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The main goal of our paper is the study of several classes of
submanifolds of generalized complex manifolds. Along with
the generalized complex submanifolds defined by Gualtieri
and Hitchin in [Gua], [H3] (we call these “generalized La-
grangian submanifolds” in our paper), we introduce and study
three other classes of submanifolds and their relationships.
For generalized complex manifolds that arise from complex
(resp., symplectic) manifolds, all three classes specialize to
complex (resp., symplectic) submanifolds. In general, how-
ever, all three classes are distinct. We discuss some interest-
ing features of our theory of submanifolds, and illustrate them
with a few nontrivial examples. Along the way, we obtain a
complete and explicit classification of all linear generalized
complex structures.

We then support our “symplectic/Lagrangian viewpoint”
on the submanifolds introduced in [Gua], [H3] by defining the
“generalized complex category”, modelled on the construc-
tions of Guillemin-Sternberg [GS] and Weinstein [W2]. We
argue that our approach may be useful for the quantization
of generalized complex manifolds.
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1. Introduction

1.1. Motivation. The goal of our paper is the study of certain special
classes of submanifolds of generalized complex manifolds. The notion of
a generalized complex manifold was introduced by Nigel Hitchin in [H2].
It contains as special cases both complex and symplectic manifolds. Later
Marco Gualtieri and Hitchin ([Gua], [H3]) have defined a class of subman-
ifolds of generalized complex manifolds which they have called “generalized
complex submanifolds” and which in this paper we call “generalized La-
grangian submanifolds”, for the reasons explained below. Hitchin’s and
Gualtieri’s notion specializes to complex submanifolds of complex manifolds
and to Lagrangian submanifolds of symplectic manifolds. In particular, if M
is a generalized complex manifold, then, in general, neither M itself nor the
points of M are generalized complex submanifolds of M in their terminology.

Our first task, then, was to find a different definition which gives com-
plex submanifolds in the complex case and symplectic submanifolds in the
symplectic case. It is also important to understand the relationship between
our notion of a generalized complex submanifold and Hitchin and Gualtieri’s
notion; and, on the other hand, to try to see if Hitchin and Gualtieri’s notion
can be used in the theory of generalized complex manifolds in a similar way
that Lagrangian submanifolds are used in symplectic geometry. For exam-
ple, if φ : N → M is a diffeomorphism between two symplectic manifolds,
it is well-known (see, e.g., [CdS]) that φ is a symplectomorphism if and
only if the graph of φ is a Lagrangian submanifold of N × M with respect
to the “twisted product symplectic structure” on N × M . It is natural to
ask if the obvious generalization of this result holds for generalized complex
manifolds.

More generally, suppose (M, ωM ) is a symplectic manifold and N is a
submanifold of M which carries a symplectic form ωN . Again, it is easy to
see that ωN = ωM

∣

∣

N
if and only if the graph of the inclusion map N →֒ M

is an isotropic submanifold of N × M with respect to the twisted product
symplectic structure. On the other hand, if M is a real manifold, N is a
submanifold of M , and both M and N are equipped with complex structures,
then N is a complex submanifold of M if and only if the graph of the
inclusion map N →֒ M is a complex submanifold of N ×M with respect to
the product complex structure.

A starting point for our discussion is the observation that the conditions
appearing in Gualtieri and Hitchin’s definition of a generalized complex sub-
manifold can be relaxed naturally, so that the resulting object specializes
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to complex submanifolds in the complex case and to isotropic submanifolds
in the symplectic case. We call these objects “generalized isotropic sub-
manifolds.” One of the main goals of our work was trying to generalize the
remarks of the previous paragraph to find a relationship between generalized
isotropic submanifolds and our notion of generalized complex submanifolds.

Another goal was to define and study the “generalized complex category”,
in the spirit of [W1], [W2]. The definition is based on the notion of a
generalized Lagrangian submanifold. We believe that this “category” can
be used to study quantization of generalized complex manifolds. (The word
“category” appears in quotes, because, as explained in [W1] or [W2], a
certain transversality condition has to be satisfied for a pair of morphisms
to be composable.)

The class of submanifolds which we call generalized complex submanifolds
is distinguished in that (in contrast to the others) its members naturally in-
herit a generalized complex manifold structure from the ambient manifold.
After the first version of our paper has appeared we have learned of a new
definition of a class of submanifolds of generalized complex manifolds which
includes the submanifolds introduced by Gualtieri and Hitchin as a sub-
class. These submanifolds are called generalized complex branes in a recent
paper of Kapustin [Kap] on Topological Strings. We do not investigate
the relationships of generalized complex branes to the other submanifolds
introduced in our paper.

1.2. Main results. Most of our paper is devoted to the study of generalized
complex structures on real vector spaces. Only at the end do we apply our
results to generalized complex manifolds. While we feel that our study of
subspaces of generalized complex vector spaces is more or less complete, it is
clear that our results for generalized complex manifolds have a preliminary
nature. Still, we believe that the questions that we have raised are already
fundamental at the vector space level and thus have to be addressed. Fur-
thermore, as we show, the linear situation is far from being trivial (unlike
in the theory of complex or symplectic vector spaces), due to the possibility
of a B-field transformation.1 Some unexpected features of the theory are
described below.

The first part of our paper is devoted to the study of induced general-
ized complex structures on subspaces of generalized complex vector spaces.
The situation is quite similar to the one considered by Theodore Courant in
[Cou]. In fact, many of our basic constructions are straightforward modifi-
cations of the ones introduced by Courant. However, there is an important
difference: whereas a Dirac structure on a real vector space induces a Dirac

1These transformations, along with the β-field transformations, play a special role in
the theory. They were first introduced in [H2]. We recall their definition in §2.4.
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structure on every subspace and quotient space, this is not so for general-
ized complex structures. Namely, recall that if V is a finite-dimensional real
vector space, then a generalized complex structure on V can be defined by a
subspace E ⊂ VC ⊕V ∗

C
which is isotropic with respect to the quadratic form

Q(v ⊕ f) = −f(v) and satisfies VC ⊕ V ∗
C

= E ⊕ E, where the bar denotes
the complex conjugate. Now, given a real subspace W ⊆ V , we can define,
as in [Cou], the subspace EW ⊂ WC ⊕ W ∗

C
consisting of all pairs of the

form
(

w, f
∣

∣

WC

)

, where w ∈ WC and f ∈ VC are such that (w, f) ∈ E. It is

clear that EW is still isotropic with respect to Q. However, the condition
WC ⊕ W ∗

C
= EW ⊕ EW may no longer hold.

Thus we define W to be a “generalized complex subspace” if the last con-
dition does hold, so that we get an induced generalized complex structure.
We then describe this induced structure in terms of spinors (Proposition
3.5). The dual notion, that of a quotient generalized complex structure,
is also studied. We introduce an operation which interchanges generalized
complex structures on a real vector space and on its dual; this operation
can then be used to reduce many statements about quotients to statements
about subspaces (and vice versa). Hence, naturally, we devote more atten-
tion to subspaces than to quotients. Since the original version of this paper
was made available we have realized that this duality operation corresponds
to the idea of T-duality from the physics literature, see [KO, TW] and the
references therein. This idea is used to establish a form of mirror symme-
try for generalized complex manifolds in a recent preprint [B] by the first
author. We also prove the classification theorem for generalized complex
vector spaces: every generalized complex structure is the B-field transform
of a direct sum of a complex structure and a symplectic structure (Theo-
rem 3.10). This result has applications to the study of constant generalized
complex structures on tori, both with regards to quantization and Morita
equivalence (cf. [TW]), and mirror symmetry (cf. [KO]).

At this point we should mention that there is some overlap between our
paper and Gualtieri’s thesis [Gua]. Most notably, this applies to our clas-
sification theorem mentioned above, which corresponds to Theorem 4.13 in
[Gua]. However, the first version of our paper was placed on the e-Print
archive and submitted for publication before [Gua] became available to (us
and) the general audience; in particular, we have obtained the classification
theorem independently. Of course, many definitions given in our paper can
be found in [Gua]; they are given here for completeness, and our paper is
self-contained and can be read independently of [Gua].

Let us emphasize that there are several subtle points in the theory of sub-
spaces that we develop, which are not present in the theory of complex or
symplectic structures on vector spaces. For example, if W is a generalized
complex subspace of a generalized complex vector space V , then V/W need
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not be a generalized complex quotient of V (cf. Example 7.6). As another
example of “strange” behavior, we show the following. If V is any general-
ized complex vector space, there is a unique maximal subspace S of V such
that S is a GC subspace and the induced structure on S is B-symplectic
(Theorem 3.11). [Hereafter, we use the expressions “B-symplectic struc-
ture” and “B-complex structure” as shorthand for “B-field transform of a
symplectic structure” and “B-field transform of a complex structure,” re-
spectively.] Furthermore, there is a canonical complex structure J on the
quotient V/S. However, V/S may not be a generalized complex quotient of

V , in the sense of Definition 3.8. (See Example 7.7.) On the other hand, if
V/S is a generalized complex quotient of V , then the induced structure on
V/S is B-complex, and the associated complex structure coincides with J .

The interplay between B-field transforms and β-field transforms is also
delicate. For instance, if a generalized complex structure is both a B-field
transform and a β-field transform of a (classical) complex structure, then it
is, in fact, complex. The corresponding statement for symplectic structures
is false. On the other hand, it is possible to start with a classical symplectic
structure, make a B-field transform, then a β-field transform, and arrive at
a classical complex structure. These features are discussed in some detail in
§7.4.

To describe the results of the second part of the paper, we need to in-
troduce more notation. Let V be as above, and recall that another way to
describe a generalized complex structure on V is by giving an automorphism
JV of V ⊕V ∗ which satisfies J 2

V = −1 and preserves the quadratic form Q on
V ⊕ V ∗. [An equivalence with the previous definition is obtained by assign-
ing to such a JV its +i-eigenspace E in VC ⊕ V ∗

C
.] For many considerations

it is convenient to write JV in matrix form:

JV =

(

J1 J2

J3 J4

)

,

where J1 : V → V , J2 : V ∗ → V , J3 : V → V ∗ and J4 : V ∗ → V ∗ are linear
maps.

Let W be a real subspace of V . We call W a generalized isotropic

(resp. generalized coisotropic, resp. generalized Lagrangian) subspace of
V if JV (W ) ⊆ W ⊕ Ann(W ) (resp. JV (Ann(W )) ⊆ W ⊕ Ann(W ), resp.
W ⊕ Ann(W ) is stable under JV ). We say that W is split if there exists
a subspace N ⊆ V such that V = W ⊕ N and W ⊕ Ann(N) ⊆ V ⊕ V ∗

is stable under J . [In fact, this is equivalent to the condition that there
is a decomposition V = W ⊕ N as a direct sum of generalized complex
structures, which explains the terminology.]
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On the other hand, we define the “opposite generalized complex struc-
ture” on V to be the one corresponding to the automorphism

J̃V =

(

J1 −J2

−J3 J4

)

.

If W is equipped with some generalized complex structure JW , we say that
this subspace satisfies the graph condition (with respect to JW ) if the graph
of the inclusion map W →֒ V is a generalized isotropic subspace of W ⊕
V with respect to the “twisted product structure” on W ⊕ V , which by
definition is the direct sum of J̃W and JV .

The following three results (see §4.4) explain the relations between the
three types of subspaces of a generalized complex vector space V that we
have introduced.

Theorem 1. Every split subspace is a generalized complex subspace. Fur-

thermore, it satisfies the graph condition with respect to the induced gener-

alized complex structure.

Theorem 2. A generalized complex subspace W ⊆ V satisfies the graph

condition with respect to the induced structure if and only if W is invariant

under J1.

It is worth emphasizing that if W is a generalized complex subspace and
it satisfies the graph condition with respect to some generalized complex
structure, this structure does not necessarily have to be the induced one.
More precisely:

Theorem 3. Suppose that W ⊆ V is an arbitrary subspace and JW is a

generalized complex structure on W such that the graph condition is satisfied.

If W is a generalized complex subspace, then the graph condition is also

satisfied with respect to the induced generalized complex structure, and JW

is a β-field transform of the induced structure on W .

In Remark 7.4, we show that a subspace satisfying the graph condition
with respect to some generalized complex structure does not have to be a
generalized complex subspace in our sense. This may be seen as evidence
of the fact that our definition of the graph condition is too weak. One
possible explanation for this is that, unlike the classical symplectic situation,
a generalized isotropic subspace which has half the dimension of the ambient
space is not necessarily generalized Lagrangian. Thus, for example, if µ :
V → W is an isomorphism of real vector spaces, and V , W are equipped
with generalized complex structures such that the graph of µ is generalized
isotropic with respect to the twisted product structure, then it does not
necessarily follow that µ induces an isomorphism between the two structures.
On the other hand, we have the following
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Theorem 4. Let V , W be generalized complex vector spaces, and let µ :
V → W be an isomorphism of the underlying real vector spaces. If the graph

of µ is generalized Lagrangian with respect to the twisted product structure on

V ⊕W , then µ induces an isomorphism between the two generalized complex

structures.

The global version of this result is given in Theorem 6.1.

In the second part of the paper we generalize all the notions introduced
previously to generalized complex manifolds. In addition, we study the
analogue of the notion of an “admissible function” introduced by Courant
[Cou]. This leads to the definition of the Courant sheaf: if M is a generalized
complex manifold, with JM the corresponding automorphism of TM⊕T ∗M
and E the −i eigenbundle of JM on TCM⊕T ∗

C
M , the sections of the Courant

sheaf are pairs (f, X), where f is a complex-valued C∞ function and X is a
section of TCM such that df +X ∈ E. We prove that the Courant sheaf is a
sheaf of local rings and also a sheaf of Poisson algebras. Moreover, for a split
submanifold N of a generalized complex manifold M , we define a natural
operation of “pullback” of sections of the Courant sheaf on M to those on N
(Theorem 5.13). The generalized complex structure on M can be recovered
from the Courant sheaf together with its embedding into C∞

M ⊕ TCM in
case M is complex or symplectic, but it seems that, in general, additional
information is required.

