Theorem C.2 in [5, Appendix C]). Let η1 and η2 be closed
1-forms on M such that ker Iη1 ⊂ ker Iη2. Then the rank of HN∗(M, η1) is
less than or equal to the rank of HN∗(M, η2).

In particular, when [η] is generic in H1(M ;R), i.e., the corresponding
covering space M → M is the maximal abelian covering space of M , the
rank of its Novikov cohomology is minimal.

3. Floer–Novikov cohomology

In this section, we summarize material on Floer–Novikov cohomology fol-
lowing [5]. However, we adopt a slightly different framework, i.e., a different
covering space of the loop space here, see [7] for the necessary modifications.

3.1. Review on the construction of Floer–Novikov cochain com-
plex. Let ηt be a one-parameter family of closed 1-forms on M . Denote
by Xηt the vector field satisfying i(Xηt)ω = ηt. Integrating Xηt , we get a
one-parameter family ϕt of symplectomorphisms with ϕ0 = id. We call such
ϕt a time-dependent symplectic flow. As in Lemma 2.1 in [5], we deform
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ϕt in such a way that the cohomology class [ηt] is independent of t with-
out changing the time-one map ϕ = ϕ1. Note that the cohomology class
[η] = [ηt] is the so-called flux of {ϕt}0≤t≤1. We can also adjust and extend
the isotopy ϕt so that ϕt+1 = ϕt ◦ϕ1 holds. In other words, we may assume
that ηt is 1-periodic in t and represents the same cohomology class.

On the free loop space LM of M , we define a closed 1-form α{ϕt}, in a
formal sense, as follows.

α{ϕt}(ξ) =
∫ 1

0
ω(ξ, γ̇)dt +

∫ 1

0
ηt(ξ)dt, ξ ∈ TγLM.

We take an appropriate covering space of LM so that the pull-back of
α{ϕt} becomes exact and a ∞/2-dimensional analog of Morse index, i.e., the
Conley–Zehnder index, of a primitive function is well defined. More pre-
cisely, we consider the covering space L̃M corresponding to K = ker(Iω +
Iη) ∩ ker Ic1 , where Iω, Iη and Ic1 are homomorphisms π1(LM) → R
defined as follows.

Let {γτ} be a loop in LM and C({γτ}) the “trace” swept by a family of
loops γτ . Each loop γτ is parametrized by t ∈ R/Z = S1. We set

Iω({γτ}) =
∫

C({γτ })
ω, Ic1({γτ}) =

∫

C({γτ })
c1(M),

Iη({γτ}) =
∫ 1

0
η

(
dγτ

dτ

) ∣
∣
∣
∣
t=0

dτ.

When we consider the component of contractible loops, the covering space
L̃M → LM is described in the following way. Choose a smooth function h̃

on M such that dh̃ = π∗η. Consider the space of pairs (γ̃, w) of a loop γ̃ in M
and a disk w : D2 → M such that π ◦ γ̃ = w|∂D2 . We write (γ̃, w) ∼ (γ̃′, w′)
if and only if the following conditions hold:

π ◦ γ̃ = π ◦ γ̃′,
∫

D2
w∗ω + h̃(γ̃(0)) =

∫

D2
w′∗ω + h̃(γ̃′(0))

and
c1(M)[w�(−w′)] = 0,

where w�(−w′) is the two-sphere obtained by gluing w and w′ with the
reversed orientation along the boundaries. This is an equivalence relation
and L̃M is identified with the quotient space {(γ̃, w)}/ ∼. Choose a smooth
function H̃ : R/Z × M → R such that dH̃t = π∗ηt. Here H̃t(x) = H̃(t, x).
Then we define the action functional on L̃M by

A
˜H
([γ̃, w]) =

∫

D2
w∗ω +

∫ 1

0
H̃(t, γ̃(t))dt.
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The index of a critical point [γ̃, w] is given by the Conley–Zehnder index
of the 1-periodic orbit with respect to the trivialization of (π ◦ γ̃)∗TM ,
which extends to w∗TM . The Floer–Novikov cohomology for the time-
dependent symplectic flow {ϕt}0≤t≤1 is an ∞/2-dimensional analog of Morse
cohomology of A

˜H
. The construction of the Floer–Novikov cochain complex

is similar to the case of the Floer cochain complex for periodic Hamiltonian
systems. The technology in [3, 6] enables us to extend the construction in [5]
to time-dependent symplectic flows on general closed symplectic manifolds.
From now on, we assume that all 1-periodic orbits of ϕt are non-degenerate.

Pick a family J = {Jt} of almost complex structures compatible with ω,
which is 1-periodic in t. We set

CFNp({ϕt}, J) =

{
∑

i

ai[γ̃i, wi]|ai ∈ Q, [γ̃i, wi] ∈ CritA
˜H

satisfying the following finiteness conditions

}

.

• {i|ai �= 0, A
˜H
(γ̃i, wi) < c} is finite for any c ∈ R.

• The Conley–Zehnder index µ([γ̃i, wi]) equals p.

