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NONISOTOPIC SYMPLECTIC TORI IN THE FIBER
CLASS OF ELLIPTIC SURFACES

Stefano Vidussi

The purpose of this note is to present a construction of an
infinite family of symplectic tori T p,q representing an arbi-
trary multiple q[F ] of the homology class [F ] of the fiber of an
elliptic surface E(n), for n ≥ 3, such that, for i �= j, there is no
orientation-preserving diffeomorphism between (E(n), T (i,q))
and (E(n), T (j,q)). In particular, these tori are mutually non-
isotopic. This complements previous results of Fintushel and
Stern in [FS2], showing in particular the existence of such
phenomenon for a primitive class.

1. Introduction and statement of the result

An interesting question of symplectic topology concerns the existence, for
a symplectic 4-manifold X, of homologous, but not isotopic, symplectic
representatives of a given homology class. Fintushel and Stern provided,
in [FS2], the first example of such phenomenon. Their construction, that
applies to a large class of symplectic manifolds, implies in particular that
in any elliptic surface the class 2m[F ] (where m ≥ 2 and [F ] is the class
of the elliptic fiber) can be represented by an infinite family of mutually
nonisotopic symplectic tori. Smith ([S1]) has been able to increase the genus
of the examples, proving that the class 2m[Σg] (where m ≥ 2) in the (non
simply-connected) surface Σg × S2 can be represented by an infinite family
of mutually nonisotopic symplectic curves (whose genus can be determined
by the adjunction formula). The results above should be compared with
the ones expected from a conjecture, due to Siebert and Tian, about the
absence of such phenomena in the case of minimal rational ruled manifolds
(Siebert and Tian have in fact proven the conjecture for several homology
classes of P2 and S2 × S2).
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These results leave open an interesting question, first pointed out by
Smith in [S2]. Apart from the problem of obtaining examples for homol-
ogy classes with odd divisibility, which appears mainly a technical question,
the method used in [FS2] and [S1] does not allow us to obtain nonisotopy
results for primitive homology classes, as the case of the fiber F in E(n).

Our purpose here is to present a different construction that produces fam-
ilies of symplectic tori also in primitive homology classes, and distinguishes
their isotopy class avoiding the use of branched coverings. This allows us
to extend (almost completely) the previous results, obtaining this way ex-
amples of symplectic surfaces homologous but not isotopic to a complex
connected curve. Moreover, we will able to obtain a stronger result, namely
that there does not exist a orientation-preserving diffeomorphism of E(n)
sending one of these tori to another. Precisely, we will prove the following

Theorem 1.1. For any q ≥ 1 there exists an infinite family of symplec-
tic tori T p,q representing the class q[F ] of an elliptic surface E(n), for
n ≥ 3 (where [F ] is the class of the fiber) such that, for i �= j, there is no
orientation-preserving diffeomorphism between (E(n), T (i,q)) and (E(n), T (j,q)).
In particular, these tori are mutually nonisotopic.

We briefly sketch the argument: for each q ≥ 1 we will consider different
homologous simple curves K(p,q)

1 in the exterior of the 3-component link
given by pushing off one component of the Hopf link. These curves will define
a family of homologous, symplectic tori T (p,q) in the elliptic surface E(n).
We will glue copies of the rational elliptic surface E(1) along these tori. The
symplectic manifolds obtained this way are link surgery manifolds, obtained
by applying a variation of the construction of Fintushel-Stern (introduced
in [V1]) to a family of links introduced in Section 2. Gluing E(1) along its
fiber F does not depend (up to diffeomorphism of the resulting manifolds) on
the choice of the gluing map (see [GS]); in particular the resulting manifold
depends only on the diffeomorphism type of the pair (E(n), T (p,q)). Using
different tori, we will get an infinite number of mutually nondiffeomorphic
manifolds, distinguished (in a rather unusual way, see Section 4) by the SW
invariant. For two such tori T1, T2 we have therefore no diffeomorphism of
the pairs (E(n), T1), (E(n), T2). This implies in turn that the two tori are
not smoothly isotopic.