The last part of the paper is devoted to the generalized complex “cat-
egory”. Recall that Weinstein [W2] has introduced the symplectic “cate-
gory”, based on some ideas of Guillemin and Sternberg [GS]. The objects
of this “category” are symplectic manifolds. If M and N are two symplectic
manifolds, the set of morphisms from M to N is defined to be the set of
submanifolds of M × N that are Lagrangian with respect to the “twisted
product symplectic structure” on M × N . Two morphisms, M → N and
N → K, can be composed provided a certain transversality condition is
satisfied (see [W2] for details). In §6.2 we generalize Weinstein’s construc-
tion by replacing symplectic manifolds with generalized complex manifolds,
and Lagrangian submanifolds with generalized Lagrangian submanifolds. In
the linear case (§6.3), where the transversality condition disappears, we get
an honest category, thereby generalizing a construction of Guillemin and
Sternberg [GS]. We would like to point out that one of the applications
of Guillemin-Sternberg-Weinstein construction is to deformation quantiza-
tion and geometric quantization of symplectic manifolds (see [GS], where
the quantization problem is solved completely in the linear case, and [W1],
[W2] for a discussion of the global case). We hope that, similarly, the con-
structions of Section 6 can be used for quantization of generalized complex
structures. We plan to study this in detail in subsequent publications.
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1.3. Structure of the paper. Our paper is organized as follows. In Sec-
tion 2 we recall the basic definitions of the theory of generalized complex
vector spaces. We follow [Gua] and [H3] for the most part. We also list the
basic definitions and results from the theory of spinors, referring to the book
[C] for proofs. We then define an operation which interchanges generalized
complex structures on a real vector space with those on its dual, and we
conclude the section with a discussion of B-field and β-field transforms. In
Section 3 we introduce and study the notions of “generalized complex sub-
spaces” (by modifying the construction of [Cou]) and “generalized complex
quotients.” We also prove the classification theorem for generalized com-
plex structures, as well as certain weaker but more “canonical” analogues
of the theorem; a consequence of our theory is that every generalized com-
plex vector space has even dimension over R. In Section 4 we introduce the
notions of “split subspaces” and “subspaces satisfying the graph condition”
and describe in detail the relationship of these notions with the more general
notion of a generalized complex subspace.

In Section 5 we recall the definitions of generalized almost complex mani-
folds and generalized complex manifolds. For the latter, we study the natu-
ral generalization of the notion of “admissible function” defined by Courant,
and we introduce the “Courant sheaf.” We then define the global analogues
of generalized complex subspaces and split subspaces: “generalized complex
submanifolds” and “split submanifolds” of generalized complex manifolds.
We end the section by defining the “pullback” of sections of the Courant
sheaf on a generalized complex manifold to a split submanifold. In Section
6, we study the “graph condition” for submanifolds of generalized complex
manifolds. This idea allows us to define the “generalized complex category”
à la Weinstein [W2]. We finish by studying the simpler category of general-
ized complex vector spaces, modelled on the construction of Guillemin and
Sternberg [GS].

In Section 7 we illustrate our main constructions and results with two
types of examples: B-field transforms of complex and symplectic structures.
(A few scattered examples also appear throughout the text.) More specif-
ically, we characterize the GC subspaces (resp. subspaces satisfying the
graph condition, resp. split subspaces) of B-complex and B-symplectic vec-
tor spaces, we characterize generalized isotropic (resp. coisotropic, resp.
Lagrangian) subspaces of complex and symplectic vector spaces, and we
state Gualtieri’s characterization of generalized Lagrangian submanifolds of
B-complex and B-symplectic manifolds. We then explain some interesting
features of B-field transforms of symplectic manifolds. Finally, we discuss
in detail some nontrivial counterexamples that we mentioned in §1.2.

We have only included the proofs of the most trivial results in the main
body of the paper. All other proofs appear in a separate section (Section
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8) at the end of the article. This clarifies the exposition, and allows us
to present our results in not necessarily the same order in which they are
proved.

For the reader’s convenience, a more detailed summary appears at the
beginning of each section.

1.4. Acknowledgements. We are grateful to Marco Gualtieri for sharing
some of his notes with us, prior to the publication of his thesis. The content
of those notes was used in this paper via several of the definitions and
constructions of Sections 2, 5 and 7 as is noted in the appropriate places.
We would also like to thank Tony Pantev for the suggestion to work on
generalized complex manifolds, as well as for many useful comments on our
paper and suggestions for improvement. Last but not least, we are indebted
to our referees for suggesting several essential improvements to the style of
our presentation and pointing out the missing references.

1.5. Notation and conventions. All vector spaces considered in this pa-
per will be finite-dimensional. We will be dealing with both real and complex
vector spaces. If V is a real vector space, we denote by VC its complexifica-
tion. If W ⊆ V is a real subspace, we will identify WC with a subspace of
VC in the usual way. The complex conjugation on C extends to an R-linear
automorphism of VC which we denote by x 7→ x̄. Recall that a complex
subspace U of VC is of the form WC for some real subspace W ⊆ V if and
only if U = Ū .

The dual of a real or complex vector space V will be denoted by V ∗. We
will always implicitly identify V with (V ∗)∗. If W ⊆ V is a real (resp.,

complex) subspace, we write Ann(W ) =
{

f ∈ V ∗

∣

∣

∣
f
∣

∣

W
≡ 0

}

. Similarly, if

U ⊆ V ∗ is a real or complex subspace, we write Ann(U) =
{

v ∈ V
∣

∣f(v) =

0 ∀ f ∈ U
}

.

If V is real, we identify (VC)∗ with (V ∗)C in the natural way. The natural
projections V ⊕ V ∗ → V and V ⊕ V ∗ → V ∗, or their complexifications,
will be denoted by ρ and ρ∗, respectively. We have the standard indefinite
nondegenerate symmetric bilinear pairing 〈·, ·〉 on V ⊕ V ∗, given by2

〈v + f, w + g〉 = −
1

2

(

f(w) + g(v)
)

for all v, w ∈ V, f, g ∈ V ∗.

We use the same notation for the complexification of 〈·, ·〉. Usually, if v ∈ V
and f ∈ V ∗, we will write either 〈f

∣

∣ v〉 or 〈v
∣

∣ f〉 for f(v). The pairing 〈·, ·〉
corresponds to the quadratic form Q(v + f) = −f(v).

The exterior algebra of a vector space V will be denoted by
∧• V . If

x ∈ V and ξ ∈
∧• V ∗, we write ιxξ for the contraction of x with ξ. An

element B ∈
∧2 V ∗ will be identified with the linear map V → V ∗ that it

2Our convention here follows that of [H3].
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induces; similarly, an element β ∈
∧2 V will be identified with the induced

linear map V ∗ → V . We will frequently consider endomorphisms of V ⊕V ∗.
These will usually be written as 2 × 2 matrices

T =

(

T1 T2

T3 T4

)

,

with the understanding that T1 : V → V , T2 : V ∗ → V , T3 : V → V ∗ and
T4 : V ∗ → V ∗ are linear maps. In this situation, elements of V ⊕ V ∗ will be
written as column vectors: (v, f)t, where v ∈ V , f ∈ V ∗.

For us, a real (resp., complex) manifold will always mean a C∞ real (resp.,
complex-analytic) finite-dimensional manifold. If M is a real manifold, by
C∞

M we denote the sheaf of (germs of) complex-valued C∞ functions on M .
We will denote by TM and T ∗M the tangent and cotangent bundles of
M , and by TCM and T ∗

C
M their complexifications. The pairing 〈·, ·〉 de-

fined above at the level of vector spaces extends immediately to a pairing
〈·, ·〉 : VC × V ∗

C
→ C∞

M , where V is any vector bundle on M and VC is its
complexification. The de Rham differential on

∧• T ∗
C
M will be denoted by

ω 7→ dω. For a section X of TCM , we will denote by ιX and LX the op-
erators of contraction with X and the Lie derivative in the direction of X,
which are C-linear operators on

∧• T ∗
C
M .

By a complex structure on a real vector space V we mean an R-linear au-
tomorphism J of V satisfying J2 = −1. (Other authors call such a J an al-

most complex structure.) The following abbreviations will be frequently used
in our paper: GC=“generalized complex”, GAC=“generalized almost com-
plex”, GCS=“GC structure”, GACS=“GAC structure”, GCM=“generalized
complex manifold”, GACM=“generalized almost complex manifold”.

2. Generalized complex linear algebra

2.1. Equivalent definitions. We begin by giving three ways of defining a
GCS on a real vector space, and then showing their equivalence. We will see
later that in various contexts, one of these descriptions may be better than
the others, but there is no description that is “the best” universally. Thus
we prefer to work with all of them interchangeably.

Proposition 2.1. Let V be a real vector space. There are natural bijections

between the following 3 types of structure on V .

(1) A subspace E ⊂ VC ⊕ V ∗
C

such that E ∩ E = (0) and E is maximally

isotropic with respect to the standard pairing 〈·, ·〉 on VC ⊕ V ∗
C
.

(2) An R-linear automorphism J of V ⊕ V ∗ such that J 2 = −1 and J is

orthogonal with respect to 〈·, ·〉.
(3) A pure spinor φ ∈

∧• V ∗
C
, defined up to multiplication by a nonzero

scalar, such that 〈φ, φ̄〉M 6= 0, where 〈·, ·〉M denotes the Mukai pairing

([C], [H2], [H3]).
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Remark 2.2. Our notation is different from the one of Gualtieri [Gua],
who uses L ⊂ VC ⊕ V ∗

C
to denote a generalized complex structure, and E

the projection of the subspace L onto VC.

The terminology (3) is explained in §2.2 below, and the bijections are
made explicit in §8.1. A structure of one of these types will be called a
generalized complex structure on V , and a real vector space equipped with
a GC structure will be called a generalized complex vector space.

Remark 2.3. In [H1], [H2] it is assumed from the very beginning that
generalized complex manifolds have even dimension (as real manifolds). The
reader may also assume that our GC vector spaces have even real dimension;
this is used in an essential way in the arguments that involve spinors (cf.
Theorem 2.5(2.5)). However, we can prove that, with the definitions of a
GC structure on V in terms of E ⊂ VC ⊕ V ∗

C
or J ∈ AutR(V ⊕ V ∗), the

even-dimensionality of V is automatic (Corollary 3.12). We invite the reader
to check that our proof of Corollary 3.12 does not depend on any statements
about spinors. The result was also proved in [H3] by a different method (by
showing that a GC structure on a real manifold induces an almost complex
structure).

2.2. Recollection of spinors. Here we list the basic definitions and results
from the theory of spinors, following [C] (and, in a few places, [H3]), that
will be used in the sequel. Chevalley’s description of the theory is somewhat
more general than presented below; however, the reader should have no
difficulty modifying the notation and results of [C] to fit our situation.

Let V be a real vector space, and write V d = V ⊕V ∗. Recall the quadratic
form Q(v+f) = −〈v

∣

∣ f〉 = −ιv(f) on V d. We let Cliff(V ) denote the Clifford

algebra of the complexification V d
C

corresponding to the quadratic form Q.
This means (see [C]) that Cliff(V ) is the quotient of the tensor algebra on
V d

C
by the ideal generated by all expressions of the form e⊗e−Q(e), e ∈ V d

C
.

Note that if E is any isotropic (w.r.t. Q) subspace of V d
C

, then the subalgebra
of Cliff(V ) generated by E is naturally isomorphic to the exterior algebra
∧• E. In particular, Cliff(V ) contains S(V ) :=

∧• V ∗
C

in a natural way. We
call S(V ) the space of spinors. The subspaces of S(V ) spanned by forms
of even and odd degree are denoted by S+(V ) and S−(V ), respectively. We
call S+(V ) (resp., S−(V )) the space of even (resp., odd) half-spinors.

There exists a representation of Cliff(V ) on S(V ), with the action of the
generating subspace V d

C
⊂ Cliff(V ) being defined by

(v + f) · φ = ιvφ + f ∧ φ, v ∈ VC, f ∈ V ∗
C , φ ∈ S(V ).

Let φ ∈ S(V ), φ 6= 0, and let E be the annihilator of φ in V d
C

, with respect to
the action defined above. Observe that if e ∈ E, then 0 = e · e ·φ = Q(e) ·φ,
whence Q(e) = 0. Thus Q

∣

∣

E
≡ 0, so E is isotropic with respect to Q.
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Definition 2.4. We say that φ is a pure spinor if E is maximally isotropic,
i.e., dimC E = dimR V . In this case, we also call φ a representative spinor

for E.

Recall from §1.5 that complex conjugation acts on V d
C

and on S(V ). It is
clear that φ ∈ S(V ) is a pure spinor if and only if φ̄ is such; and if φ is a
representative spinor for a maximally isotropic subspace E ⊂ V d

C
, then φ̄ is

a representative spinor for E, and vice versa.

The last ingredient that we need is the Mukai pairing 〈·, ·〉M : S(V ) ×
S(V ) →

∧n V , where n = dimR V (see [C], §III.3.2; [H2], [H3]). However,
we have decided to omit the definition of this pairing, since it is described
in detail in [C] and [H3]. The only fact that we need about this pairing
is Theorem 2.5(2.5), which is proved in [H3]. We refer the reader to [H3]
for a detailed discussion of the Mukai pairing that is most relevant to our
situation.

We can now state the main results from the theory of spinors that we will
use in the paper.

Theorem 2.5.

(a) Every pure spinor is either even or odd: if φ ∈ S(V ) is pure, then

φ ∈ S+(V ) or φ ∈ S−(V ).
(b) Let E ⊂ V d

C
be a maximally isotropic subspace; then the space

AE =
{

φ ∈ S(V )
∣

∣e · φ = 0 ∀ e ∈ E
}

is one dimensional. Thus the nonzero elements of AE are precisely

the representative spinors for E. In other words, we have a bijective

correspondence between maximally isotropic subspaces of V d
C

and pure

spinors modulo nonzero scalars.

(c) Let E, F ⊂ V d
C

be maximally isotropic subspaces corresponding to pure

spinors φ, ψ ∈ S±(V ). Then E ∩ F = (0) if and only if 〈φ, ψ〉M 6= 0.
(d) In particular, if E ⊂ V d

C
is a maximally isotropic subspace correspond-

ing to a pure spinor φ, then E ∩ E = (0) if and only if 〈φ, φ̄〉M 6= 0.
(e) A spinor φ ∈ S(V ) is pure if and only if it can be written as

(2.1) φ = c · exp(u) ∧ f1 ∧ · · · ∧ fk,

where c ∈ C
×, u ∈

∧2 V ∗, and f1, . . . , fk are linearly independent ele-

ments of V ∗
C
. If φ is representative for a maximally isotropic subspace

E ⊂ V d
C
, then f1, . . . , fk form a basis for E ∩ V ∗

C
.

(f) Suppose that dimR V is even, and let φ ∈ S(V ) be a pure spinor written

in the form (2.1). Then, up to a nonzero scalar multiple, we have

〈φ, φ̄〉M = (u − ū)p ∧ f1 ∧ · · · ∧ fk ∧ f̄1 ∧ · · · ∧ f̄k,

where p = n/2 − k.
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Proofs. (a) [C], III.1.5. (b) The proof is contained in [C], §III.1. (c) [C],
III.2.4. (d) This is immediate from (c). (e) [C], III.1.9. (f) See [H3]. ¤

2.3. Duality. Given a real vector space V , let τ : V ⊕ V ∗ → V ∗ ⊕ V be
the transposition of the two summands. Recalling the natural identification
of V ∗∗ with V , we can also view τ as an isomorphism between V ⊕ V ∗

and V ∗ ⊕ V ∗∗. We will continue to denote by τ the induced isomorphism
VC ⊕ V ∗

C
→ V ∗

C
⊕ V ∗∗

C
∼= V ∗

C
⊕ VC. This duality operation corresponds to

the idea from the physics literature of T-duality, see [KO, TW] and the
references therein. An explicit formula for the spinor representing the dual
GC structure on V ∗ in terms of the spinor representing the GC structure on
V turns out to be a Fourier-Mukai type of transformation, as in explained in
[B] in relationship to a version of mirror symmetry for generalized complex
manifolds.