Note that CFN∗({ϕt}, J) is the completion of the Q-vector space freely
generated by the set of critical points of A

˜H
with respect to the filtra-

tion induced by A
˜H
. We introduce the Novikov ring Λω,η, which depends

on the cohomology classes [ω] ∈ H2(M ;R) and [η] ∈ H1(M ;R). Write
Γ = π1(LM)/K, the covering transformation group of L̃M → LM . The
homomorphisms Iω and Iη descend to homomorphisms Γ → R. We set

Λω,η =
{∑

aigi|ai ∈ Q, gi ∈ Γ satisfying the following

finiteness condition
}

.

• {i|ai �= 0, (Iω + Iη)(gi) < c} is finite for any c ∈ R.

For each contractible 1-periodic orbit γ, pick any lift [γ̃, w] ∈ L̃M .
Then they generate CFN∗({ϕt}, J) as a Λω,η-module. In particular,
CFN∗({ϕt}, J) is a finitely generated Λω,η-module. Denote by Λ0

ω,η the
subalgebra consisting of

∑
aigi such that Ic1(gi) = 0. (In fact, Λ0

ω,η is a
field.) Note that CFNp({ϕt}, J) is finitely generated over Λ0

ω,η for each p.
The coboundary operator δ is defined by counting, with signs, connecting

orbits. We call u : R × S1 → M a connecting orbit from (γ̃−, w−) to
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(γ̃+, w+) if and only if u(τ, t) satisfies the following conditions.

∂

∂τ
u(τ, t) + Jt(u(τ, t))

(
∂

∂t
u(τ, t) − Xηt(u(τ, t))

)

= 0,

lim
τ→±∞

ũ(τ, t) = γ̃±(t),

for some lift ũ : R × S1 → M of u, and

[γ̃+, w−�u] = [γ̃+, w+].

The group R acts on the space of connecting orbits by translation in the
τ -variable. The quotient space can be compactified by adding stable con-
necting orbits as in [3] to get the moduli space M([γ̃−, w−], [γ̃+, w+]) of con-
necting orbits. We have the Kuranishi structure on M([γ̃−, w−], [γ̃+, w+])
of dimension µ(γ̃+, w+)−µ(γ̃−, w−), which we call the relative index. Using
abstract multi-valued perturbation technique, we can define the “cardinal-
ity” 〈[γ̃−, w−], [γ̃+, w+]〉 ∈ Q when µ(γ̃+, w+) − µ(γ̃−, w−) = 1 and

δ[γ̃, w] =
∑

〈[γ̃, w], [γ̃′, w′]〉[γ̃′, w′],

where [γ̃′, w′] runs over the set of critical points of A
˜H

such that µ(γ̃′, w′) =
µ(γ̃, w) + 1. We can also show that δ ◦ δ = 0. The resulting cohomol-
ogy HFN∗({ϕt}; J) is called the Floer–Novikov cohomology for the time-
dependent symplectic flow ϕt, which can be shown to be independent of J .
As in the case of Hamiltonian isotopies, we get invariance under Hamiltonian
deformations.

Theorem 3.1 (Theorem 4.6 in [5]). Let ϕt and ψt be time-dependent sym-
plectic flows. If ψt ◦ (ϕt)−1 is a Hamiltonian isotopy, then we have a natural
isomorphism as Λω,η-modules

HFN∗({ϕt}) ∼= HFN∗({ψt}).

In the proof, we use a τ -dependent analog of the connecting orbit equa-
tion. Let H̃− and H̃+ be smooth functions on S1 × M → R generating ϕt

and ψt, respectively. By the hypothesis that ψt ◦ (ϕt)−1 is a Hamiltonian
isotopy, there exists a function h on S1 × M such that H̃+ = H̃− + π∗h.
Pick a smooth function β(τ) such that β(τ) = 0 for τ << 0 and β(τ) = 1 for
τ >> 0. The Hamiltonian vector field of H̃−

t + β(τ)π∗ht on M is invariant
under the covering transformations of M → M and descends to a symplectic
vector field on M , which we denote by Xτ,t. Choose a family Jτ,t of compat-
ible almost complex structures such that Jτ,t equals Jt, resp. J ′

t for τ << 0,
resp. τ >> 0. Let [γ̃−, w−] and [γ̃+, w+] be critical points of A

˜H− and A
˜H+ ,
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respectively. We consider the following differential equation, which we call
the cochain homomorphism equation.

∂

∂τ
u(τ, t) + Jτ,t(u(τ, t))

(
∂

∂t
u(τ, t) − Xτ,t(u(τ, t))

)

= 0,

lim
τ→±∞

ũ(τ, t) = γ̃±(t),

where ũ : R × S1 → M is a lift of u, and

[γ̃+, w−�u] = [γ̃+, w+].

A cochain homomorphism CFN∗({ϕt}, J) → CFN∗({ψt}, J ′) is defined by
“counting” the solutions of the cochain homomorphism equation.

For any solution u of the cochain homomorphism equation, the following
energy estimate holds under the hypothesis that ψt◦(ϕt)−1 is a Hamiltonian
isotopy:

E(u) =
∫ +∞

−∞

∫ 1

0

∣
∣
∣
∣
∂u

∂τ

∣
∣
∣
∣

2

dτ dt ≤ A
˜H+([γ̃+, w+]) − A

˜H−([γ̃−, w−]) + C,

where C is a constant depending on h and β. Based on this estimate,
the Gromov compactness holds for solutions of the equation. We use the
technique in [3, 6] to define a cochain homomorphism, which induces an
isomorphism between cohomologies.