We remark that while our examples cover cases that were excluded in
[FS2] and, mutatis mutandis, in [S1], we have a price to pay, namely - as
can be observed by analyzing the construction presented in the next section
- the constraint of n ≥ 3 of Theorem 1.1 does not seem to be removable
(while the examples of [FS2] exist for any elliptic surface).
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2. Construction of the family of links

In this section we introduce a doubly-indexed class of links {Lp,q, p ≥ 0, q ≥
1} which we will be of paramount importance in our construction: First,
denote by L0,1 the 4-component link obtained by pushing off, with respect
to the 0-framing, 2 copies of one component of the Hopf link, (with the
components oriented as the fibers of the Hopf fibration of S3). Next, consider
the 3-strand braid B1 of Figure 1, and denote by L1,1 be the 4-component
link given by the 3-component link R1 obtained by closing the braid of
Figure 1, together with the braid axis K4 oriented in such a way that the
sublink composed by K4 and any closed strand is the Hopf link.

Figure 1. The braid B1, whose closure gives the Bor-
romean rings.

Similarly, denote by Lp,1 the 4-component link given by the 3-component
link Rp obtained by closing the braid Bp, the composition of p copies of B1,
together with the symmetry axis K4 oriented as before.

The link L1,1 is the link Borromean rings plus axis, analyzed (for different
purposes) in [MT]. Its multivariable Alexander polynomial is

(1)
∆L1,1(x, y, z, t) = −4 + (t+ t−1) + (x+ x−1 + y + y−1 + z + z−1)+

−(xy + (xy)−1 + yz + (yz)−1 + xz + (xz)−1) + (xyz + (xyz)−1)

where t is the variable corresponding to the meridian of the axis K4 and
x, y, z correspond to the meridians of the three components given by the
closure of the strands of the braid B1.

The link Lp,q is defined by modifying Lp,1 in the following way; add, to
the braid Bp, (q − 1) strands, which are braided to the the first strand in
the way denoted in Figure 2.

Figure 2. The closure of this braid with the axis gives the
link L2,4.

The closure of this new braid still gives the 3-component link Rp (the
various braids differ in fact only by Markov moves of type II), but if we add
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the axis K4, we get a new link Lp,q, that we can visualize as obtained from
Lp,1 by taking its first component and twisting it q times around K4, see
Figure 3.

Figure 3. The link L2,4.

The linking matrix of Lp,q has the form

(2) lqij =

⎛
⎜⎜⎝

− 0 0 q
0 − 0 1
0 0 − 1
q 1 1 −

⎞
⎟⎟⎠ .

Observe that the linking matrix does not depend on p.
We will not be interested in the computation of the complete multivariable

Alexander polynomial of Lp,q; we will be content with the computation of
the reduced polynomial ∆p,q(s) := ∆Lp,q(s, s, s, 1), that is determined in the
following

Lemma 2.1. Let ∆p,q(s) = ∆Lp,q(s, s, s, 1) be a specialization of the Alexan-
der polynomial of the link Lp,q constructed before, for p, q ≥ 1. Then

(3) ∆p,q(s) = (sq+2 − 1)(s − 1)3 ·
p−1∏
j=1

[(1 − s−3)(s − 1)3 − 2(1 − cos
2πj
p

)]

(with the convention that for p = 1 the latter product is meant to be equal
to 1).

Proof: To prove this equation, we need first of all the Torres formula
(see e.g. [Tu]) which in our case reads
(4)
∆Lp,q(x, y, z, 1) = (xlq14ylq24zlq34 − 1) · ∆Rp(x, y, z) = (xqyz − 1) · ∆Rp(x, y, z).

where ∆Rp(x, y, z) is the Alexander polynomial of Rp and the lqi4 are the
linking numbers of Equation 2. To compute ∆Rp(x, y, z), we observe that
Rp is a periodic link, whose image under the Zp action over S3 with fixed
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point set the unknot K4 is the Borromean rings R1; from the formula for the
Alexander polynomial of periodic links ([Tu]), and the fact that R1 ∪K4 =
L1,1, we have

(5) ∆Rp(x, y, z) = ∆R1(x, y, z) ·
p−1∏
j=1

∆L1,1(x, y, z, ω
j)

where ω is the primitive p-th root of unit. Equation 1 and explicit calculation
lead then to Equation 3. �

In the link Rp, as for the Borromean rings R1, each component is an
unknot, and any 2-component sublink is the trivial link. In particular, we
can think at Lp,q as the union K

(p,q)
1 ∪ H3 where H3 = K2 ∪ K3 ∪ K4

is the push-off of one component of the Hopf link (with the components
K2 and K3 being unlinked). The links Lp,q - for a fixed value of q ≥ 1 -
differ therefore from the way the unknot K(p,q)

1 is linked to the 3-component
link H3. In particular, if we consider the link exterior S3 \ νH3, the link
exteriors S3 \ νLp,q are obtained by removing nonisotopic circles. The case
L0,1 corresponds to the removal of the circle K(0,1)

1 isotopic to µ(K4), the
meridian of K4. In the case of Lp,q instead we are removing the circle K(p,q)

1

which is homologous to qµ(K4) in H1(S3 \ νH3), as from the linking matrix
of Equation 2 we deduce that K(p,q)

1 has linking number q with the axis K4,
and 0 with the other two components. In what follows we will consider the
circle K(p,q)

1 , as well as any other link component, endowed of the framing
defined by a spanning disk.