Proposition 2.6. The isomorphism τ induces a bijection between GC struc-

tures on V and GC structures on V ∗. Explicitly, E ⊂ VC⊕V ∗
C

is a GCS on V
if and only if τ(E) is a GCS on V ∗. If E corresponds to J ∈ AutR(V ⊕V ∗)
as in Proposition 2.1, then τ(E) corresponds to τ ◦ J ◦ τ−1.

Proof. If is clear that τ preserves the form 〈·, ·〉, and if E ⊆ VC ⊕ V ∗
C

is any

subspace, then τ(E) = τ(E). The proposition follows trivially from these
observations. ¤

2.4. B- and β-field transforms. Let V be a real vector space and B ∈
∧2 V ∗. We form the matrix (see §1.5)

B :=

(

1 0
B 1

)

.

It is straightforward to verify that B is an orthogonal automorphism of
V ⊕ V ∗. Thus, if E is a GCS on V , then B ·E is another one. We call B ·E
the B-field transform of E defined by B.

Remark 2.7. The notion of a “gauge transformation” for Dirac structures
has been introduced and studied by Severa and Weinstein in [SW], §3. The
obvious complex analogue of this notion gives rise to the B-field transforms
that we have just defined.

Similarly, if β ∈
∧2 V , then the matrix

B′ :=

(

1 β
0 1

)

also acts on GC structures on V ; if E is one, then B′ · E will be called the
β-field transform of E defined by β. If we look at GC structures in terms of
the corresponding orthogonal automorphisms J of V ⊕V ∗, then the actions
of B and β are given by J 7→ B ·J ·B−1 and J 7→ B′ · J ·B′−1, respectively.
We can also describe B-field transforms in terms of spinors:
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Proposition 2.8. Suppose that a GCS on a real vector space V is defined

by a pure spinor φ ∈
∧• V ∗

C
, and let B ∈

∧2 V ∗. Then the B-field transform

of this structure corresponds to the pure spinor exp(−B) ∧ φ.

We leave to the reader the task of describing β-field transforms in a similar
way.

Remark 2.9. Suppose that E is a GCS on a real vector space V and E′ is
the B-field transform of E defined by B ∈

∧2 V ∗. Then, obviously, τ(E′) is

the β-field transform of τ(E), defined by the same B ∈
∧2 V ∗ (but viewed

now as a bivector on V ∗). Thus, the operation τ interchanges B- and β-field
transforms.

Definition 2.10. Let V be a real vector space.

(1) Let J be a (usual) complex structure on V . Then

J =

(

J 0
0 −J∗

)

is a GC structure on V . If J is a GCS on V that can be written in this
form, we say that J is complex.

(2) A B-field (resp., β-field) transform of a complex GCS on V will be
referred to as a B-complex (resp., β-complex) structure on V .

(3) Let ω be a symplectic form on V (i.e., a nondegenerate form ω ∈
∧2 V ∗).

Then

J =

(

0 −ω−1

ω 0

)

is a GC structure on V . If J is a GCS on V that can be written in this
form, we say that J is symplectic.

(4) A B-field (resp., β-field) transform of a symplectic GCS on V will be
referred to as a B-symplectic (resp., β-symplectic) structure on V .

Proposition 2.11. Let V be a real vector space and E ⊂ VC ⊕ V ∗
C

a GCS

on V . Write

J =

(

J1 J2

J3 J4

)

for the corresponding orthogonal automorphism of V ⊕ V ∗. Then

(a) E is B-complex (resp., β-complex) ⇐⇒ ρ(E) ∩ ρ(E) = (0)
(

resp.,

ρ∗(E) ∩ ρ∗(E) = (0)
)

⇐⇒ J2 = 0 (resp., J3 = 0) ⇐⇒ V ∗
C

=

(V ∗
C
∩ E) + (V ∗

C
∩ E)

(

resp., VC = (VC ∩ E) + (VC ∩ E)
)

;

(b) E is complex if and only if it is both B-complex and β-complex;

(c) E is B-symplectic (resp., β-symplectic) ⇐⇒ E∩V ∗
C

= (0)
(

resp., E∩

VC = (0)
)

⇐⇒ J2 is an isomorphism (resp., J3 is an isomorphism)
⇐⇒ ρ(E) = VC (resp., ρ∗(E) = V ∗

C
);

(d) E is symplectic if and only if J1 = 0.
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The analogue of part (b) fails in the symplectic case, as we will see in
§7.4.

3. Generalized complex subspaces and quotients

3.1. Definition of GC subspaces. Let V be a real vector space with a
GC structure E ⊂ VC ⊕ V ∗

C
. Given a subspace W ⊆ V , we define (following

[Cou])

(3.1) EW =
{

(

ρ(e), ρ∗(e)
∣

∣

WC

)

∣

∣

∣e ∈ E ∩
(

WC ⊕ V ∗
C

)

}

.

Clearly, EW is an isotropic subspace of WC ⊕ W ∗
C
. It is straightforward to

compute that dimC EW = dimR W (see Lemma 8.2); thus EW is, in fact,
maximally isotropic.

Remark 3.1. The definition of EW and the fact that it is maximally
isotropic can be obtained by specializing the much more general discus-
sion of the functorial properties of linear Dirac structures, cf. [BR]. We
have included the proof in our paper for the sake of completeness.

Definition 3.2. We say that W is a generalized complex subspace of V if
EW ∩ EW = (0), so that EW is a generalized complex structure on W .
In this case, we denote by JW the orthogonal automorphism of W ⊕ W ∗

corresponding to EW .

We note that a Dirac structure on a real vector space V induces a Dirac
structure on every subspace of V (see [Cou]). In our situation, however, not
every subspace of a GC vector space is a GC subspace. The reason is the
extra condition EW ∩ EW = (0), which has no counterpart in the theory of
Dirac structures.

Examples 3.3.

(1) Consider a complex GCS on V , corresponding to a complex structure J
on V . Then a real subspace W ⊆ V is a GC subspace if and only if W
is stable under J . In this case, the induced GC structure on W is also
complex, corresponding to J

∣

∣

W
.

(2) Consider a symplectic GCS on V , corresponding to a symplectic form
ω on V . Then a real subspace W ⊆ V is a GC subspace if and only if
ω
∣

∣

W
is nondegenerate on W . In this case, the induced GC structure on

W is also symplectic, corresponding to ω
∣

∣

W
.

This follows from Proposition 7.1, where we give a complete description
of GC subspaces of B-complex and B-symplectic vector spaces.

Remark 3.4. In general, it seems that if W is a GC subspace of a GC vector
space V , then there is no simple relationship between JW and JV . Later
we will see that such a relationship exists for special types of GC subspaces.
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It is important to understand the passage from a GCS on V to the induced
GCS on a GC subspace W ⊆ V in terms of spinors. To that end, we have
the following

Proposition 3.5. Let V be a real vector space with a GC structure E ⊂
VC ⊕ V ∗

C
. Let W ⊆ V be any subspace, and let j : W →֒ V denote the

inclusion map. Then there exists a representative spinor for E of the form

φ = exp(u)∧f1∧· · ·∧fk, such that, for some 1 ≤ l ≤ k, j∗(f1), . . . , j
∗(fl) are

a basis of Ann
(

ρ(E)∩WC

)

⊆ W ∗
C
, and fl+1, . . . , fk are a basis of Ann

(

ρ(E)+

WC

)

. Moreover, φW := exp(j∗u) ∧ j∗(f1) ∧ · · · ∧ j∗(fl) is a representative

spinor for EW . In particular, W is a GC subspace of V if and only if

〈φW , φ̄W 〉M 6= 0.

Corollary 3.6. Let V be a real vector space, let E be a GC structure on

V , and let E′ be a B-field transform of E, defined by B ∈
∧2 V ∗. Then

a subspace W ⊆ V is a GC subspace of V with respect to E if and only if

it is a GC subspace with respect to E′, and in that case, E′
W is a B-field

transform of EW defined by B
∣

∣

W
∈

∧2 W ∗.

Proof. Let j : W →֒ V denote the inclusion map, and let φ = exp(u) ∧ f1 ∧
· · · ∧ fk be a pure spinor for the structure E, such that the fi’s satisfy the
conditions of Proposition 3.5. It follows from Proposition 2.8 that the spinor
φ′ = exp(−B + u) ∧ f1 ∧ · · · ∧ fk is representative for E′. Now Proposition
3.5 implies that

φW := exp(j∗u) ∧ j∗(f1) ∧ · · · ∧ j∗(fl)

and
φ′

W := exp(−j∗B + j∗u) ∧ j∗(f1) ∧ · · · ∧ j∗(fl)

are representative spinors for EW and E′
W , respectively. Since B is real, it is

immediate from Theorem 2.5(2.5) that 〈φW , φ̄W 〉M = 〈φ′
W , φ̄′

W 〉M , proving
the first claim. The second assertion is clear. ¤

Remark 3.7. This corollary could be obtained from a more general result
of Bursztyn and Radko ([BR], Lemma 2.11). However, our proof differs
from the one given in loc.cit.

3.2. GC quotients and duality. Let V be a real vector space with a
GCS defined by E ⊂ VC ⊕ V ∗

C
. Consider a (real) subspace W ⊆ V and the

corresponding quotient V/W . Let π : V → V/W be the projection map,
and let η : Ann(W ) → (V/W )∗ be the natural isomorphism. Define, dually
to (3.1),

(3.2) EV/W =
{

(

π(ρ(e)), η(ρ∗(e))
) ∣

∣ e ∈ E ∩
(

VC ⊕ Ann(WC)
)

}

.

Again, it is easy to check (cf. Lemma 8.2) that EV/W is a maximally isotropic
subspace of (V/W )C ⊕ (V/W )∗

C
.
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Definition 3.8. We say that V/W is a generalized complex quotient of V
if EV/W ∩ EV/W = (0). In this case, we denote by JV/W the orthogonal
automorphism of (V/W ) ⊕ (V/W )∗ corresponding to EV/W .

Most questions about GC quotients can be easily reduced to questions
about GC subspaces by means of the following result.

Proposition 3.9. Let V be a real vector space with a fixed GCS given by

E ⊂ VC ⊕ V ∗
C
. If W ⊆ V is a real subspace, then V/W is a GC quotient of

V if and only if Ann(W ) is a GC subspace of V ∗ with respect to τ(E) (cf.
§2.3). Suppose that this holds, and let EV/W be the induced GCS on V/W .

Let ED
V/W be the GCS on (V/W )∗ ∼= Ann(W ) induced by τ(E) ⊂ V ∗

C
⊕ VC,

and let τW : (V/W ) ⊕ (V/W )∗ → (V/W )∗ ⊕ (V/W ) be the isomorphism

which interchanges the two summands. Then ED
V/W = τW (EV/W ).

The proposition follows immediately from Lemma 8.1. One might expect
at first that W is a GC subspace of V if and only if V/W is a GC quotient
of V . We have discovered that this is not so: see Example 7.6.

3.3. Classification of GC vector spaces. We begin by defining direct
sums of GC vector spaces. Let U, V be real vector spaces equipped with
GC structures EU ⊂ UC ⊕ U∗

C
, EV ⊂ VC ⊕ V ∗

C
. Let πU : U ⊕ V → U ,

πV : U ⊕ V → V be the natural projections, and let

νU,V : U ⊕ U∗ ⊕ V ⊕ V ∗
∼=

−→ (U ⊕ V ) ⊕ (U ⊕ V )∗

denote the obvious isomorphism (or its complexified version). The direct

sum of the structures EU and EV is the GC structure νU,V (EU ⊕ EV ) on
U ⊕ V . If EU , EV correspond to orthogonal automorphisms JU , JV , then
the automorphism corresponding to the direct sum is νU,V ◦(JU ⊕JV )◦ν−1

U,V .

Finally, if φU , φV are representative spinors for EU and EV , then π∗
U (φU )∧

π∗
V (φV ) is a representative spinor for the direct sum of the GC structures.

The main result of the subsection is the following “decomposition theo-
rem.”

Theorem 3.10. Every GCS is a B-field transform of a direct sum of a

complex GCS and a symplectic GCS.

This decomposition is by no means unique. Let us describe the strategy
of the proof of this theorem; along the way, we will give a more canonical
(but weaker) version of the result. Suppose that V is a GC vector space,
with the GC structure defined by E ⊂ VC ⊕ V ∗

C
. Let S be the subspace of

V such that SC = ρ(E) ∩ ρ(E). It is easy to check that S is a GC subspace
of V , and in fact, the maximal such subspace so that the induced structure
on S is B-symplectic. This subspace is the “B-symplectic part” of V , and
is canonically determined. Moreover, S doesn’t change if we make a B-field
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transform of V . The next step of the proof is to choose an appropriate (non-
unique) B-field transform of the whole structure on V such that S becomes
“split”, i.e., such that we can find a complementary GC subspace W to S in
V with V = S ⊕ W a direct sum of GC structures. To complete the proof,
we show that W is B-complex.

A dual construction is obtained by considering the subspace C of V such
that CC = (E ∩ VC) ⊕ (E ∩ VC). It may not be a GC subspace of V (see
Example 7.7); on the other hand, V/C is always a GC quotient of V , and is
β-symplectic. Note also that C is obviously invariant under J (where J is
the orthogonal automorphism of V ⊕ V ∗ corresponding to E), and J

∣

∣

C
is a

complex structure on C. Then we have the following result.

Theorem 3.11.

(a) Every GC vector space V has a unique maximal B-symplectic subspace

S. If V/S is a GC quotient of V , then it is B-complex. In any case,

V/S can be endowed with a canonical complex structure.

(b) Dually, every GC vector space V has a unique minimal subspace C
such that V/C is a GC quotient which is β-symplectic. The subspace C
can be endowed with a canonical complex structure, and C satisfies the

graph condition with respect to this structure. If C is a GC subspace,

the induced structure is β-complex.

Corollary 3.12. If V is a GC vector space, then dimR V is even.