3.2. Changing the flux. For a general pair ϕt, ψt of time-dependent sym-
plectic flows, we do not have a similar energy estimate. Note also that
the Novikov rings are different, when the fluxes are different. Thus, even
when the energy estimate holds, the cochain homomorphism may not be
obtained in the same manner. For these reasons, in [5] we could compute
the Floer–Novikov cohomology for time-dependent symplectic flows only
when the symplectic manifold is either monotone or negatively monotone.
The argument is based on an energy estimate, which is only valid for special
deformations.

In Subsections 3.2 and 3.3, we study solutions of the connecting orbit
equation and the cochain homomorphism equation. Let π : M̃ → M be a
free abelian covering space such that π∗ηt = dH̃t for some smooth function.
Here M̃ → M is not necessarily the minimal abelian covering space M → M

as in Section 2. H̃ : R/Z × M̃ → R. Denote by gJ the Riemannian metric
gJ(v1, v2) = ω(v1, Jv2). We choose ε > 0 so small that the ε-neighborhood
of each 1-periodic orbit γ = π ◦ γ̃ of ϕt is a tubular neighborhood of it in
M and

1
4
d(γ̃(t), γ̃′(t)) > ε

for distinct 1-periodic solutions γ̃ and γ̃′ in M̃ and t ∈ R/Z. Here d(·, ·)
is the Riemannian distance with respect to π∗gJ . We may also assume the
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following condition, see Lemma 5.2 in [5]. There exists δ1 > 0 such that
‖Xt(σ(t)) − σ̇(t)‖L2 > δ1 for a loop σ satisfying maxt d(σ(t), γ(t)) > ε for
any 1-periodic orbit γ.

We vary the flux of the time-dependent symplectic flow in the following
way. Suppose that ϕ = ϕ1 has only non-degenerate fixed points, hence
only finitely many 1-periodic orbits on M . Denote by {Xt} the family
of symplectic vector fields, which generates {ϕt}. Let θt be a 1-periodic
family of closed 1-forms representing the same cohomology class such that
θt vanishes on the ε-neighborhood of each contractible 1-periodic orbit of ϕt.
Let {φθt

t } be the symplectic flow generated by {Xθt}, where Xθt is defined
by i(Xθt)ω = θt. Then we find that φθt

t ◦ ϕt is generated by dφθt
t (Xt) + Xθt .

Clearly, there exists a constant δ2 > 0 such that, if ‖θt‖C1 < δ2 for each
t, |Xt − dφθt

t (Xt)| < δ1/3 at each point. If necessary, we choose δ2 small
enough so that δ2 < δ1/3. Under this assumption, we find that φθt

t ◦ ϕt

has the same contractible 1-periodic orbits as ϕt. Suppose that σ(t) is a
contractible 1-periodic orbit of φθt

t ◦ ϕt, which is not a 1-periodic orbit of
ϕt. Since φθt

t is the identity on the ε-neighborhood of each contractible
1-periodic orbit γ(t) of ϕt, we have

d(σ(t), γ(t)) > ε.

Thus we have

‖dφθt
t (Xt)(σ(t))+Xθt(σ(t))−σ̇(t)‖ > ‖Xt(σ(t))−σ̇(t)‖− 1

3
δ1−δ2 >

1
3
δ1 > 0,

which is a contradiction. Hence ϕt and φθt
t ◦ ϕt have the same contractible

1-periodic orbits.
From now on, we assume that the cohomology class [π∗θt] ∈ H1(M̃ ;R)

vanishes. Simply write δ = δ2. Denote by h̃ a smooth function on R/Z×M̃

such that H̃ + h̃ generates the symplectic isotopy {φθt
t ◦ ϕt}. In fact, h̃ =

(φθt
t )∗H̃ + h̄θt − H̃, where h̄θt is a function on S1 × M̃ such that dh̄θt

t = π∗θt

for each t ∈ S1.
As in subsection 3.1, we consider the following cochain homomorphism

equation:

∂

∂τ
u(τ, t) + Jτ,t(u(τ, t))

(
∂

∂t
u(τ, t) − Xτ,t(u(τ, t))

)

= 0,

with
Xτ,t = X

˜H
+ β(τ)X

˜h
.

Here β is the same function as in subsection 3.1.

Lemma 3.2. (Lemma 5.4 in [5]). If the closed 1-forms θt satisfy
‖θt‖C0 < δ/3, then we have the following energy estimate for solutions of
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the cochain homomorphism equation for the homotopy from H̃− = H̃ to
H̃+ = H̃ + h̃

E(u) ≤ 3(A
˜H
([γ̃+, w+]) − A

˜H
([γ̃−, w−])),

where [γ̃−, w−] and [γ̃+, w+] are critical points of A
˜H

and A
˜H+˜h

, respec-
tively. A similar inequality holds, when the roles of A

˜H
and A

˜H+˜h
are

exchanged, i.e., the estimate also holds for the cochain homomorphism
equation for the homotopy from H̃ + h̃ to H̃.