3. Link surgery manifolds associated to Lp,q

In this section we will construct the family of 4-manifolds used to prove
Theorem 1.1. We start by recalling briefly the definition of link surgery
manifold (see [FS1]), in the modified form introduced in [V1]. Consider
an m-component link K ⊂ S3 and take an homology basis of simple curves
(αi, βi) of intersection 1 in the boundary of the link exterior. Next, take m
elliptic surfaces E(ni) and define the manifold

(6) E(K) = (
∐

E(ni) \ νFi) ∪Fi×S1=S1×αi×βi
(S1 × (S3 \ νK)),

where the orientation reversing diffeomorphism between the boundary 3-tori
is defined so to identify Fi with S1 ×αi and acts as complex conjugation on
the remaining circle factor.

It is well known that in general the fiber sum above is not well defined
and, for a fixed choice of homology basis, the smooth structure of the mani-
fold above could depend on various choices, but because of the use of elliptic
surfaces the manifold we will discuss will not be affected by this indetermi-
nacy.
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We have now a simple claim, whose proof follows by the definition of
the elliptic surface E(n) as an iterated fiber sum of elliptic surfaces. Fix
{ni} = {1, 1, n − 2}.
Claim 3.1. Let H3 be the 3-component link obtained by pushing off one copy
of one component of the Hopf link; then we can chose the homology basis
(αi, βi) so that E(H3) = E(n).

Proof: This claim follows from the observation that

(7) S1 × (S3 \ νH3) = T 2 × (S2 \ ν{p2, p3, p4})
so that choosing (αi, βi) = (λ(Ki),−µ(Ki)) for i = 2, 3 and (α4, β4) =
(µ(K4), λ(K4)) we have an explicit presentation of E(n). �

In E(n) defined as above, the image of the class of the curve µ(K4) under
the injective map

(8) H1(S3 \ νH3,Z)
S1×(·)−→ H2(S1 × (S3 \ νH3),Z) −→ H2(E(n),Z)

is the class of the elliptic fiber. More precisely, the image of the torus
S1 × µ(K4) in E(n) is identified with a copy of the elliptic fiber F .

Consider now the images T (p,q) of the tori S1 ×K
(p,q)
1 under the injection

(9) S1 × (S3 \ νH3) ↪→ E(n);

these compose a family of embedded, self-intersection zero framed tori. We
have the following

Proposition 3.2. Up to isotopy, the tori T (p,q) are symplectic submanifolds
of E(n), homologous to qF , where F is the fiber of the elliptic fibration.

Proof: The statement on homology follows from the fact that the circles
K

(p,q)
1 are all homologous to qµ(K4) in H1(S3 \νH3,Z), and the class [T (p,q)]

coincides therefore with the image of q[µ(K4)] under the map of Equation
8, i.e. it is the multiple q[F ] of the class of the fiber.

In order to prove that the T (p,q) are symplectic, we will present E(n),
together with its symplectic structure, as a symplectic fiber sum in the
following way: we perform a surgery with coefficients respectively ∞,∞, 0
to K2 ∪K3 ∪K4 ⊂ S3 (i.e. ultimately a 0-surgery to the unknot K4 ⊂ S3)
to obtain the three manifold S1 × S2, in which the cores Ci of the solid tori
used in the surgery (specifically K2 and K3 itself, plus a curve isotopic to
µ(K4)) are framed, essential curves, whose framing induces one for the tori
S1 × Ci ⊂ S1 × S1 × S2. Then we have

(10) E(n) =
4∐

i=2

E(ni)#Fi=S1×Ci
S1 × (S1 × S2).