Proof. By Theorem 3.11(b), there exists a subspace C ⊆ V such that C has
a complex structure and V/C is a β-symplectic GC quotient of V . Since a β-
symplectic structure on a real vector space gives in particular a symplectic
structure, it follows that dimR C and dimR(V/C) are even. Hence, so is
dimR V . ¤

We end by giving an explicit formula for a general B-field transform of
a direct sum of a symplectic and a complex GCS. Let S be a real vector
space with a symplectic form ω ∈

∧2 S∗, let C be a real vector space with
a complex structure J ∈ AutR(C), and form V = S ⊕ C. We identify V ∗

with S∗ ⊕ C∗ in the natural way. Let B ∈
∧2 V ∗, which we view as a

skew-symmetric map B : V → V ∗, and write accordingly as a matrix

B =

(

B1 B2

B3 B4

)

,

where B1 : S → S∗, B2 : C → S∗, B3 : S → C∗, B4 : C → C∗ are linear
maps satisfying B∗

1 = −B1, B∗
4 = −B4, B3 = −B∗

2 . In the result that
follows, an automorphism J of V ⊕V ∗ is viewed as a 4×4 matrix according
to the decomposition V ⊕ V ∗ = S ⊕ C ⊕ S∗ ⊕ C∗.
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Proposition 3.13. With this notation, let J be the automorphism of V ⊕V ∗

corresponding to the GCS on V which is the B-field transform of the direct

sum of (S, ω) and (C, J) defined by B. Then J is given by

(3.3)

J =









ω−1B1 ω−1B2 −ω−1 0
0 J 0 0

ω + B1ω
−1B1 B2J + B1ω

−1B2 −B1ω
−1 0

B3ω
−1B1 + J∗B3 B4J + B3ω

−1B2 + J∗B4 −B3ω
−1 −J∗









.

If πS : V → S, πC : V → C are the two projections, then the pure spinor

corresponding to J is given by

(3.4) φ = exp(−B + iπ∗
Sω) ∧ π∗

C(f1) ∧ · · · ∧ π∗
C(fk),

where f1, . . . , fk are a basis of the −i-eigenspace of J∗ on C∗
C
.

The (entirely straightforward) proof is omitted. Observe that from this
description, it follows that ω, J and B1, B2, B3 can be recovered from J ,
while B4 can only be recovered up to the addition of a real bilinear skew
form Ω on C satisfying ΩJ + J∗Ω = 0.

4. Split subspaces and the graph condition

4.1. Opposite GC structures. Let V be a real vector space, and consider
a GC structure on V defined in terms of an orthogonal automorphism J of
V ⊕ V ∗ or the corresponding pure spinor φ ∈

∧• V ∗
C
. As in §1.5, we write

J in matrix form:

J =

(

J1 J2

J3 J4

)

.

We define the opposite of J to be the GC structure on V defined by

J̃ =

(

J1 −J2

−J3 J4

)

.

It is easy to check that J̃ 2 = −1 and that J̃ is orthogonal with respect to
the usual pairing 〈·, ·〉 on V ⊕ V ∗. If V and W are GC vector spaces, with
the GC structure given by JV and JW , respectively, then by the twisted

product structure on W ⊕ V we will mean the direct sum (cf. §3.3) of the

GCS J̃W on W and the GCS JV on V .

We can describe opposite GC structures in terms of spinors as follows.

Proposition 4.1. Suppose that the GC structure J corresponds to the pure

spinor φ, written in standard form as φ = exp(u)∧f1∧· · ·∧fk (cf. Theorem

2.5). Then J̃ corresponds to the spinor φ̃ = exp(−u) ∧ f1 ∧ · · · ∧ fk.

Proof. Using our classification of GC structures (Theorem 3.10), we may
assume that J has the form (3.3). Then it it clear that replacing J with
the opposite GC structure is the same as replacing ω, B1, B2, B3 and B4



328 O. BEN-BASSAT AND M. BOYARCHENKO

by their negatives. This operation replaces the spinor (3.4) by the spinor
exp(B − iπ∗

Sω) ∧ π∗
C(f1) ∧ · · · ∧ π∗

C(fk), whence the result. ¤

Remark 4.2. It is easy to check (without going into the proof of Proposition
4.1) that the operation

φ = exp(u) ∧ f1 ∧ · · · ∧ fk 7→ φ̃ = exp(−u) ∧ f1 ∧ · · · ∧ fk

is well defined on pure spinors. Indeed, if

exp(u) ∧ f1 ∧ · · · ∧ fk = exp(v) ∧ g1 ∧ · · · ∧ gk,

where u, v are 2-forms and fi, gj are 1-forms, then by equating the homo-
geneous parts of degree k + 2m of both sides, we find that

um ∧ f1 ∧ · · · ∧ fk = vm ∧ g1 ∧ · · · ∧ gk

for all m ≥ 0, whence

(−u)m ∧ f1 ∧ · · · ∧ fk = (−v)m ∧ g1 ∧ · · · ∧ gk

for all m ≥ 0, proving our observation.

Examples 4.3.

(1) The opposite of a complex GCS is the structure itself.
(2) The opposite of a symplectic GCS defined by a symplectic form ω is the

symplectic GCS defined by −ω.
(3) If J is a GCS on a real vector space V and J ′ is a B-field transform of

J defined by B ∈
∧2 V ∗, then J̃ ′ is the B-field transform of J̃ defined

by −B.
4.2. Generalized Lagrangian subspaces and the graph condition.
We begin by defining three types of subspaces of GCS, the last of which was
introduced (under the name “generalized complex subspace”) by Gualtieri
([Gua]) and Hitchin ([H3]).

Definition 4.4. Let V be a real vector space with a GCS defined by J ∈
AutR(V ⊕ V ∗), and let W ⊆ V be a subspace.

(1) We call W a generalized isotropic subspace if J (W ) ⊆ W ⊕ Ann(W ).
(2) We call W a generalized coisotropic subspace if J (Ann(W )) ⊆ W ⊕

Ann(W ).
(3) We call W a generalized Lagrangian subspace if W is both generalized

isotropic and generalized coisotropic, that is, if W ⊕ Ann(W ) is stable
under J .

Examples 4.5. In the symplectic case, the three definitions specialize to
usual isotropic, coisotropic and Lagrangian subspaces, respectively. In the
complex case, all three definitions specialize to complex subspaces (i.e., the
subspaces stable under the automorphism J defining the complex struc-
ture).3

3For more details, see §7.3.
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Recall from classical symplectic geometry (see, e.g., [CdS]) that if
(W, ωW ) and (V, ωV ) are symplectic vector spaces, then a vector space iso-
morphism W → V is a symplectomorphism if and only if its graph is a
Lagrangian subspace of W ⊕ V with respect to the “twisted product struc-
ture” on the direct sum, defined by the symplectic form −ωW + ωV . More
generally, suppose (V, ωV ) is a symplectic vector space and W ⊆ V is a sub-
space equipped with some symplectic form ωW . Then ωW = ωV

∣

∣

W
if and

only if the graph of the inclusion W →֒ V is an isotropic subspace of W ⊕V
with respect to the twisted product structure. This motivates the following

Definition 4.6. Let V be a GC vector space, and let W ⊆ V be a subspace
equipped with a GC structure. We say that W (together with the given
GCS) satisfies the graph condition if the graph of the inclusion W →֒ V is a
generalized isotropic subspace of W ⊕V with respect to the twisted product
structure.

4.3. Split subspaces. Let V be a real vector space with a GC structure
defined by J ∈ AutR(V ⊕V ∗). The following definition is somewhat similar
in spirit to the definition of generalized Lagrangian subspaces.

Definition 4.7. We say that a subspace W ⊆ V is split if there exists a
subspace N ⊆ V such that V = W ⊕ N and W ⊕ Ann(N) is stable under
J .

The terminology is explained by the first part of the following result.

Proposition 4.8. Let J be a GCS on a real vector space V , and let W ⊆ V
be a split subspace, so that V = W ⊕N for some subspace N ⊆ V such that

W ⊕ Ann(N) is stable under J . Then

(a) Both W and N are GC subspaces of V . Moreover, V = W ⊕ N is a

direct sum of GC structures.

(b) Consider the natural isomorphism ψ : W ⊕Ann(N) → W ⊕W ∗, given

by (w, f) 7→ (w, f
∣

∣

W
). Then the induced GCS JW on W has the form

JW = ψ ◦
(

J
∣

∣

W⊕Ann(N)

)

◦ ψ−1.

(c) The space N ⊕Ann(W ) is also stable under J , and the induced struc-

ture JN on N has a similar description.

4.4. Relations between the various notions of subspaces. We have
already seen six different notions of subspaces of GC vector spaces: GC sub-
spaces, subspaces satisfying the graph condition, split subspaces, and gen-
eralized isotropic/coisotropic/Lagrangian subspaces. We will now describe
in detail the relations between these types of subspaces. The significance
of generalized Lagrangian subspaces as graphs of isomorphisms between GC
vector spaces, and, more generally, the role of generalized isotropic subspaces
as the key ingredient in our notion of the graph condition, has already been
explained. The rest is contained in the following three results.
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Proposition 4.9. Suppose that W is a split subspace of a GC vector space

V . Then W satisfies the graph condition with the induced GC structure.

Proposition 4.10. Suppose that V is a GC vector space with the GCS

defined by

J =

(

J1 J2

J3 J4

)

.

Then a GC subspace W ⊆ V satisfies the graph condition (with respect to

the induced structure) if and only if W is stable under J1. Moreover, in this

case, if JW denotes the induced GC structure on W , then

JW1 = J1

∣

∣

W
and JW3(w) = J3(w)

∣

∣

W
∀w ∈ W.

Proposition 4.11. Suppose that J is a GCS on a real vector space V , and

suppose that W ⊆ V is a subspace equipped with a GCS K. Then

(a) W satisfies the graph condition with respect to K if and only if K1 =
J1

∣

∣

W
(in particular, W is stable under J1) and K3(w) = J3(w)

∣

∣

W
for

all w ∈ W .

Now suppose that W does satisfy the graph condition with respect to K, and

assume that W is also a GC subspace4 of V . Then

(b) if JW denotes the induced GCS on W , then W also satisfies the graph

condition with respect to JW ; and

(c) K is a β-field transform of JW .

4.5. Final comments. Before moving on to the global counterpart of the
theory developed above, we would like to mention several interesting ex-
amples and counterexamples that already appear on the vector space level.
They are worked out in detail in Section 7.

• There exists a linear GCS which is both a B-field transform of a
symplectic structure, and a β-field transform of a different symplectic
structure.

• There exists a linear GCS which is both a B-field transform of a sym-
plectic structure, and a β-field transform of a complex structure.

• In particular, there exist examples where one can start with a sym-
plectic structure on a vector space and deform it continuously into a
complex structure, through GC structures.

• There exists a B-symplectic vector space V and a GC subspace W ⊂ V
such that V/W is not a GC quotient of V . (This situation cannot occur
if V is either purely complex or purely symplectic.)

• There exists a B-symplectic vector space V such that if C is the min-
imal subspace of V such that V/C is a β-symplectic quotient of V
(cf. Theorem 3.11), then C is not a GC subspace of V . However, this
situation cannot occur if V is B-complex.

4As we show in Remark 7.4, this condition is not automatic.
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5. Generalized complex manifolds and submanifolds

5.1. Summary. We begin the section by recalling the definitions of gener-
alized almost complex and complex manifolds, following [Gua], [H2], [H3].
We slightly generalize the approach of Hitchin and Gualtieri by discussing
generalized almost complex structures on vector bundles (other than the
tangent bundle to a manifold). We then explain how integrability of a gen-
eralized complex structure on a manifold can be expressed in terms of the
Courant bracket or the Courant-Nijenhuis tensor. We also mention that in
this more general approach, the right setting for defining integrability of
generalized almost complex structures seems to be the one provided by the
theory of Courant algebroids [LWX], [Roy].

We then study the analogue of Courant’s notion of an admissible function
[Cou], and we define the Courant sheaf, which we show to be a sheaf of local
Poisson algebras.

Next we define the generalized complex submanifolds and split subman-
ifolds, as well as generalized isotropic (resp. coisotropic, resp. Lagrangian)
submanifolds of generalized complex manifolds. The theory is completely
analogous to its linear counterpart, in that integrability here plays no role:
the analogue of Courant’s theorem, stating that the Dirac structure on a sub-
manifold induced from an integrable Dirac structure on an ambient manifold
is itself integrable, also holds in our situation.

We conclude the section by giving a justification for our notion of a split
submanifold. Namely, we show that the sections of a Courant sheaf on a
generalized complex manifold can be “pulled back” to a split submanifold,
in a natural (though non-canonical) way. This was our original motivation
for introducing the definition of a split submanifold.

5.2. Definitions of GAC manifolds. Let M be a real manifold. Follow-
ing [Gua] and [H1]–[H3], we define a generalized almost complex structure

(GACS) on a (finite rank) real vector bundle V → M to be one of the
following two objects:

• A subbundle E ⊂ VC ⊕ V ∗
C

which is maximally isotropic with respect

to the standard pairing 〈·, ·〉 and satisfies E ∩ E = 0; or
• An R-linear bundle automorphism J of V ⊕ V ∗ which is orthogonal

with respect to 〈·, ·〉 and satisfies J 2 = −1.

The equivalence of these two descriptions is proved in the same way as in the
linear case (Proposition 2.1). If the tangent bundle TM of M is endowed
with a GACS, we call M a generalized almost complex manifold (GACM).
It follows immediately from Corollary 3.12 that a GACM must have even
dimension as a real manifold.

Remark 5.1. One can also describe GAC structures on vector bundles in
terms of spinors. First observe that it is straightforward to generalize the
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theory described in §2.2 to the case of vector bundles on manifolds. Namely,
if V is a (finite rank) real vector bundle on a (real) manifold M and VC is
its complexification, one naturally defines the “sheaf of Clifford algebras”
Cliff(V ) which acts on the “bundle of spinors”

∧• V ∗
C
. If E ⊂ VC ⊕ V ∗

C
is a

maximally isotropic subbundle, it is easy to check (using Theorem 2.5(b))
that the subsheaf of

∧• V ∗
C

consisting of the (germs of) sections that are
annihilated by E is a line subbundle of

∧• V ∗
C
. The Mukai pairing is also

defined and becomes a pairing 〈·, ·〉M :
∧• V ∗

C
×

∧• V ∗
C
→

∧n V ∗
C
, where n is

the rank of V . Thus, alternatively, a GACS on a real vector bundle V → M
can be defined as the data of a line subbundle Φ ⊆

∧• V ∗
C

such that, for every
nonvanishing local section φ of Φ, the function 〈φ, φ̄〉M is nonvanishing, and
φ is pointwise a pure spinor in the sense of Definition 2.4.

The following definition will be used in Section 6.

Definition 5.2. If V , W are real vector spaces equipped with GC structures
JV ∈ AutR(V ⊕ V ∗) and JW ∈ AutR(W ⊕ W ∗), an isomorphism of GC

vector spaces between V and W if a linear isomorphism of real vector spaces
ϕ : V

∼
−→ W such that if ϕ∗ : W ∗ ∼

−→ V ∗ is the adjoint map, then
(

ϕ, (ϕ∗)−1
)

◦ JV = JW ◦
(

ϕ, (ϕ∗)−1
)

,

where
(

ϕ, (ϕ∗)−1
)

is naturally a map between V ⊕ V ∗ and W ⊕ W ∗.

If M and N are GAC manifolds, an isomorphism of GAC manifolds be-
tween M and N is a diffeomorphism φ : M

∼
−→ N such that for every

m ∈ M , the differential dφm : TmM → Tφ(m)N is an isomorphism between
the induced linear GC structures on the tangent spaces.