This lemma guarantees the energy bound for solutions of the τ -dependent
analog of the connecting orbit equation with prescribed initial and final con-
ditions. We use this fact to construct a cochain homomorphism between vari-
ants of Floer–Novikov cohomologies, which we will introduce in Section 4,
with slightly different fluxes.

3.3. Energy-distance inequality. It is natural to expect that the energy
of a connecting orbit u is roughly bounded from below by a quantity pro-
portional to the distance between γ̃− and γ̃+ in M̃ . More precisely, we will
prove Lemma 3.4, which is a key of the construction of the Floer–Novikov
cohomology over a smaller coefficient ring.

Lemma 3.3. There exists e > 0 with the following property. Suppose that,
for a connecting orbit u, there exist R1 < R2 and distinct 1-periodic orbits
γ̃1 and γ̃2 in M̃ such that maxt d(u(Ri, t), γ̃i(t)) ≤ ε. Then the following
inequality holds:

∫ R2

R1

∫ 1

0

∣
∣
∣
∣
∂u

∂τ

∣
∣
∣
∣

2

dτ dt > e.

Proof. Without loss of generality, we may assume that

• maxt d(u(Ri, t), γ̃i(t)) = ε.
• For r ∈ (R1, R2), maxt d(u(r, t), γ̃(t)) > ε for any 1-periodic solution

γ̃.

In the case that R2 −R1 ≤ 1, the Cauchy–Schwarz inequality implies that
∫ R2

R1

∫ 1

0

∣
∣
∣
∣
∂u

∂τ

∣
∣
∣
∣

2

dτ dt ≥
∫ 1

0

(∫ R2

R1

∣
∣
∣
∣
∂u

∂τ

∣
∣
∣
∣ dτ

)2

dt

≥
(
min

t
d (γ̃1 (t) , γ̃2(t)) − 2ε

)2
> 4ε2.

In the case that R2 − R1 > 1, we show that
∫ R2

R1

∫ 1

0

∣
∣
∣
∣
∂u

∂τ

∣
∣
∣
∣

2

dτ dt >
δ2

2
.
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Then the desired inequality holds with e = min{4ε2, δ2/2}. We suppose the
contrary. Choose a real number R such that [R, R + 1] ⊂ (R1, R2). Since

∫ R+1

R

∫ 1

0

∣
∣
∣
∣
∂u

∂τ

∣
∣
∣
∣

2

dτ dt ≤ δ2

2
,

there is r ∈ (R, R + 1) such that ‖∂u
∂t (r, t) − Xt(u(r, t))‖L2 < δ. By the

choice of δ, t �→ u(r, t) is ε-close to some 1-periodic solution γ̃(t) for some
r ∈ (R1, R2), i.e., maxt d(u(r, t), γ̃(t)) ≤ ε. This is a contradiction. �

Lemma 3.4. Let u be a connecting orbit from [γ̃−, w−] to [γ̃+, w+]. Then
the following inequality holds for δ as above:

E(u) ≥ δ

2
ρ(γ̃−, γ̃+),

where

ρ(γ̃−, γ̃+) =
∫ 1

0
d(γ̃−(t), γ̃+(t))dt.

This is essentially Lemma 3.5 in [5], the proof of which is made more
precise below.

Proof. Firstly, we note that there are finitely many real numbers −∞ <
R1− < R1+ < R2− < · · · < Rk− < Rk+ < +∞ and 1-periodic solutions
γ̃0 = γ̃−, γ̃1 . . . γ̃k = γ̃+ such that

• maxt d(γ̃i−1(t), u(Ri−, t)) = maxt d(γ̃i(t), u(Ri+, t)) = ε for i =
1, . . . , k.

• maxt d(u(τ, t), γ̃(t)) > ε for τ ∈ (Ri−, Ri+) and any 1-periodic solution
γ̃.

Note also that k < E(u)/e by Lemma 3.3. In particular, the finiteness of k
follows from the fact that E(u) is finite.

We observe that

ERi+

Ri− (u) =
∫ Ri+

Ri−

∫ 1

0

∣
∣
∣
∣
∂u

∂τ

∣
∣
∣
∣

2

dτ dt

=
∫ Ri+

Ri−

⎛

⎝

√
∫ 1

0

∣
∣
∣
∣
∂u

∂t
(τ, t) − Xt(u(τ, t))

∣
∣
∣
∣

2

dt

⎞

⎠

2

dτ.

Applying the Cauchy-Schwarz inequality, we get

ERi+

Ri− (u) ≥ 1
Ri+ − Ri−

⎛

⎝
∫ Ri+

Ri−

√
∫ 1

0

∣
∣
∣
∣
∂u

∂t
(τ, t) − Xt(u(τ, t))

∣
∣
∣
∣

2

dt dτ

⎞

⎠

2

.
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Using the condition for u|[Ri−,Ri+]×S1 and the connecting orbit equation, we
get

ERi+

Ri− (u) ≥ δ

∫ Ri+

Ri−

√
∫ 1

0

∣
∣
∣
∣
∂u

∂τ

∣
∣
∣
∣

2

dt dτ.