Note that, by the definition of fiber sum and because of the framings of
S1 × Ci, this construction coincides with the one of Claim 3.1.
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In S1 × S2 the curves Ci are transverse to the fiber S2 of the obvious
fibration (which extends the D2 fibration of S3 \ νK4 = S1 × D2) and if
we denote by φ ∈ Ω1(S1 × S2,R) a closed nondegenerate representative
of that fibration, for any curve C in S3 \ νK4 which is transversal to the
disk fibration, we have pointwise φ(C) > 0; as a consequence, endowing
S1 ×S1 ×S2 of the symplectic structure φ∧ dt+ εψ (with ψ a volume form
on the fiber S2 and ε sufficiently small), the tori S1 × Ci (more generally,
any torus S1×C as above) are symplectic in S1×S1×S2 and, consequently,
in E(n). The curves K(p,q)

1 ⊂ S3 \ νK4 are (up to isotopy) transverse to the
disk fibration, and the tori T (p,q) are therefore symplectic. �

We can now introduce the link surgery manifolds associated to the links
Lp,q. These are defined as in Equation 6, but we can also present them as
fiber sum of E(n) and E(1) along the embedded tori T (p,q) ⊂ E(n) and
F ⊂ E(1). This is the content of the next definition, in which we write
also the Seiberg-Witten polynomial of the manifold. Fix (n1, n2, n3, n4) =
(1, 1, 1, n − 2):

Definition 3.3. Let Lp,q be the 4-component link considered above, and
define

E(Lp,q) = (
4∐

i=1

E(ni) \ νFi) ∪Fi×S1=S1×αi×βi
(S1 × (S3 \ νLp,q))

= E(n)#T (p,q)=FE(1)(11)

where (α1, β1) = (λ(K(p,q)
1 ),−µ(K(p,q)

1 )), (αi, βi) = (λ(Ki),−µ(Ki)) for i =
2, 3 and (α4, β4) = (µ(K4), λ(K4)). The SW polynomial is given by the
product of the relative SW invariants

SW (E(Lp,q)) = (
4∏

i=1

SW (E(ni) \ νFi)) · SW (S1 × (S3 \ νLp,q))

= (t− t−1)n−3∆s
Lp,q

(x2, y2, z2, t2)(12)

where ∆s is the symmetrized version of the multivariable Alexander polyno-
mial.

The latter statement follows from Theorem 2.7 of [Ta] (see also [FS1]),
as the homology class of the fiber of E(n − 2) (the elliptic surface glued to
S1×(axis of Lp,q)) is identified with the image of S1 × µ(K4) in E(Lp,q).

Note that, although we made explicit a choice of curves (α1, β1) in Def-
inition 3.3, the smooth structure of the resulting manifold is independent
of such choice, i.e. depends ultimately only on the diffeomorphism type of
(E(n), T (p,q)).

For sake of notation, we will omit reference to the number n for the
manifold in Equation 11, its value being clear from the context. We observe
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that E(L0,1) is just E(n+1) (see Claim 3.1), while E(L1,1), for n = 3, is the
interesting manifold considered in [MT], with the presentation discussed in
[V1].

4. Infinitely many nonisotopic tori

In this section we will prove Theorem 1.1, namely we will show that, for
a fixed value of q, there are infinitely many diffeomorphism types of pairs
(E(n), T (p,q)). In order to prove that two tori T (i,q), T (j,q) ⊂ E(n) define
different pairs for i �= j it would be sufficient to prove that the manifolds
E(Li,q), E(Lj,q) have different SW polynomial. This means that there does
not exist any automorphism of the manifold, inducing an automorphism
of the second cohomology group which sends SW (E(Li,q)) to SW (E(Lj,q))
(note that, when comparing the SW polynomials of two manifolds, as the
ones appearing in Equation 12, we must consider the fact that the variables
with the same symbol could refer to different cohomology classes for the two
manifolds). Proving such a result appears to be quite a challenging problem
(also considering the fact that we do not have a complete knowledge of the
SW polynomials of our manifolds).

We will not attempt here to prove this, and we will limit ourselves to
the proof of a weaker statement, that is anyhow sufficient to prove the
statement of Theorem 1.1. The model of proof we will exploit here could
find application also in other similar problems, where the explicit comparison
of SW polynomials is difficult.

We will start, for sake of example, to work out in detail (and with a proof
which differs from the general case) the case of two preferred tori, among
the ones defined in Section 3, namely T (0,q) and T (1,q). The proof that these
tori define different pairs constitutes, in some sense, a “finite” version of
Theorem 1.1. To obtain such a result, we will use in a rather weak way SW
theory, building from the following observation: Let d(X) be the dimension
of the the vector subspace of H2(X,R) spanned by SW basic classes of X;
then d(X) is a smooth invariant of X. We use this fact to prove the following

Theorem 4.1. For any q ≥ 1 the manifolds E(L0,q) and E(L1,q) are non-
diffeomorphic (symplectic) manifolds.