5.3. Integrability. Recall that an almost complex structure on a mani-
fold M arises from an actual complex structure if a suitable integrability
condition is satisfied (this is the Newlander-Nirenberg theorem). Hitchin
defines “generalized complex structures” in terms of a natural generaliza-
tion of that integrability condition. To formulate this condition, let us recall
first the definition of the Courant bracket ([Cou], p. 645) on the sections of
TCM ⊕ T ∗

C
M :

[

X ⊕ ξ, Y ⊕ η
]

cou
= [X, Y ] + LXη − LY ξ +

1

2
· d(ιY ξ − ιXη).

Here, [X, Y ] is the usual Lie bracket on vector fields.

Definition 5.3 (cf. [Gua], [H2], [H3]). Let M be a real manifold equipped
with a GACS defined by E ⊂ TCM ⊕ T ∗

C
M . We say that E is integrable if

the sheaf of sections of E is closed under the Courant bracket. If that is the
case, we also say that E is a generalized complex structure on M , and that
M is a generalized complex manifold (GCM).
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Remark 5.4 (cf. [Cou], [H3]). The integrability condition for a GACS can
be expressed in terms of the corresponding automorphism J , in a way com-
pletely analogous to the usual almost complex case. Namely, integrability of
a GACS defined by J is equivalent to the vanishing of the Courant-Nijenhuis

tensor

NJ (X, Y ) =
[

JX,J Y
]

cou
− J

[

JX, Y
]

cou
− J

[

X,J Y
]

cou
−

[

X, Y
]

cou

where X, Y are sections of TM ⊕ T ∗M .

Integrability can also be expressed in terms of spinors; however, we will
not use this description in our paper. We refer the reader to [H3] for a
discussion.

Examples 5.5 (cf. [Gua]).

1) Let J be a usual almost complex structure on M . Applying point-
wise the construction of Definition 2.10(a), we get a generalized al-
most complex structure on M . This structure is integrable in the
sense of Definition 5.3 if and only if J is integrable in the sense of the
Newlander-Nirenberg theorem.

2) Let ω be a nondegenerate differential 2-form on M . Applying pointwise
the construction of Definition 2.10(c), we get a generalized almost
complex structure on M . This structure is integrable if and only if
ω is closed, i.e., is a symplectic form on M .

We also note that there are global analogues of the notions of B- and
β-field transforms. For example, a closed 2-form B acts on GC structures
on M in the same way as described in §2.4. We refer the reader to [Gua]
for more details. Our terminology in the global case will be the same as in
the linear case; thus, for instance, we will refer to a B-field transform of a
complex (resp., symplectic) manifold as a B-complex (resp., B-symplectic)
GCM.

Remark 5.6. Recall that in symplectic geometry, it is sometimes important
to consider symplectic forms on vector bundles over a manifold, other than
its tangent bundle (see [V]). Thus, if V is a (finite rank) real vector bundle
on a real manifold M , one says that V is a symplectic vector bundle if V is
equipped with a nondegenerate 2-form ω ∈ Γ(M,

∧2 V ∗). One can then ask
for a generalization of the closedness condition on ω. An appropriate setting
for this is provided by the notion of a Lie algebroid (cf., e.g., [Roy]). A Lie
algebroid structure on the vector bundle V gives a degree 1 differential dV

on the sheaf of sections of
∧• V ∗, making the latter a sheaf of differential

graded algebras. The definition of dV is given by the usual Leibniz formula
(cf. [Roy] or [NT]). One can now define a symplectic Lie algebroid (cf.
[NT]) to be a Lie algebroid V , together with a nondegenerate 2-form ω ∈
Γ(M,

∧2 V ∗), such that dV ω = 0. By taking V = TM with its standard Lie
algebroid structure, we recover the usual notion of a symplectic manifold.
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In view of these remarks, it seems that an appropriate general setting
for the study of generalized complex structures would be the one provided
by the theory of Courant algebroids (we refer the reader to [Roy] for a
detailed study of these objects). We will not give the definition of a Courant
algebroid, as it is rather long and is not used anywhere in our paper. Let
us only remark that, if V and V ∗ are a pair of Lie algebroids in duality
([LWX] or [Roy]), then the direct sum V ⊕V ∗ acquires a natural structure
of a Courant algebroid ([LWX]), and part of this structure is a bracket [·, ·]
on the sections of V ⊕ V ∗ which specializes to the Courant bracket in case
V = TM (with the usual Lie bracket, and with the anchor being the identity
map) , V ∗ = T ∗M (with zero bracket and anchor). Then one can define a
GACS E ⊂ VC ⊕ V ∗

C
to be integrable if the sheaf of sections of E is closed

under this bracket. In the case where V = TM , one recovers Definition 5.3.

5.4. The Courant sheaf. Let M be a GACM, with the GACS defined by
a maximally isotropic subbundle E ⊂ TCM ⊕ T ∗

C
M . We define the Courant

sheaf of M to be the following subsheaf COUM of C∞
M ⊕ TCM :

COUM (U) =
{

(f, X) ∈ C∞
M (U) ⊕ Γ(U, TCM)

∣

∣ df + X ∈ Γ(U,E)
}

,

for every open subset U ⊆ M . The origin of this definition lies in Courant’s
notion ([Cou]) of an admissible function. The precise analogue of this notion
in our situation is the following: if U ⊆ M is open, a function f ∈ C∞

M (U)
is admissible if there exists an X ∈ Γ(U, TCM) with (f, X) ∈ COUM (U).

The main properties of the Courant sheaf are summarized in the following

Proposition 5.7. Let M be a generalized almost complex manifold.

(a) The Courant sheaf is closed under componentwise addition, and under

the multiplication defined by

(f, X) · (g, Y ) = (f · g, f · Y + g · X).

Thus, COUM is a sheaf of (commutative unital) C-algebras. In partic-

ular, the product of two admissible functions is admissible.

(b) Furthermore, COUM is a sheaf of local rings. Namely, if m ∈ M , then

the maximal ideal of the stalk COUM,m is formed by the germs of all

sections (f, X) of COUM,m, defined near m, such that f(m) = 0.
(c) Assume that M is a generalized complex manifold. Then the Courant

sheaf is also closed under the bracket defined by

{

(f, X), (g, Y )
}

=
(1

2
·
(

X(g) − Y (f)
)

, [X, Y ]
)

=
(

X(g), [X, Y ]
)

(the last equality uses the fact that E is isotropic with respect to the

standard pairing 〈·, ·〉), where [·, ·] is the usual Lie bracket of vector

fields. With this operation, COUM is a sheaf of Poisson algebras.



SUBMANIFOLDS OF GENERALIZED COMPLEX MANIFOLDS 335

Part (c) of the proposition can be used to define a Poisson bracket on the
sheaf of admissible functions, as was done in [Cou]. In §5.6, we will see that
sections of the Courant sheaf can be pulled back to a split submanifold.

Remark 5.8. All the results of Proposition 5.7 are valid for arbitrary com-
plex Dirac structures; in fact, as the reader can easily verify, our proof of
the proposition does not use the “non-degeneracy condition” E ∩ E = 0.

5.5. Submanifolds. Let S be a smooth submanifold of a real manifold M ,
and let E ⊂ TCM ⊕ T ∗

C
M be a GACS. Applying pointwise the construction

of §3.1 to the vector bundle TM
∣

∣

S
with the GACS E

∣

∣

S
and the subbundle

TS ⊆ TM
∣

∣

S
, we obtain a maximally isotropic distribution ES ⊂ TCS⊕T ∗

C
S.

That is, ES is a subset of TCS ⊕ T ∗
C
S such that the fiber of ES over every

point s ∈ S is a maximally isotropic subspace of Ts,CM ⊕ T ∗
s,CM .

Caution! In general, ES is not a subbundle of TCS ⊕ T ∗
C
S.

We refer the reader to [Cou] for a detailed discussion of the analogous
situation for submanifolds of Dirac manifolds. In particular, Courant’s ar-
guments can be easily adapted to give a necessary condition under which
ES is a subbundle of TCS ⊕ T ∗

C
S (cf. [Cou], Theorem 3.1.1), and to prove

that if ES is a subbundle and E is integrable, then so is ES (cf. [Cou],
Corollary 3.1.4). This fact will not be used in the sequel.

Definition 5.9. We say that S is a generalized almost complex submanifold

of M if ES is a subbundle of TCS⊕T ∗
C
S such that ES ∩ES = 0. If moreover

M is a GCM, we will simply say that S is a generalized complex submanifold

of M .

We note, once again, that we have used different terminology than the one
introduced by Gualtieri and Hitchin in [Gua], [H3]. They call a “generalized
complex submanifold” what we call a “generalized Lagrangian submanifold”
in the definition below.

Definition 5.10. Let M be a generalized (almost) complex manifold, with
the generalized (almost) complex structure defined by an orthogonal auto-
morphism J of TM ⊕ T ∗M . Let S be a smooth submanifold of M , and let
Ann(TS) be the annihilator of the subbundle TS ⊆ TM

∣

∣

S
in T ∗M

∣

∣

S
.

(1) We say that S is a generalized isotropic submanifold of M if J (TS) ⊆
TS ⊕ Ann(TS).

(2) We say that S is a generalized coisotropic submanifold of M if
J (Ann(TS)) ⊆ TS ⊕ Ann(TS).

(3) We say that S is a generalized Lagrangian submanifold of M if S is both
generalized isotropic and generalized coisotropic, i.e., if TS ⊕ Ann(TS)
is stable under J .
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5.6. Split submanifolds. Let M be a generalized (almost) complex mani-
fold, with the generalized (almost) complex structure defined by an orthog-
onal automorphism J of TM ⊕ T ∗M . We now define the global analogue
of the notion of a split subspace introduced in §4.3.

Definition 5.11. A smooth submanifold S of M is said to be split if there
exists a smooth subbundle N of TM

∣

∣

S
such that TM

∣

∣

S
= TS ⊕ N , and

TS ⊕ Ann(N) is invariant under J .

The following result is the global version of, and immediately follows from,
Proposition 4.8.

Proposition 5.12. Let J ∈ AutR(TM ⊕T ∗M) be a GACS on a real man-

ifold M , and let S ⊂ M be a split submanifold, so that TM
∣

∣

S
= TS ⊕N for

some subbundle N ⊆ TM
∣

∣

S
such that TS⊕Ann(N) is stable under J . Then

S is a GAC submanifold of M . Moreover, if ψ : TS⊕Ann(N) → TS⊕T ∗S
is the natural isomorphism, then the induced GACS JS on S has the form

JS = ψ ◦
(

J
∣

∣

TS⊕Ann(N)

)

◦ ψ−1.

The last result of the section relates split submanifolds to the Courant
sheaf:

Theorem 5.13. Let M , S and N ⊆ TM
∣

∣

S
be as above. Let π : TCM

∣

∣

S
→

TCS denote the projection parallel to NC. For every open subset U ⊆ M ,

the map

Γ(U, C∞
M ⊕ TCM) −→ Γ(U ∩ S, C∞

S ⊕ TCS),

given by (f, X) 7→
(

f
∣

∣

S
, π(X

∣

∣

S
)
)

, induces a ring homomorphism from

COUM (U) to COUS(U ∩ S). In particular, the restriction of an admissible

function to a split submanifold is always admissible.

6. The generalized complex “category”

6.1. The graph condition. We begin by defining twisted product struc-
tures for manifolds. Let M , N be real manifolds equipped with GAC struc-
tures defined by JM ∈ AutR(TM ⊕T ∗M), JN ∈ AutR(TN ⊕T ∗N). Apply-
ing pointwise the construction of §4.1, we obtain the notion of the opposite

structure of JM , which we will denote by J̃M . It is easy to check that the
opposite of an integrable GACS is again integrable. We then define the
twisted product structure on M × N to be the product of the GAC struc-
tures defined by J̃M and JN . (We leave to the reader to define the notion of
a product of GAC structures, which is, again, completely analogous to the
notion of a direct sum of GC structures on vector spaces, defined in §3.3.
Note also that the product of two integrable GAC structures is integrable.)

Now let M be a GAC manifold, and let j : S →֒ M be a smooth sub-
manifold. Suppose that S is equipped with some GACS. We then say that
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S, together with this GACS, satisfies the graph condition, if the graph of j
is a generalized isotropic submanifold of S × M with respect to the twisted
product structure. We leave it to the reader to formulate the suitable global
analogues of the results of §4.4. Let us only remark that this definition must
be used with some caution (cf. also §1.2 in the introduction). For instance,
if j : S → M is a diffeomorphism between two real manifolds, and both S
and M are equipped with GAC structures such that j satisfies the graph
condition, then it does not follow that j induces an isomorphism between
the two GAC structures. The reason is that, in general (unlike the sym-
plectic case) it is not true that a generalized isotropic submanifold, which
has half the dimension of the ambient manifold, is generalized Lagrangian.
However, we have the following result, which motivates the definition of the
next subsection.

Theorem 6.1. Let φ : M → N be a diffeomorphism of real manifolds, and

suppose that M , N are equipped with GAC structures. If the graph of φ
is generalized Lagrangian with respect to the twisted product structure on

M × N , then φ induces an isomorphism between the two GAC structures.

Remark 6.2. Using the fact that T (Graph(φ)) is the image of the map
(1, φ∗) from TM to T (M×N) and that Ann(T (Graph(φ)) is the image of the
map (−φ∗, 1) from T ∗(N) to T ∗(M ×N), it is easily seen that, with respect
to the twisted product structure on M × N , the graph of φ is generalized
isotropic if and only if

φ∗JM1 = JN1φ∗ and φ∗JN3φ∗ = JM3

generalized coisotropic if and only if

φ∗JM2φ
∗ = JN2 and φ∗JN4 = JM4φ

∗

and therefore generalized Lagrangian if and only if all of these equations
hold.

6.2. Definition of the GC “category”. We now introduce a “category”
that generalizes Weinstein’s definition [W2] of the symplectic “category.”
Suppose that M , N are generalized complex manifolds. We define a canon-

ical relation from M to N to be a generalized Lagrangian submanifold of
M ×N with respect to the twisted product structure. Now suppose that P
is a third GCM, and let Γ ⊂ M × N , Φ ⊂ N × P be canonical relations.
The set-theoretic composition of Φ and Γ is the subset

Φ ◦ Γ =
{

(m, p) ∈ M × P
∣

∣ ∃n ∈ N with (m, n) ∈ Γ and (n, p) ∈ Φ
}

.

If Φ ◦ Γ is a generalized Lagrangian submanifold of M × P with respect to
the twisted product structure, we say that Φ and Γ are composable. This
condition can be expressed in terms of a certain transversality property.
We then define the generalized complex “category” to be the category whose
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objects are GC manifolds, and whose morphisms are the canonical relations.
The composition is only defined on pairs of composable relations; thus, what
we get is not a “true” category.

The details of this construction will be discussed in our subsequent pub-
lications.