Once again applying the Cauchy–Schwarz inequality, we get

ERi+

Ri− (u) ≥ δ

∫ Ri+

Ri−

∫ 1

0

∣
∣
∣
∣
∂u

∂τ

∣
∣
∣
∣ dt dτ ≥ δ

(
ρ(γ̃i−1(t), γ̃i(t)) − 2ε

)
.

Now we show that

ERi+

Ri− (u) ≥ δ

2
(
ρ(γ̃i−1(t), γ̃i(t))

)
.

When γ̃i−1 = γ̃i, this is obvious. Otherwise, we have ρ(γ̃i−, γ̃i+) > 4ε, hence

ERi+

Ri− (u) ≥ δ(ρ(γ̃i−1(t), γ̃i(t)) − 2ε) ≥ δ

2
ρ(γ̃i−1(t), γ̃i(t)).

Thus we get

E(u) ≥
k∑

i=1

ERi+

Ri− (u) ≥ δ

2
ρ(γ̃−, γ̃+).

�
In the line of the proof of Lemma 3.4, we find the following:

Lemma 3.5. Let u be as in Lemma 3.2. Then we have
(
A

˜H
([γ̃+, w+]) − A

˜H
([γ̃−, w−])

)
>

δ

6
ρ(γ̃−, γ̃+).

Proof. Set �τ (t) = u(τ, t). Suppose that the loop �τ satisfies max(�τ (t), γ(t))
> ε for any 1-periodic orbit γ, then we find that

√
∫ 1

0

∣
∣
∣
∣
∂u

∂τ

∣
∣
∣
∣

2

dt ≥

√
∫ 1

0

∣
∣
∣
∣
∂u

∂t
− Xt(u)

∣
∣
∣
∣

2

dt − 2δ

3
≥ δ

3
.

Taking this inequality into account, we easily adapt the proof of Lemmas
3.3 and 3.4 to obtain the desired estimate. �

4. Variants of Floer–Novikov cochain complex

In the construction of the Floer–Novikov cohomology, the abelian covering
space M → M depends on the flux η of the time-dependent symplectic
flow. To compare Floer–Novikov cohomologies with different fluxes, we need
to construct a variant of Floer–Novikov cohomology in the same abelian
covering space of M . In this section, M̃ → M denote a free abelian covering
space of M such that π∗η is exact. For instance, the maximal abelian
covering space of M . Another choice is the smallest covering space with
this property as in Section 3. With the help of Lemma 3.4, we construct
two variants of the Floer–Novikov cohomology as follows.
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The first construction is almost straightforward. Let ϕt be a time-
dependent symplectic flow with 1-periodic ηt. Suppose that π∗ηt is exact on
M̃ . Choose H̃ such that dH̃t = π∗ηt. Denote by A

˜H
the functional on L̃M̃

consisting of the equivalence classes of (γ̃, w), where γ̃ is a loop on M̃ and
w is a bounding disk for π ◦ γ̃. We write (γ̃, w) ∼ (γ̃′, w′) if they satisfy the
following conditions.

γ̃ = γ̃′,
∫

D2
w∗ω =

∫

D2
w′∗ω,

and
c1(M)[w�(−w′)] = 0.

We set

CFNp({φt}, J ; M̃) =

{
∑

i

ai[γ̃i, wi]|ai ∈ Q, [γ̃i, wi] ∈ Crit A
˜H

satisfying the following finiteness conditions

}

.

• {i|ai �= 0, A
˜H
(γ̃i, wi) < c} is finite for any c ∈ R.

• The Conley–Zehnder index µ([γ̃i, wi]) equals p.
The coboundary operator is defined by the same formula in Section 3. By

the usual compactness argument applied to the solution π◦u of the perturbed
Cauchy–Riemann equation with values in M , we find that there are only
finitely many connecting orbits, whose energy is bounded by a fixed constant,
of relative index 1 starting from a fixed critical point [γ̃, w] ∈ L̃M̃ , after
the abstract multi-valued perturbation as in [3]. Therefore, the finiteness
condition is preserved by the Floer–Novikov coboundary operator. (In fact,
Lemma 3.4 guarantees a stronger finiteness condition as we will see below.)

Since we work with a different covering space of the loop space, the coeffi-
cient ring of this variant of the Floer–Novikov cochain complex is also differ-
ent from the one in Section 3. The covering transformation group of L̃M̃ →
LM is isomorphic to Π = {π1(M)/π1(M̃)} ⊕ {π2(M)/(ker Iω ∩ ker Ic1)}.
Hence the coefficient ring is the completion Λ̃ω,η = Λ

ω,η,˜M→M
of the group

algebra of Π with respect to Iη + Iω.

Definition 4.1. We call the resulting cohomology group HFN∗({ϕt}, J ; M̃)
the Floer–Novikov cohomology associated to the covering M̃ → M , which
is a module over Λ̃ω,η.