Proof: in order to prove that, we will show that d(E(L0,q)) = 2 while
d(E(L1,q)) > 2. The first statement follows from the explicit computation
of the Alexander polynomial of L0,q: we can observe that L0,q is a graph
link obtained by connected sum along K∗

4 of a 2-component link given by
the unknot KI

4 and its (1, q) cable K(0,q)
1 with the 3-component link given

by the unknot KII
4 and two copies K2∪K3 of the meridian. We leave to the

reader the application of the results of [EN] to verify that the Alexander
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polynomial of this graph link is

(13) ∆L0,q(x, y, z, t) = (t− 1)2
xqtq − 1
xt− 1

.

(For similar computations see e.g. [V2].) In particular, this polynomial
depends on only two variables, and the nonzero terms span a 2-dimensional
subspace of H1(S3 \ νL0,1,R). From this and Equation 12 the statement
about d(E(L0,q)) follows. For d(E(L1,q)), we can observe that the span
of the nonzero terms of ∆L1,q(x, y, z, t) is bounded by below by the span
of nonzero terms of the reduced polynomial ∆L1,q(x, y, z, 1) which is given,
according to Equation 4, by

(14) ∆L1,q(x, y, z, 1) = (xqyz − 1)(x − 1)(y − 1)(z − 1).

The span of nonzero terms of this polynomial, as is easily verified, has
dimension 3; using Equation 12 again we obtain that d(E(L1,q)) ≥ 3 (note
that the fact that the SW polynomial reduced at t = 1 is zero, for n > 3,
does not affect this). This completes the proof. �

We will discuss now the general case. We will prove the following

Theorem 4.2. For any q ≥ 1 the family {E(Lp,q)}p∈N contains an infinite
number of nondiffeomorphic (symplectic) manifolds.

Proof: To prove this statement it is sufficient to prove that, if we denote
by βp the number of basic classes of the manifold E(Lp,q) (for a fixed q),
we have limp βp = +∞. We will start by proving this for the case of n = 3,
where the SW invariant “coincides” with the Alexander polynomial of Lp,q,
as written in Equation 12. In this case we can observe that the number
of basic classes of E(Lp,q) coincides with the number of nonzero terms in
∆Lp,q(x, y, z, t). Such a number is bounded by below by the number τp of
nonzero terms in the reduced polynomial ∆p,q(s) of Lemma 2.1, that we
rewrite here by convenience:
(15)

∆p,q(s) =
∑

k

ap,ks
k = (sq+2−1)(s−1)3·

p−1∏
j=1

[(1−s−3)(s−1)3−2(1−cos
2πj
p

)].

In order to estimate τp we observe that the number of nonzero terms ap,k

of a Laurent polynomial in s satisfies the inequality of Lemma 5.1 in the
appendix, i.e. τp ≥ 1

2ρp + 1 where ρp is the number of nonzero real roots
of ∆p,q. The proof that limp ρp = +∞ will therefore prove our statement.
It follows from elementary arguments that the equation (1− s−3)(s− 1)3 =
2(1− cosα) has exactly 2 real reciprocal solutions 0 < s1(α) < 1 < s2(α) for
0 < α ≤ π, which differ for different values of α. As a consequence each of
the first [p−1

2 ] factors appearing in the product of Equation 15 contributes
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two roots to ρp, and we have

(16) ρp ≥ 1 + 2[
p− 1

2
].

This proves the statement for n = 3.
We point out that the estimate on the number of terms is not optimal; in

particular for odd q it is not difficult to prove that τp = 6p+ 1.
To prove the statement for n > 3 we consider the specialization of the

SW polynomial given by

(17) SWp(s, s, s, t) = (t− t−1)n−3∆s
Lp,q

(s2, s2, s2, t2)

Once again, to prove that limp βp = +∞ it is sufficient to prove that the
number of nonzero terms in SWp(s, s, s, t) goes to infinity with p. We can
rewrite such a two-variable polynomial as

(18) SWp(s, s, s, t) =:
∑

k

(t− t−1)n−3ap,k(t)sk

where, in the last identity, we define ap,k(t) as the polynomial in t that
appears in writing ∆s