6.3. The category of GC vector spaces. We finish the theoretical part
of our paper by discussing the linear counterpart of the category introduced
in §6.2. Our exposition here follows [GS]. If V , W are real vector spaces, a
relation from V to W is a linear subspace of V ⊕ W . Let Z be a third real
vector space, and let Γ ⊂ V ⊕W , Φ ⊂ W ⊕Z be relations. The composition

of Φ and Γ is defined as is §6.2 (see also [GS], p. 942):

(6.1) Φ ◦ Γ =
{

(v, z) ∈ V ⊕ Z
∣

∣ ∃w ∈ W with (v, w) ∈ Γ and (w, z) ∈ Φ
}

.

It is clear that Φ ◦ Γ is a relation from V to Z. The main result of the
subsection is the following

Theorem 6.3. Let V , W , Z be generalized complex vector spaces, and let

Γ ⊂ V ⊕ W , Φ ⊂ W ⊕ Z be relations.

(a) If Γ, Φ are generalized isotropic subspaces with respect to the twisted

product structures on V ⊕ W and W ⊕ Z, then Φ ◦ Γ is a generalized

isotropic subspace with respect to the twisted product structure on V ⊕
Z.

(b) Same statement as part (a), with “generalized isotropic” replaced by

“generalized coisotropic.”

(c) Same statement as part (a), with “generalized isotropic” replaced by

“generalized Lagrangian.”

This theorem allows us to introduce the following

Definition 6.4 (The category Can).

(1) If V , W are GC vector spaces, a canonical relation from V to W is a
generalized Lagrangian subspace of V ⊕ W with respect to the twisted
product structure.

(2) The category Can of generalized complex vector spaces is defined as fol-
lows. The objects of Can are generalized complex vector spaces. If V, W
are objects of Can, the set of morphisms from V to W is the set of canon-
ical relations from V to W . The composition of morphisms is defined
by (6.1).

7. Examples and counterexamples

7.1. Preliminaries. In this section we illustrate the main constructions
and results of the previous sections with examples (and counterexamples).
Following the philosophy of [Gua], we consider two basic types of examples:
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B-complex and B-symplectic vector spaces. In particular, as a result of our
study, we will see that the three types of subspaces we have introduced (GC
subspaces, GC subspaces satisfying the graph condition with respect to the
induced structure, and split subspaces) are in general all distinct.

We begin by recalling explicit formulas for B- and β-field transforms of
symplectic structures. We refer to [Gua] for the (straightforward) compu-

tations. Let V be a real vector space and let B ∈
∧2 V ∗, β ∈

∧2 V . If J is
a complex structure on V and JJ is the corresponding GCS (see Definition
2.10(a)), then the transforms of J defined by B and β are given by

(

J 0
BJ + J∗B −J∗

)

and

(

J −Jβ − βJ∗

0 −J∗

)

,

respectively. If ω is a symplectic form on V and Jω is the corresponding
GCS (see Definition 2.10(c)), then the transforms of J defined by B and β
are given by

(

ω−1B −ω−1

ω + Bω−1B −Bω−1

)

and

(

βω −βωβ − ω−1

ω −ωβ

)

,

respectively.

It is also easy to describe B-field transforms of complex and symplectic
structures in terms of the subspace E ⊂ VC ⊕ V ∗

C
. Let us start with the

complex case. If J is a complex structure on V , we call the elements of
the +i-eigenspace (resp., −i-eigenspace) of J in VC the holomorphic (resp.,
antiholomorphic) vectors; and we call the elements of the +i-eigenspace
(resp., −i-eigenspace) of J∗ in V ∗

C
the holomorphic (resp., antiholomorphic)

1-forms on VC. Then the B-field transform of the complex GCS defined by
J is given by

E =
{

(v, ιvB + f)
∣

∣ v ∈ VC is holomorphic, f ∈ V ∗
C is antiholomorphic

}

.

On the other hand, if ω is a symplectic form on V , then the B-field transform
of the symplectic GCS defined by ω is given by

E =
{

(v, ιv(B − iω))
∣

∣ v ∈ VC

}

.

7.2. Subspaces, quotients and submanifolds. Let us classify GC sub-
spaces of B-complex and B-symplectic vector spaces.

Proposition 7.1. Let V be a real vector space, let B ∈
∧2 V ∗, and let

W ⊆ V be a subspace.

(a) If J is a complex structure on V and JJ is the associated GCS, then

W is a GC subspace of V with respect to the transform of JJ defined

by B if and only if W is invariant under J . In this case, the induced

structure on W is also B-complex, namely, it is the transform by B
∣

∣

W

of the complex GCS associated to J
∣

∣

W
. The induced structure satisfies

the graph condition. Furthermore, W is split if and only if there exists
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a complement N to W in V such that N is also invariant under J ,

and N is orthogonal to W with respect to B.

(b) If W is a subspace of a B-complex GC vector space which satisfies the

graph condition with respect to some GC structure, then W is also a

GC subspace.

(c) If ω is a symplectic form on V and Jω is the associated GCS, then

W is a GC subspace of V with respect to the transform of Jω defined

by B if and only if ω
∣

∣

W
is nondegenerate. In this case, the induced

structure on W is also B-symplectic, namely, it is the transform by

B
∣

∣

W
of the symplectic GCS associated to ω

∣

∣

W
. Furthermore, W is

split if and only if the induced structure satisfies the graph condition,

and either of these is equivalent to: if N is the orthogonal complement

to W in V with respect to ω, then N is also orthogonal to W with

respect to B.

The analogue of part (b) holds in the symplectic case, but fails in the
more general B-symplectic case (cf. Remark 7.4). Using duality, it is easy
to obtain a similar description of quotients of β-complex and β-symplectic
structures. We omit the simple proof of Proposition 7.1, which is a com-
bination of the results of Propositions 4.9–4.11 and Corollary 3.6, and the
explicit formulas of §7.1.

This classification of GC subspaces generalizes without difficulty to a clas-
sification of GC submanifolds of B-complex and B-symplectic manifolds.
Thus, for example, if M is endowed with a B-field transform of a complex
structure J ∈ AutR(TM), then a submanifold j : S →֒ M is generalized
complex if and only if TS ⊆ TM

∣

∣

S
is stable under J . It is easy to check

that the condition that ES be a smooth subbundle of TCS ⊕ T ∗
C
S (cf. §5.5)

is automatic. The induced structure on S is also B-complex, defined by
J
∣

∣

TS
and j∗B. A similar remark applies in the B-symplectic case. We leave

to the reader the task of formulating the suitable descriptions of submani-
folds satisfying the graph condition, and of split submanifolds, completely
analogous to Proposition 7.1.

Finally, we observe that all GC submanifolds of complex or symplectic
GC manifolds are already split. In the symplectic case, the “splitting” is
canonical. More precisely, if S is a GC submanifold of a symplectic manifold
(M, ω), then there exists a unique subbundle N ⊂ TM

∣

∣

S
such that TM

∣

∣

S
=

TS ⊕ N is a direct sum of GC structures; namely, N is the orthogonal
complement to TS with respect to ω. In the complex case, the “splitting”
may not be unique, but there always exists one. Indeed, let J be a complex
structure on a real manifold M , and let S be a submanifold of M such
that TS ⊆ TM

∣

∣

S
is J-invariant. Then J also acts on the normal bundle
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N = (TM
∣

∣

S
)/TS, so we get a short exact sequence

0 −→ TS −→ TM
∣

∣

S
−→ N −→ 0.

Since we are working in the C∞ category, there is a smooth splitting of
this sequence σ : N → TM

∣

∣

S
. We only need to make σ equivariant with

respect to J ; since J4 = 1, this is easily achieved by replacing σ with (1/4) ·
∑3

k=0 Jk ◦ σ ◦ J−k.

7.3. Generalized Lagrangian subspaces and submanifolds. We now
briefly discuss generalized isotropic, coisotropic, and Lagrangian subspaces
(resp., submanifolds) of B-complex and B-symplectic GC vector spaces
(resp., GC manifolds). First let J be a complex structure on a real vec-
tor space V , inducing a complex GCS as usual. From Definition 2.10(a), it
is clear that a subspace W ⊆ V is generalized isotropic if and only if J(W ) ⊆
W , and it is generalized coisotropic if and only if J∗(Ann(W )) ⊆ Ann(W ).
The latter condition is again equivalent to J(W ) ⊆ W . Thus, in the com-
plex case, the following classes of subspaces are all the same: generalized
isotropic, generalized coisotropic, generalized Lagrangian, and generalized
complex; and they all coincide with the class of subspaces invariant under
J .

Next let ω be a symplectic form on V , inducing a symplectic GCS as usual.
From Definition 2.10(c), it is clear that a subspace W ⊆ V is generalized
isotropic if and only if ω(W ) ⊆ Ann(W ), i.e., ω

∣

∣

W
≡ 0, that is, W is isotropic

in the sense of classical symplectic geometry. Similarly, W is generalized
coisotropic if and only if W is coisotropic in the classical sense; and hence
W is generalized Lagrangian if and only if W is Lagrangian.

These remarks carry over to the global case without any changes. Thus,
if M is a complex GCM, then the generalized isotropic (resp., coisotropic or
Lagrangian) submanifolds of M are precisely the complex submanifolds in
the usual sense. Similarly, if M is a symplectic GCM, then the generalized
isotropic (resp. coisotropic, resp. Lagrangian) submanifolds of M are the
submanifolds that are isotropic (resp. coisotropic, resp. Lagrangian) in the
classical sense.

Finally, we consider the case of B-complex and B-symplectic GC man-
ifolds. For simplicity, we restrict ourselves to generalized Lagrangian sub-
manifolds, which are studied in detail (under the name of “generalized com-
plex submanifolds”) in [Gua]. Thus, we only list the results, following
[Gua].

• If M is endowed with a GCS which is a transform of a complex struc-
ture on M by a B-field B ∈ Γ(M,

∧2 T ∗M), then a submanifold
j : S →֒ M is a generalized Lagrangian submanifold if and only if
S is a complex submanifold of M , and j∗B is a form of type (1, 1) on
S.
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• If M is endowed with a GCS which is a transform of a symplectic
structure on M by a B-field B ∈ Γ(M,

∧2 T ∗M), then a submanifold
j : S →֒ M is a generalized Lagrangian submanifold if and only if S
is a coisotropic submanifold of M (in the classical sense), and, if TS⊥

denotes the orthogonal complement to TS in TM
∣

∣

S
with respect to

the symplectic form on M , then TS is orthogonal to TS⊥ with respect
to B, so that j∗B descends to TS/TS⊥; and, finally, (j∗ω)−1j∗B is an
almost complex structure on TS/TS⊥.

7.4. Symplectic geometry with B-fields. Let V be a real vector space,
and let ω be a symplectic form on V . We have an injective linear map

2
∧

V ∗ −→ EndR(V ),

given by B 7→ T := ω−1B. A necessary and sufficient condition for T ∈
EndR(V ) to be in the image of this map is that (ωT )∗ = −ωT , or, equiva-
lently,

(7.1) ω(u, Tv) = ω(Tu, v) ∀u, v ∈ V.

If T satisfies (7.1), so that T = ω−1B for some B ∈
∧2 V ∗, then the B-field

transform of the symplectic GCS defined by ω can be written in terms of T
as follows:

(

T −ω−1

ω ◦ (1 + T 2) −T ∗

)

.

Thus, from Proposition 2.11, we immediately get the following

Proposition 7.2. The B-field transform of ω is

• symplectic ⇐⇒ T = 0;
• β-symplectic ⇐⇒ i is not an eigenvalue of T ;

• β-complex ⇐⇒ T 2 = −1.

The second possibility can be realized, e.g., by taking T = 1 (which corre-
sponds to B = ω). This shows that a (nontrivial) B-field transform of a sym-
plectic GCS may end up being β-symplectic as well. To show that the third
possibility can also be realized, let us choose a basis {e1, . . . , en, f1, . . . , fn}
of V in which ω has the canonical form:

(7.2) ω(ei, fj) = δij , ω(ei, ej) = ω(fi, fj) = 0 ∀ i, j.

Pick any T ∈ EndR(V ), and write T with respect to this basis in block form
as follows:

(7.3) T =

(

A B
C D

)

.

Then (7.1) is equivalent to
(

0 I
−I 0

)

·

(

A B
C D

)

=

(

At Ct

Bt Dt

)

·

(

0 I
−I 0

)

,
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where I is the n×n identity matrix, and superscript t denotes the transpose.
The last equality can be rewritten as

(7.4) D = At, Bt = −B, Ct = −C.

In particular, if n is even, we can choose A so that A2 = −1; taking B = C =
0, we get an example of an operator T satisfying (7.1) such that T 2 = −1.

Observation. This provides an example of a situation where a B-field
transform of a symplectic GCS is also β-complex.

Remark 7.3. One of the reasons why this examples is interesting is that it
provides an example of a continuous deformation of a symplectic structure
into a complex structure through GC structures. Indeed, it suffices to ob-
serve that if J is a GCS on V and B (resp., β) is a B-field (resp., β-field),
and for every t ∈ [0, 1] we define Jt to be the transform of J by t ·B (resp.,
t · β), then Jt depends continuously on t, and J0 = J , whereas J1 is the
transform of J by B (resp., β).

Remark 7.4. As a by-product of our discussion, we also obtain an exam-
ple of a subspace of a B-symplectic vector space which satisfies the graph
condition with respect to some GC structure, but is not a GC subspace in
the sense of Definition 3.2. For example, if W is the subspace of V spanned
by e1, . . . , en, then W is invariant under the operator T defined above, so
T

∣

∣

W
gives a complex structure on W . It is then easy to see (using Proposi-

tion 4.11) that W satisfies the graph condition with respect to this complex
structure. However, W is obviously not a GC subspace of V (cf. Proposition
7.1), since ω

∣

∣

W
≡ 0.

Now let us pass to the global case. Thus ω is a symplectic form on a real
manifold M , and T is an R-linear bundle endomorphism of TM satisfying
(7.1) for all sections u, v of TM . We suppose that if B is the two-form on M
corresponding to T , then the B-field transform of the GCS defined by ω is
integrable. Let E ⊂ TCM ⊕T ∗

C
M denote the maximally isotropic subbundle

corresponding to this transform. It is clear that E∩TCM is the +i-eigensheaf
of T on TCM . Clearly this sheaf is closed under the Lie bracket of vector
fields (because the restriction of the Courant bracket to TCM is the usual
Lie bracket). The same applies to E∩TCM . Now (E∩TCM)⊕(E∩TCM) is
the complexification of the subsheaf Ker(1 + T 2) ⊆ TM , whence the latter
subsheaf is integrable.

There exists a dense open set U ⊆ M on which 1+T 2 has constant rank.
On this set, the three sheaves considered above become subbundles of TCM .
Thus we obtain

Corollary 7.5. There exists a natural foliation of U , corresponding to the

integrable smooth distribution Ker(1 + T 2), whose leaves acquire a natural

complex structure.
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This corollary is a global analogue of a special case of Theorem 3.11(b).