Remark 4.2. If [η] ∈ ker H1(M ;R) → H1(M̃ ;R) is in a general position,
ker(Iη + Iω) = ker Iη ∩ Iω and M̃ coincides with M in Section 3, i.e., the
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smallest abelian covering space such that π∗η is exact. In such a case, Λ̃ω,η

coincides with Λω,η. Without such a genericity assumption on η, they need
not be isomorphic and the degree zero part of Λ̃ω,η is not necessarily a
principal ideal domain. But it is Noetherian.

Now we give a second variant of the Floer–Novikov cohomology. Let U
be a sufficiently small neighborhood of the origin in ker{π∗ : H1(M ;R) →
H1(M̃ ;R)}, which will be specified later. We consider the finiteness
condition with respect to Iη+θ + Iω for all [θ] ∈ U . Namely we set

Λ̂ω,η,U =
{∑

aigi|ai ∈ Q, gi ∈ Π satisfying the following

finiteness condition
}

• {i|ai �= 0, (Iη+θ + Iω)(gi) < c} is finite for any c ∈ R and any [θ] ∈ U .
Similarly we define the Floer–Novikov cochain complex as follows. Pick

a function h̃θ : M̃ → R such that dh̃θ = π∗θ.
̂CFN

p

U ({ϕt}, J) =
{∑

ai[γ̃i, wi]|ai ∈ Q, [γ̃i, wi] ∈ CritA
˜H

satisfying the following conditions
}

.

• {i|ai �= 0, A
˜H+˜hθ(γ̃i, wi) < c} is finite for any c ∈ R and any [θ] ∈ U .

• The Conley–Zehnder index µ([γ̃i, wi]) equals p.

Remark 4.3. Let Θ = {θt} be a family of closed 1-forms representing the
cohomology class [θ] and h̃Θ a smooth function on S1 ×M̃ such that H̃ + h̃Θ

generates {φθt
t ◦ ϕt}. Then the finiteness condition with respect to A

˜H+˜hθ

is equivalent to the one with respect to A
˜H+˜hΘ . In particular, the first

condition is independent of the choice of the primitive function h̃θ.

Let u be a connecting orbit from [γ̃−, w−] to [γ̃+, w+]. By Lemma 3.4,
we have

∣
∣
∣

∫ 1

0
h̃θ(γ̃+(t))dt −

∫ 1

0
h̃θ(γ̃−(t))dt

∣
∣
∣ < ‖θ‖C0ρ(γ̃+, γ̃+)

< 2‖θ‖C0
E(u)

δ
,

for θ as in Section 3.2. Recall that E(u) = A
˜H
(γ̃+, w+)−A

˜H
(γ̃−, w−). Thus,

for a sufficiently small θ, say ‖θ‖C0 < δ/4, we find that A
˜H+˜hθ(γ̃+, w+) >

A
˜H+˜hθ(γ̃−, w−). Hence the filtration by A

˜H+˜hθ is preserved under the
Floer–Novikov coboundary operator δ. This implies that the coboundary
operator δ preserves the finiteness condition for ̂CFN

∗
U ({ϕt}, J), if U is a

sufficiently small neighborhood of the origin, say the δ/4-neighborhood of
the origin. (We will choose a smaller neighborhood later.) In this way,
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we get a smaller Floer–Novikov cochain complex (̂CFN
∗
U ({ϕt}, J), δ) as a

subcomplex of (CFN∗({ϕt}, J ; M̃), δ).

Definition 4.4. We denote the resulting cohomology group by ̂HFN
∗
U (ϕt,J).

We set

U =
{

[θ] ∈ H1(M ;R)|‖θ‖C0 <
δ

10

}

∩ ker{π∗ : H1(M ;R) → H1(M̃ ;R)}.

Let Θ = {θt} be a 1-periodic family of closed 1-forms representing c ∈ U
such that all θt vanish in a neighborhood of any contractible 1-periodic orbit
of φt. Write U ′ = U − c = {a− c|a ∈ U}. Note that Λ̂ω,η,U = Λ̂ω,η+c,U ′ . The
following proposition can be shown by repeating the argument above.

Proposition 4.5. The Floer–Novikov coboundary operator preserves the
Λ̂ω,η+c,U ′-module ̂CFN

∗
U ′({φθt

t ◦ ϕt}, J).

Now we compare the smaller Floer–Novikov cohomologies for ϕt and
φθt

t ◦ ϕt.

Theorem 4.6. Let θt be a 1-periodic family of closed 1-forms as above.
The smaller Floer–Novikov cohomologies ̂HFN

∗
U ({ϕt}, J) and ̂HFN

∗
U ′({φθt

t ◦
ϕt}, J) are isomorphic as Λ̂ω,η,U -modules.

Proof. We may assume that θt is a 1-periodic family of sufficiently small
closed 1-forms as in Section 3. The cochain homomorphism between
̂CFN

∗
U ({ϕt}, J) and ̂CFN

∗
U ′({φθt

t ◦ ϕt}, J) is defined by counting solutions
of the τ -dependent analog of the connecting orbit equation. Lemma 3.2
gives the energy bound for solutions with prescribed end points. Note that

∣
∣
∣

∫ 1

0
h̃θ

t (γ̃
+(t)) dt −

∫ 1

0
h̃θ

t (γ̃
−(t)) dt

∣
∣
∣ < ‖θ‖C0ρ(γ̃−, γ̃+).