Lp,q
(s2, s2, s2, t2) as a power series in s. If we consider

the number τ̃p of nonzero coefficients (t− t−1)n−3ap,k(t), this is bounded by
below by the number of nonzero ap,k(1); but the set of the latter coefficients
(with a reparametrization for k that takes account of the symmetrization
and the “squaring” of the s variable) coincides the set of the coefficients ap,k

of Equation 15: therefore τ̃p ≥ τp and Equation 16 asserts that this number
diverges with p. This completes the proof of the statement. �

Notice that, although βi �= βj implies E(Li,q) �= E(Lj,q), the condition
τ̃i �= τ̃j is instead not sufficient to prove this, as we cannot guarantee that
the specializations of the Alexander polynomials are the same.

As the family of manifolds obtained by gluing E(1) to E(n) along different
T (p,q), for a fixed q, contains infinitely many nondiffeomorphic manifolds,
infinitely many pairs (E(n), T (p,q)) are not diffeomorphic. In particular there
are infinitely many nonisotopic symplectic tori T (p,q). This completes the
proof of Theorem 1.1.

5. Appendix

In this Appendix we give a proof of the Lemma used in Section 4. (It is
likely that this statement already exists in literature, but we have not been
able to find a reference). We thank Maximilian Seifert for suggesting us the
proof of this Lemma.

Lemma 5.1. Let p(z) be a nontrivial real Laurent polynomial. Denote by ρ
the number of nonzero real roots (counted without multiplicity) and by τ the
number of terms of the polynomial. Then we have the inequality ρ ≤ 2τ − 2.
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Proof: Assume first that p(z) is an ordinary polynomial of degree n
satisfying

(19) p(z) =
n∑

k=0

akz
k, an �= 0, a0 �= 0

and denote by γ the number of holes appearing in the polynomial plus 1,
where we define by hole a string of consecutive powers zd, zd−1, ..., zd−∗ with
coefficient equal to zero and 1 ≤ d < n (e.g. p(z) = 2z6 − 4z2 + 3 has
γ = 3). By obvious reasons, γ ≤ τ . Introduce now the family of integer
pairs (nl,ml)l=1,...,γ, with nl ≥ ml > nl+1 + 1, defined in such a way that

(20) p(z) =
γ∑

l=1

nl∑
k=ml

akz
k;

this means that ad �= 0 ↔ d ∈ [ml, nl] for some 1 ≤ l ≤ γ.
We will first prove, by induction over γ, that for a polynomial as in

Equation 19 we have the inequality

(21) ρ ≤
γ∑

l=1

(nl −ml) + 2γ − 2.

This inequality is trivially true for γ = 1. Assume by inductive hypothesis
that it holds true for γ−1: we want to prove it for γ. Take the first (nγ +1)
derivatives of p(z) and denote
(22)

q(z) := ( d
dz )nγ+1p(z) =

∑γ−1
l=1

∑nl
k=ml

ak
k!

(k−(nγ+1))!z
k−(nγ+1) =

= zmγ−1−(nγ+1)
∑γ−1

l=1

∑nl
k=ml

ak
k!

(k−(nγ+1))!z
k−mγ−1 =: zmγ−1−(nγ+1)q̃(z).

The polynomial q̃(z) has one hole less than p(z) and satisfies the conditions of
Equation 19: we can thus apply the inductive hypothesis for it. Moreover,
the roots of q(z) coincide with the roots of q̃(z), plus the root z = 0: in
particular we have

(23) ρ(q(z)) = ρ(q̃(z)) ≤
γ−1∑
l=1

(nl −ml) + 2γ − 4.

By Rolle’s theorem, the number of real zeroes of p(z) is bounded in terms of
the zeroes of its derivative: more precisely we have, from Equation 23 and
the fact that mγ = 0, the inequality
(24)

ρ(p(z)) ≤ ρ(q(z))+1+(nγ+1) ≤
γ−1∑
l=1

(nl−ml)+nγ+2γ−2 =
γ∑

l=1

(nl−ml)+2γ−2

which is what we wanted to prove. This completes our induction.
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Now we can observe that τ =
∑γ

l=1(nl−(ml−1)). Applying this to Equa-
tion 22, together with the inequality γ ≤ τ , proves the Lemma when p(z) is
an ordinary polynomial. The statement for a general Laurent polynomials
is readily obtained from this, by multiplying the polynomial with a suitable
power of z in order to get an ordinary polynomial of the form of Equation
19. �
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