7.5. Some counterexamples. We start by giving an example of a B-
symplectic vector space V and a GC subspace W ⊂ V such that V/W
is not a GC quotient of V .

Example 7.6. Let V be a real vector space with basis p1, q1, p2, q2, and let
a1, b1, a2, b2 be the dual basis of V ∗. Define ω = a1∧b1+a2∧b2, a symplectic
form on V , and B = a1 ∧ a2 − b1 ∧ b2, a B-field on V . Let W be the plane
in V spanned by p1 and q1. Then W is a GC subspace of V , but V/W is
not a GC quotient of V .

Indeed, it is clear that W is a GC subspace of V , because ω
∣

∣

W
is nondegen-

erate. Let π : V → V/W denote the quotient map, and let η : Ann(W ) →
(V/W )∗ be the natural isomorphism. It follows from §7.1 and (3.2) that

EV/W =
{

(

π(v), η(ιv(B − iω))
)

∣

∣

∣ ιv(B − iω) ∈ Ann(WC)
}

.

Consider the element v = p1+iq2. It is easy to compute that ιv(B−iω) = 0.

Thus, (π(v), 0) ∈ EV/W . But since p1 ∈ W , we have π(v) = π(iq2) =

π(−iq2) = −π(v), whence we also have (π(v), 0) ∈ EV/W . This implies that

EV/W ∩ EV/W 6= (0), so V/W is not a GC quotient of V .

Now we discuss a more complicated example.

Example 7.7. There exists a B-symplectic vector space V with the fol-
lowing property. If C is the minimal subspace of V such that V/C is a
β-symplectic quotient of V (cf. Theorem 3.11), then C is not a GC sub-
space of V . Hence, by duality, we see that there exists a β-symplectic vector
space V such that, if S is the maximal B-symplectic subspace of V , then
V/S is not a GC quotient of V .

To find an example of such a V , we use the theory developed in §7.4.
We suppose that V has a distinguished basis {ei, fi}

n
i=1, and is equipped

with a symplectic form ω defined by (7.2). We consider an operator T on
V , represented by the matrix (7.3) (where A, B, C, D are to be chosen
later). It is clear that with this notation, the subspace C ⊂ V is nothing
but the kernel of 1 + T 2. Now we note that the equation (7.1) implies
that Ker(1 + T 2) is orthogonal to Im(1 + T 2) with respect to ω. Thus,
if Ker(1 + T 2) ∩ Im(1 + T 2) 6= (0), the restriction of ω to Ker(1 + T 2) is
degenerate, so that C = Ker(1 + T 2) is not a GC subspace of V .

It remains to choose an arbitrary n×n matrix A such that Ker(1+A2)∩
Im(1 + A2) 6= (0); for instance, one can take

A =

(

J I
0 J

)

,
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where

J =

(

0 1
−1 0

)

, I =

(

1 0
0 1

)

,

so that

1 + A2 =

(

0 2J
0 0

)

is a nonzero nilpotent matrix. Setting D = At, B = C = 0, we obtain an
example of an operator T of the form (7.3), satisfying (7.4), and such that
Ker(1 + T 2) ∩ Im(1 + T 2) 6= (0).

Remark 7.8. We leave it to the reader to check that an example of the
type presented above does not exist in the B-complex case. That is, if V
is a B-complex GC vector space, and C is the minimal subspace such that
V/C is a β-symplectic GC quotient of V , then C is a GC subspace of V ,
and the induced structure on C is complex.

8. Proofs

8.1. Proofs for section 2. We start by proving Proposition 2.1. A bi-
jection between the collection of J ∈ AutR(V ⊕ V ∗) and the collection of
E ⊂ VC ⊕ V ∗

C
is obtained by associating to J its +i-eigenspace in VC ⊕ V ∗

C
.

[Conversely, if we start with E, we consider the C-linear automorphism of
VC ⊕ V ∗

C
defined as multiplication by +i on E and multiplication by −i on

E; it is straightforward to check that this automorphism is induced by an
R-linear automorphism of V ⊕ V ∗.] On the other hand, a bijection between
the collection of pure spinors φ ∈

∧• V ∗
C

and the collection of E is obtained
by associating to φ its annihilator in VC ⊕ V ∗

C
with respect to the Clifford

action (cf. §2.2). The fact that this is a bijection follows from parts (2.5)
and (2.5) of Theorem 2.5.

For the subsequent arguments, we will need an explicit description of the
inverse of the bijection between φ’s and E’s. Suppose that φ ∈

∧• V ∗
C

is
a pure spinor, written in the form of Theorem 2.5(2.5): φ = exp(u) ∧ f1 ∧
· · ·∧fk. Let Φ denote the span of f1, . . . , fk; this is a k-dimensional complex
subspace of V ∗

C
. We claim that

(8.1) Eφ :=
{

v − ιv(u) + f
∣

∣ v ∈ Ann(Φ), f ∈ Φ
}

is the maximally isotropic subspace corresponding to φ. Indeed, it is obvious
that dimC Eφ = dimC VC, so it suffices to see that all elements of E annihilate
φ. By definition of the Clifford action, we have f · φ = f ∧ φ = 0 for all
f ∈ Φ. Next, if v ∈ Ann(Φ), then, using the fact that ιv is a superderivation
of the algebra

∧• V ∗
C
, we find that

ιv(φ) = ιv(exp(u))∧ f1 ∧ · · · ∧ fk = ιv(u)∧ exp(u)∧ f1 ∧ · · · ∧ fk = ιv(u)∧φ,

whence also (v − ιv(u)) · φ = ιv(φ) − ιv(u) ∧ φ = 0. We can now give the
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Proof of Proposition 2.8. Let B be the orthogonal automorphism of V ⊕
V ∗ corresponding to B, as defined in §2.4. Explicitly, B acts as follows:
B(v + f) = v + ιv(B) + f . Now let us write φ in the canonical form: φ =
exp(u)∧f1∧· · ·∧fk. It is clear from Theorem 2.5(2.5) that ψ := exp(−B)∧φ
is also a pure spinor. Using (8.1), we immediately find that Eψ = B · Eφ,
which proves the proposition. ¤

Before we proceed, we list some useful formulas. If V is a real vector
space and J is an R-linear automorphism of V ⊕ V ∗, written, as usual, in
matrix form:

J =

(

J1 J2

J3 J4

)

,

then the conditions that J preserves the pairing 〈·, ·〉 and satisfies J 2 = −1
are equivalent to the following collection of equations:

J 2
1 + J2J3 = −1;(8.2)

J1J2 + J2J4 = 0;(8.3)

J3J1 + J4J3 = 0;(8.4)

J 2
4 + J3J2 = −1;(8.5)

J4 = −J ∗
1 ;(8.6)

J ∗
2 = −J2;(8.7)

J ∗
3 = −J3.(8.8)

The verification of this claim is straightforward. It is used in the proof
below.

Proof of Proposition 2.11. We first note that in parts (a) and (c), it is enough
to prove the equivalence of the given statements involving B-field transforms,
because then the analogous result for β-field transforms follows formally with
the aid of duality (§2.3 and Remark 2.9). Moreover, part (b) is immediate
from the explicit formulas of §7.1. For part (d), note that if J1 = 0, then
the equations 8.2–8.8 imply that J4 = 0 and J2 = −J −1

3 , with J ∗
2 = −J2.

Hence, taking ω = J3, we see from Definition 2.10 that E is symplectic.

The equivalences

ρ(E) ∩ ρ(E) = (0) ⇐⇒ V ∗
C = (V ∗

C ∩ E) + (V ∗
C ∩ E) ⇐⇒ J2 = 0

and

E ∩ V ∗
C = (0) ⇐⇒ ρ(E) = VC ⇐⇒ J2 is an isomorphism

are immediate.

Now if E is B-complex (resp., B-symplectic), it is clear from §7.1 that
J2 = 0 (resp., J2 is an isomorphism). Conversely, suppose that J2 = 0.
Then it is easy to check, using the formulas (8.2)–(8.8), that J 2

1 = −1 and
J4 = −J ∗

1 . We put J = J1; thus J is a complex structure on V . If we let
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B = −(1/2) ·J3 ·J1, it is straightforward to check that B is skew-symmetric
and J3 = BJ1 + J ∗

1 B. Thus E is B-complex.

Finally, suppose that J2 is an isomorphism. We put ω = −J −1
2 and

B = −J −1
2 J1. Again, it is straightforward to verify, using (8.2)–(8.8), that

ω∗ = −ω, B∗ = −B, and that J1 = ω−1B, J2 = −ω−1, J3 = ω + Bω−1B,
J4 = −Bω−1. Thus E is B-symplectic, completing the proof. ¤

8.2. Proofs for section 3. We begin with the following lemma, whose
proof is completely straightforward from the definitions and is therefore
omitted. Let V be a real vector space, let E ⊆ VC ⊕ V ∗

C
be a maximally

isotropic subspace, and let W ⊆ V be a subspace. Write τ : V ⊕ V ∗ →
V ∗ ⊕ V , τW : (V/W ) ⊕ (V/W )∗ → (V/W )∗ ⊕ (V/W ) for the isomorphisms
interchanging the summands. Define EW and EV/W by the formulas (3.1)
and (3.2), respectively. Note that τ(E) is a maximally isotropic subspace of
V ∗

C
⊕VC and Ann(W ) is a real subspace of V ∗, so it makes sense to consider

τ(E)Ann(W ). Finally, we identify Ann(W ) with V/W in the obvious way.

Lemma 8.1. With this identification, we have

τ(E)Ann(W ) = τW (EV/W ).

Our next result is a computation.

Lemma 8.2. Let V be a real vector space with a GC structure given by E ⊆
VC⊕V ∗

C
. Let W ⊆ V be a subspace, and define EW , EV/W by (3.1) and (3.2),

respectively. Then dimC EW = dimR W and dimC EV/W = dimR(V/W ).

Proof. Note that the second equality is equivalent to the first, in view of
Lemma 8.1. Thus we will only prove the first equality. It is clear that
ρ(EW ) = ρ(E) ∩ WC, so projection to WC realizes EW as an extension

0 −→ K −→ EW −→ ρ(E) ∩ WC −→ 0,

where K, in turn, fits into a short exact sequence

0 −→ E ∩ Ann(WC) −→ E ∩ V ∗
C −→ K −→ 0

(the last nonzero arrow is given by restriction to W ). Thanks to the fact
that E is maximally isotropic, we have E ∩ V ∗

C
= Ann(ρ(E)). Thus

E ∩ Ann(WC) = E ∩ V ∗
C ∩ Ann(WC) = Ann(ρ(E) + WC),

which implies that

dimC

(

E ∩ Ann(WC)
)

= dimC VC − dimC(ρ(E) + WC)

= dimR V − dimR W − dimC ρ(E)

+ dimC(ρ(E) ∩ WC).
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Therefore

dimC(EW ) = dimC(ρ(E) ∩ WC) + dimC K

= dimC(ρ(E) ∩ WC) + dimC(E ∩ V ∗
C ) − dimC

(

E ∩ Ann(WC)
)

= dimC(E ∩ V ∗
C ) − dimR V + dimR W + dimC ρ(E) = dimR W,

completing the proof. ¤

Proof of Proposition 3.5. The product f1 ∧ · · · ∧ fk depends (up to a sign)
only on the span of the fi’s, and we know from Theorem 2.5(2.5) that the
span must equal to E∩V ∗

C
. Thus, we are free to choose the fi’s to be any basis

of this space. Since E is maximally isotropic, we have E ∩V ∗
C

= Ann(ρ(E)),
and now the existence of the basis we are looking for follows from the short
exact sequence

0 −→ Ann(ρ(E) + WC) −→ Ann(ρ(E))
j∗
−→ Ann(ρ(E) ∩ WC) −→ 0,

where we view the last space as a subspace in W ∗
C
. [The surjectivity follows,

for instance, from dimension counting.]
Now define φW by the formula given in Proposition 3.5. Theorem 2.5(2.5)

implies that φW is a pure spinor, and (8.1) shows that

E = Eφ =
{

v − ιv(u) + f
∣

∣ v ∈ ρ(E), f ∈ E ∩ V ∗
C = Ann(ρ(E))

}

,

and the maximally isotropic subspace corresponding to φW is

EφW
=

{

w − ιw(u) + g
∣

∣ w ∈ Ann(ΦW ), g ∈ ΦW

}

,

where ΦW is the span of j∗(f1), . . . , j
∗(fl), i.e., by construction, ΦW =

Ann(ρ(E)∩WC) ⊆ W ∗
C
. It is then clear that EW ⊆ EφW

, and equality holds
for reasons of dimension. ¤

We now come to the proofs of Theorems 3.10 and 3.11. Let V be an arbi-
trary GC vector space; we let J ∈ AutR(V ⊕ V ∗) denote the corresponding
orthogonal automorphism, and E ⊂ VC ⊕ V ∗

C
the corresponding subspace.

Let C be the real subspace of V such that CC = (E ∩ VC)⊕ (E ∩ VC). Then
C is obviously invariant under J , so J

∣

∣

C
gives a canonical complex struc-

ture on C. It is clear from Proposition 4.11(a) that C, with this structure,
satisfies the graph condition. Furthermore, if C is a GC subspace of V , then
Proposition 4.11(c) implies that the induced structure on C is β-complex,
and the underlying complex structure coincides with J

∣

∣

C
.

On the other hand, there exists a real subspace S ⊆ V such that SC =
ρ(E) ∩ ρ(E). It is easy to check that S is a GC subspace of V (also see the
proof of Theorem 3.10 below). Moreover, Proposition 2.11(c) implies that
S is the maximal GC subspace of V such that the induced structure is B-
symplectic. Next, SC = Ann

(

(E∩V ∗
C
)⊕(E∩V ∗

C
)
)

. If C̃ is the real subspace of

V ∗ such that C̃C = (E∩V ∗
C
)⊕(E∩V ∗

C
), so that C̃ = Ann(S), then, applying

the argument of the previous paragraph to the dual structure τ(E), we see
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that V/S ∼= C̃∗ acquires a natural complex structure, and hence so does C̃.

Furthermore, if V/S is a GC quotient of V , then by Proposition 3.9, C̃ is a
GC subspace of V ∗, and now the argument of the previous paragraph shows
that C̃ is β-complex, whence V/S is B-complex. On the other hand, if we
return to the situation of the previous paragraph and use our results about
S, we see that V/C is always a GC quotient of V , and the induced structure
is β-symplectic; and, moreover, C is the smallest subspace of V with this
property. This completes the proof of Theorem 3.11.