Lemma 3.5 implies that

ρ(γ̃−, γ̃+) <
6
δ

(
A

˜H
([γ̃+, w+]) − A

˜H
([γ̃−, w−])

)

for a solution u of the cochain homomorphism equation from [γ̃−, w−] to
[γ̃+, w+]. Thus we find that

A
˜H+˜hθ([γ̃+, w+]) > A

˜H+˜hθ([γ̃−, w−]),

for θ ∈ U . Hence, by counting the number of solutions of the cochain
homomorphism equation, we can assign an element in ̂CFN

∗
U ′({φθt

t ◦ ϕt}, J)
to each [γ̃−, w−] ∈ ̂CFN

∗
U ({ϕt}, J). We also see that this mapping extends

to a homomorphism from ̂CFN
∗
U ({ϕt}, J) to ̂CFN

∗
U ′({φθt

t ◦ ϕt}, J).
It is easy to see that the cochain homomorphism obtained above is a

Λ̂ω,η,U -module homomorphism. Then the rest of the standard argument in
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Floer theory goes through in a similar way and this cochain homomorphism
induces an isomorphism between cohomology modules. �

Let M be a module over an integral domain R, we write rankR M =
dimF (R) M ⊗R F (R). Since the Floer–Novikov cochain complex (CFN∗

({ϕt}, J), δ; M̃) associated to the covering space M̃ → M is obtained from
the smaller Floer–Novikov cochain complex (̂CFN

∗
U ({ϕt}, J), δ) by extend-

ing the coefficient ring, we have

rank
˜Λω,η

HFN∗({ϕt}, J ; M̃) = dimF(˜Λω,η) HFN∗({ϕt}, J ; M̃) ⊗
˜Λω,η

F(Λ̃ω,η)

= dimF(˜Λω,η) H∗((CFN∗({ϕt}, J), δ; M̃)⊗
˜Λω,η

F(Λ̃ω,η))

= dimF(˜Λω,η) H∗(̂CFN
∗
U ({ϕt}, δ)⊗

̂Λω,η,U

F(Λ̃ω,η))

= dimF(̂Λω,η,U ) H∗(̂CFN
∗
U ({ϕt}, δ)⊗

̂Λω,η,U

F(Λ̂ω,η,U ))

= dimF(̂Λω,η,U )
̂HFN

∗
U ({ϕt}, J) ⊗

̂Λω,η,U
F(Λ̂ω,η,U )

= rank
̂Λω,η,U

̂HFN
∗
U ({ϕt}, J)

Combining with Theorem 4.6, we get the following:

Proposition 4.7. rank
˜Λω,η

HFN∗({ϕt}, J ; M̃) = rank
˜Λω,η+c

HFN∗({φθt
t ◦

ϕt}, J ; M̃).

Note that we do not claim that rankΛω,η HFN∗({ϕt}, J) coincides with
rankΛω,η+cHFN∗({φθt

t ◦ ϕt}, J). We define an equivalence relation on V =
ker{π∗ : H1(M ;R) → H1(M̃ ;R)} by setting η ∼ η′ if and only if we have
rank

˜Λω,η
HFN∗({ϕt}, J ; M̃) = rank

˜Λω,η′
HFN∗({ϕ′

t}, J : M̃). Here η (resp. η′)

is the flux of {ϕt} (resp. {ϕ′
t}). Proposition 4.7 implies that {η|η ∼ η0} is an

open subset of V . Hence V is decomposed into disjoint open subsets. Since
V is connected, all elements are equivalent. In other words, we obtained the
following:

Proposition 4.8. rank
˜Λω,η

HFN∗({ϕt}, J ; M̃) does not depend on [η] ∈ V .

If [η] ∈ V is sufficiently small, we can compute the Floer–Novikov coho-
mology. Namely, for a sufficiently C1-small Morse 1-form η, the Floer–
Novikov coboundary operator does not contain any quantum contribution,
i.e., it is described by only bounded local-gradient flow lines. Hence the
Floer–Novikov cohomology for such an η is described by the Novikov coho-
mology for η, see [5, 7]. We obtain the following:
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Theorem 4.9. Let η be a sufficiently small element in V . If η is in general
position in the sense of Remark 4.2, we have

rank
˜Λω,η

HFN∗({ϕt}, J ; M̃) =
∑

p

rankΛη HNp(M, [η]).

In particular,

rank
˜Λω,η

HFN∗({ϕt}, J ; M̃) ≥
∑

p

min-novp(M).

Proof. When η ∈ V is in general position in the sense of Remark 4.2,
the cochain complex (CFN∗({φt}, J ; M̃), δ) coincides with the usual Floer–
Novikov cochain complex (CFN∗({φt}, J), δ). Moreover, as we have seen in
[5, 7], the bounded local gradient flow lines are the only connecting orbits
contributing to the Floer–Novikov coboundary operator δ. Hence we obtain
the first equality. The second inequality is clear by the definition of the
minimal Novikov number. �

5. Comparison result

In the previous section, we established an estimate for the rank of the coho-
mology HFN∗({ϕt}, J ; M̃). In this section, we give an estimate for the rank
of HFN∗({ϕt}, J). Here π : M̃ → M is a covering space so that π∗η is exact.
Note that we use a smaller covering space of the loop space of M in order
to define the Floer–Novikov cochain complexes (CFN∗({ϕt}, J), δ) than in
the definition of (CFN∗({ϕt}, J ; M̃), δ). Namely, L̃M in Section 3 is the
quotient of L̃M̃ by the group generated by (g, h) ∈ π1(M) × π2(M) such
that Iη(g) + Iω(h) = 0 and c1(M)[h] = 0. We consider the Floer–Novikov
complex (̂CFN

∗
U ({ϕt}, J ; M̃), δ) over Λ̂ω,η,U . We show that the degree zero

part of Λ̂ω,η,U is a principal ideal domain.

Lemma 5.1. Λ̂0
ω,η,U is a principal ideal domain.

Proof. Pick θ ∈ U in a general position so that the function Iω + Iη+θ is
injective. Then the conclusion is proved by the standard argument (see e.g.,
Section 4 [4]). �

Now we prove the following theorem comparing the Floer–Novikov coho-
mology associated to the covering M̃ → M and the genuine Floer–Novikov
cohomology.

Theorem 5.2. rank
˜Λω,η

HFN∗({ϕt}, J ; M̃) = rank
̂Λω,η,U

̂HFN
∗
U ({ϕt}) ≤

rankΛω,ηHFN∗({ϕt}).

Proof. The first equality has been proved just before Proposition 4.7. We
prove the second inequality.
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The variant ̂HFN
∗
U ({ϕt}) of the Floer–Novikov cohomology is a module

over Λω,η,U while the genuine Floer–Novikov cohomology HFN∗({ϕt}) is a
module over Λω,η. As for the coefficient rings, there is a natural homomor-
phism Λ̂ω,η,U → Λω,η, the restriction of which to the degree zero part is
Λ̂0

ω,η,U → Λ0
ω,η.

Let ̂ZFN
p

U and ̂BFN
p

U be the submodules of cocycles and coboundaries
of (̂CFN

∗
U ({ϕt}, J ; M̃), δ), respectively. Denote by ZFNp and BFNp the

submodules of cocycles and coboundaries in CFNp({ϕt}, J), respectively.
Then we have

̂BFN
p

U ⊗
̂Λ0

ω,η,U
Λ0

ω,η = BFNp,

̂ZFN
p

U ⊗
̂Λ0

ω,η,U
Λ0

ω,η ⊂ ZFNp.

Hence, we have

̂HFN
p

U ({ϕt}, J ; M̃) ⊗
̂Λ0

ω,η,U
Λ0

ω,η ⊂ HFNp({ϕt}, J).

Since ̂CFN
∗
U ({ϕt}, J ; M̃) is finitely generated over the principal ideal domain

Λ̂0
ω,η,U , there is an isomorphism

̂HFN
p

U ({ϕt}, J ; M̃) ∼= (Λ̂0
ω,η,U )⊕lp ⊕ Tors,

where Tors is a torsion module over Λ̂0
ω,η,U . Therefore, ̂HFN

p

U ({ϕt}, J ; M̃)
⊗

̂Λ0
ω,η,U

Λ0
ω,η contains a free module of rank lp over Λ0

ω,η, which is also a

principal ideal domain. (In fact, the degree zero part Λ0
ω,η of the Novikov

ring with coefficients in a field is also a field.) Thus we find that

rank
̂Λ0

ω,η,U

̂HFN
p

U ({ϕt}, J ; M̃) ≤ rankΛ0
ω,η

HFNp({ϕt}, J).

Note also that, if the minimal Chern number N of (M, ω) is not zero,

rankΛω,η HFN∗({ϕt}, J) =
2N−1∑

p=0

rankΛ0
ω,η

HFNp({ϕt}, J)

and

rank
̂Λω,η,U

̂HFN
∗
U ({ϕt}, J ; M̃) =

2N−1∑

p=0

rank
̂Λ0

ω,η,U

̂HFN
p

U ({ϕt}, J ; M̃).

If N = 0, Λω,η and Λω,η,U coincide with their degree zero part Λ0
ω,η and

Λ0
ω,η,U , respectively, and we find that

rankΛω,η HFN∗({ϕt}, J) =
∑

p

rankΛ0
ω,η

HFNp({ϕt}, J)
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and

rank
̂Λω,η,U

̂HFN
∗
U ({ϕt}, J ; M̃) =

∑

p

rank
̂Λ0

ω,η,U

̂HFN
p

U ({ϕt}, J ; M̃).

From these facts, we obtain the second inequality. �
Combined with Proposition 4.8 and Theorem 4.9, we obtain the following

theorem, which is the goal of this section.

Theorem 5.3. rankΛω,η HFN∗({ϕt}) ≥
∑

p min-novp(M).

Proof. By Proposition 4.8 and Theorem 4.9, we find that

rank
˜Λω,η

HFN∗({ϕt}, J ; M̃) ≥
∑

p

min-novp(M).

Combining this inequality with Theorem 5.2, we obtain the conclusion. �
Theorem 1.1 is a direct consequence of Theorem 5.3.
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