To prove Theorem 3.10, let us begin by constructing the maximal B-
symplectic GC subspace S ⊆ V as in the previous paragraph. This charac-
terization of S shows that S does not change if we make a B-field transform
of the GCS on V (and neither does the result of the theorem). Therefore,
we assume, from the beginning, that the pure spinor defining our GCS has
the form φ = exp(iΩ) ∧ f1 ∧ · · · ∧ fk, where Ω ∈

∧2 V ∗ is a real 2-form.
We know that f1, . . . , fk form a basis for E ∩ V ∗

C
= Ann(ρ(E)), and hence

f1, . . . , fk, f̄1, . . . , f̄k form a basis for Ann(SC). By Theorem 2.5(2.5), we
have, up to a nonzero scalar multiple,

0 6= 〈φ, φ̄〉M = Ωp ∧ f1 ∧ · · · ∧ fk ∧ f̄1 ∧ · · · ∧ f̄k,

where p = dimR S. This implies that the restriction of Ω to S must be
nondegenerate; write ω = Ω

∣

∣

S
. Basic linear algebra shows that if W is the

orthogonal complement to S with respect Ω, then V = S ⊕ W (direct sum
of vector spaces). Let πS : V → S, πW : V → W be the two projections,
and let gj = fj

∣

∣

WC

(1 ≤ j ≤ k), u = iΩ
∣

∣

WC

. Note that the gj , ḡj form a basis

of W ∗
C
. Now Proposition 3.5 implies that the pure spinors corresponding to

S and W are given by

φS = exp(iω) and φW = exp(u) ∧ f1 ∧ · · · ∧ fk,

respectively. Then Theorem 2.5(2.5) gives (up to a nonzero scalar multiple)

〈φS , φ̄S〉M = ωp and 〈φW , φ̄W 〉M = g1 ∧ · · · ∧ gk ∧ ḡ1 ∧ · · · ∧ ḡk;

in particular, both S and W are GC subspaces of V . Moreover, by construc-
tion, W ∗

C
= (EW ∩W ∗

C
)⊕(EW ∩W ∗

C
), whence W is B-complex by Proposition

2.11(a). Finally, since the fj annihilate SC, and since S is orthogonal to W
with respect to Ω, it is easy to see that

φ = π∗
S(φS) ∧ π∗

W (φW ),

which shows that V = S ⊕W as GC vector spaces, and completes the proof
of Theorem 3.10.
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8.3. Proofs for section 4. First let us briefly discuss the proof of Propo-
sition 4.8. It is obvious that N ⊕ Ann(N) is the orthogonal complement of
W ⊕Ann(W ) with respect to our standard pairing 〈·, ·〉; since J is orthogo-
nal with respect to this pairing, we see that N ⊕Ann(W ) is invariant under
J . Now let ψ : W ⊕ Ann(N) → W ⊕ W ∗ and ψ′ : N ⊕ Ann(W ) → N ⊕ N∗

be the natural isomorphisms. Invariance under J implies that

WC ⊕ Ann(NC) =
(

E ∩
(

WC ⊕ Ann(NC)
)

)

⊕
(

E ∩
(

WC ⊕ Ann(NC)
)

)

;

on the other hand, we have (by the definition of EW )

ψ
(

E ∩
(

WC ⊕ Ann(NC)
)

)

⊆ EW ,

and similarly for E. Comparing the dimensions, we see that equality in the
formula above holds. Since ψ is an isomorphism, it follows that EW ∩EW =
(0). The rest is obvious. We can now give the

Proofs of Propositions 4.9–4.11. Consider a real vector space V and a sub-
space W ⊆ V , and suppose that V and W are equipped with GC structures
J and K, respectively, written in the usual form as

J =

(

J1 J2

J3 J4

)

and K =

(

K1 K2

K3 K4

)

.

The graph of the inclusion W →֒ V is the subset Γ ⊂ W ⊕ V consisting
of all pairs (w, w) with w ∈ W , while Ann(Γ) is the subset of W ∗ ⊕ V ∗

consisting of all pairs (f, g) with f = −g
∣

∣

W
. Let Jtp denote the twisted

product structure on W ⊕ V ; thus Γ is a generalized isotropic subspace of
W ⊕ V with respect to this structure if and only if Jtp(Γ) ⊆ Γ ⊕ Ann(Γ).
Explicitly, if w ∈ W , so that (w, w) ∈ Γ, then

Jtp(w, w, 0, 0) =
(

K1(w),J1(w),−K3(w),J3(w)
)

.

Therefore, W (with the structure K) satisfies the graph condition if and only
if

(8.9) K1 = J1

∣

∣

W
and K3(w) = J3(w)

∣

∣

W
∀w ∈ W

(in particular, the first condition implies that W is invariant under J1).
Note that (8.9) and (8.6) imply that K4(f

∣

∣

W
) = J4(f)

∣

∣

W
for all f ∈ V ∗.

Thus, the requirement that W satisfies the graph condition with respect to
K determines K1, K3 and K4 uniquely. In view of Lemma 8.3, whose proof
is given below, we see that the rest of Propositions 4.9–4.11 follow from the
following

Claim. If W is a GC subspace of V which is invariant under J1, and K
denotes the induced structure, then the conditions (8.9) are satisfied.
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To prove this claim, let E be the +i-eigenspace of J in VC, and let
w ∈ WC. We can write w = e + e′, where e ∈ E, e′ ∈ E. Then J (w) =
i · (e − e′). Now ρ(e) + ρ(e′) = w ∈ WC, and i · (ρ(e) − ρ(e′)) = ρ(J (w)) =
J1(w) ∈ WC by assumption, whence ρ(e), ρ(e′) ∈ WC. Thus, in fact,
(w, 0) = (ρ(e), ρ∗(e)

∣

∣

WC

) + (ρ(e′), ρ∗(e′)
∣

∣

WC

), with (ρ(e), ρ∗(e)
∣

∣

WC

) ∈ EW

and (ρ(e′), ρ∗(e′)
∣

∣

WC

) ∈ EW . Therefore

(

K1(w),K3(w)
)

= K(w, 0) = i · (ρ(e), ρ∗(e)
∣

∣

WC

) − i · (ρ(e′), ρ∗(e′)
∣

∣

WC

)

=
(

J1(w),J3(w)
∣

∣

WC

)

,

completing the proof. ¤

Lemma 8.3. Let J and J ′ be two GC structures on a real vector space V
which have the following forms:

J =

(

J1 J2

J3 J4

)

and J ′ =

(

J1 J ′
2

J3 J4

)

(thus, only the (1, 2)-entries are different). Then there exists a β ∈
∧2 V

that transforms J into J ′. Moreover, β is unique if we impose the additional

constraint that J1 ◦ β : V ∗ → V be skew-symmetric (here we view β as a

skew-symmetric linear map V ∗ → V , as explained in §1.5).

Proof. All the computations below that we omit are straightforward if one
uses (8.2)–(8.8). First one checks that the condition that β ∈

∧2 V trans-
forms J into J ′ is equivalent to the following equations:

(8.10) βJ3 = J3β = 0, −J1β + βJ4 = J ′
2 − J2.

Let L = (1/2) · (J2 − J ′
2). If J1β is to be skew-symmetric, then (since

β is also skew-symmetric) we must have βJ4 = β∗J ∗
1 = (J1β)∗ = −J1β,

which forces J1β = L. This equation and J3β = 0 imply that −β =
(J 2

1 + J2J3) ◦ β = J1L, whence β = (1/2) · J1 ◦ (J ′
2 − J2), proving the

uniqueness of β. Conversely, if we define β by this formula, then one easily
checks that β∗ = −β, and the equations (8.10) are satisfied. This completes
the proof. ¤

8.4. Proofs for section 5.

Proof of Proposition 5.7. Part (a) is immediate from the equality d(f · g) +
f · Y + g · X = f · (dg + Y ) + g · (df + X). For part (b), let (f, X) be a
section of COUM defined near a point m ∈ M . Suppose that f(m) 6= 0,
then there exists an open set U ∋ m such that (f, X) is defined on U ,
and is nonvanishing there. Then it is easy to check that (f−1,−f−2 · X) ∈
COUM (U), and (f, X) · (f−1,−f−2 · X) = (1, 0). Finally, part (c) follows
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from the definition of integrability in terms of the Courant bracket, and the
easily verified identity

[

df + X, dg + Y
]

cou
=

1

2

(

d(X(g)) − d(Y (f))
)

+ [X, Y ]

for all local sections (f, X) and (g, Y ) of C∞
M ⊕TCM . We leave to the reader

the straightforward but tedious verification that {·, ·} satisfies the Leibniz
rule and the definition of a Poisson algebra; we remark that here the fact
that E is isotropic is used in an essential way. (In other words, {·, ·} doesn’t
have these properties on the bigger sheaf C∞

M ⊕ TCM .) ¤

Proof of Theorem 5.13. The given map is clearly a ring homomorphism with
respect to the ring operations defined in Proposition 5.7(a). Thus we only
need to check that this map takes COUM (U) into COUS(U ∩ S). Let j :
S →֒ M denote the inclusion map. We’ll show, more generally, that if X + ξ
is a section of E over U , where X ∈ Γ(U, TCM) and ξ ∈ Γ(U, T ∗

C
M), then

π(X
∣

∣

S
) + j∗(ξ) is a section of ES over U ∩ S. To that end, write, on U ∩ S:

X = Y + Z, ξ = η + ζ, where Y , Z, η and ζ are sections over U ∩S of TCS,
NC, Ann(NC) ⊂ T ∗

C
M

∣

∣

S
and Ann(TCS) ⊂ T ∗

C
M

∣

∣

S
, respectively. It is clear

that Y = π(X
∣

∣

S
) and η

∣

∣

TCS
= j∗(ξ). Thus it remains to observe that (Y, η)

is a section of E. This follows from the decomposition

X + ξ = (Y + η) + (Z + ζ) ∈
(

TCS + Ann(NC)
)

⊕
(

NC + Ann(TCS)
)

and the fact that each of the two direct summands on the right is J -
invariant, by the definition of a split submanifold. ¤

8.5. Proofs for section 6.

Proof of Theorem 6.1. The theorem follows immediately from its linear
counterpart (Theorem 4 in the introduction), which we find convenient to
restate as follows. Let V be a real vector space, and let J , K be two GC
structures on V . If the diagonal ∆ ⊂ V ⊕ V is generalized Lagrangian with
respect to the direct sum of the structures J̃ and K, then J = K.

Now Ann(∆) = {(f,−f) ∈ V ∗ ⊕ V ∗}, and if v ∈ V , f ∈ V ∗, then

(J̃ ⊕ K)(v, v, f,−f) =
(

J1(v) − J2(f),K1(v) −K2(f),

−J3(v) + J4(f),K3(v) −K4(f)
)

.

We see that ∆ ⊕ Ann(∆) is invariant under J̃ ⊕ K if and only if J1 = K1,
J2 = K2, J3 = K3 and J4=K4, completing the proof. ¤

Proof of Theorem 6.3. In the following proof, we will always implicitly iden-
tify (V ⊕ W )∗ with V ∗ ⊕ W ∗, and similarly for W ⊕ Z, V ⊕ Z. We begin
with the following
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Claim. Let (f, h) ∈ V ∗ ⊕Z∗. Then (f, h) ∈ Ann(Φ ◦ Γ) if and only if there
exists g ∈ W ∗ such that (f, g) ∈ Ann(Γ) and (−g, h) ∈ Ann(Φ).

Indeed, suppose first that there is a g ∈ W ∗ with (f, g) ∈ Ann(Γ),
(−g, h) ∈ Ann(Φ). If (v, z) ∈ Φ ◦ Γ, then there exists w ∈ W such that
(v, w) ∈ Γ and (w, z) ∈ Φ. Then f(v) + g(w) = 0 and −g(w) + h(z) = 0,
whence f(v) + h(z) = 0. This shows that (f, h) ∈ Ann(Φ ◦ Γ).

Conversely, let (f, h) ∈ Ann(Φ◦Γ). Let Λ (resp., Ψ) denote the projection
of Γ (resp., Φ) onto W . Note that if (v, 0) ∈ Γ, then (v, 0) ∈ Φ ◦ Γ, so that
f(v) = −h(0) = 0; similarly, if (0, z) ∈ Φ, then (0, z) ∈ Φ ◦ Γ, whence
h(z) = 0. This shows that we can define a linear functional g1 on Λ by the
rule g1(w) = −f(v, w) for any v ∈ V such that (v, w) ∈ Γ. Similarly, we
can define a linear functional g2 on Ψ by the rule g2(w) = h(w, z) for any
z ∈ Z such that (w, z) ∈ Φ. Then g1 and g2 agree on Λ ∩ Ψ, because if
w ∈ Λ ∩ Ψ, then (v, w) ∈ Γ and (w, z) ∈ Φ for some v ∈ V , z ∈ Z, whence
g1(w) = −f(v) = h(z) = g2(w). Thus, there exists a linear functional
g ∈ W ∗ such that g

∣

∣

Λ
= g1 and g

∣

∣

Ψ
= g2. By construction, we have

(f, g) ∈ Ann(Γ) and (g, h) ∈ Ann(Ψ), proving the claim.

Now let us prove part (a) of the theorem. Let JV , JW and JZ denote the
automorphisms defining the GC structures on V , W and Z, respectively. We
will write them in the usual 2×2 matrix form. Suppose that Γ ⊂ V ⊕W and
Φ ⊂ W ⊕ Z are generalized isotropic subspace with respect to the twisted
product structures. If (v, z) ∈ Φ◦Γ, then there exists w ∈ W with (v, w) ∈ Γ
and (w, z) ∈ Φ. Then we get

(J̃V ⊕ JZ)(v, z, 0, 0) =
(

JV 1(v),JZ1(z),−JV 3(v),JZ3(z)
)

.

We have

(J̃V ⊕ JW )(v, w, 0, 0) =
(

JV 1(v),JW1(w),−JV 3(v),JW3(w)
)

and

(J̃W ⊕ JZ)(w, z, 0, 0) =
(

JW1(w),JZ1(z),−JW3(w),JZ3(z)
)

,

whence
(

JV 1(v),JW1(w)
)

∈ Γ,
(

JW1(w),JZ1(z)
)

∈ Φ,
(

−JV 3(v),JW3(w)
)

∈ Ann(Γ), and
(

−JW3(w),JZ3(z)
)

∈ Ann(Φ),

by assumption. This implies that
(

JV 1(v),JZ1(z)
)

∈ Φ ◦ Γ, and, according

to the claim above,
(

−JV 3(v),JZ3(z)
)

∈ Ann(Φ ◦ Γ). This proves that
Φ ◦ Γ is generalized isotropic with respect to the twisted product structure
on V ⊕ Z.

For part (b), we assume that Γ and Φ are generalized coisotropic with
respect to the twisted product structures. Then we start with (f, h) ∈
Ann(Φ ◦ Γ); according to the claim above, we can find a g ∈ W ∗ such that
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(f, g) ∈ Ann(Γ) and (−g, h) ∈ Ann(Φ). Then we proceed exactly as in the
previous paragraph, and we deduce that

(J̃V ⊕ JZ)(0, 0, f, h) ∈ (Φ ◦ Γ) ⊕ Ann(Φ ◦ Γ).

Finally, part (c) follows from parts (a) and (b). ¤
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