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A AN

CONTACT TORIC MANIFOLDS

EUGENE LERMAN

We provide a complete and self-contained classifica-

tion of (compact connected) contact toric manifolds thereby

finishing the work initiated by Banyaga and Molino and
by Galicki and Boyer. Our motivation comes from the
conjectures of Toth and Zelditch on the uniqueness of
toric integrable actions on the punctured cotangent bun-
dles of the n-torus T" and of the two-sphere S2. The con-
jectures are equivalent to the uniqueness, up to conju-
gation, of maximal tori in the contactomorphism groups
of the cosphere bundles of T" and S? respectively.
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1. Introduction

In a recent paper Toth and Zelditch studied the relation between the
dynamics of the geodesic flow on a compact Riemannian manifold
(Q, g) and the growth rate of L™ norms of L?-normalized eigenfunc-
tions of the Laplace operator Ay [TZ]. They showed that if the square
root of the Laplace operator \/KQ is “quantum completely integrable”
and has uniformly bounded eigenfunctions then the metric ¢ is flat,
and hence by the Bieberbach theorems () is finitely covered by a torus.
The proof is particularly transparent when the geodesic flow is toric
integrable. The latter means that there is an effective action of a
torus T", n = dim @), on the punctured cotangent bundle T#Q ~ @ of
) which

1) commutes with dilations p; : T*Q ~ Q@ — T*Q \ Q, p(q,p) =
(g.€'p),

2) preserves the standard symplectic form on 7*Q) and

3) preserves the energy function h(q, p) = g;(p, p), where g* denotes
the metric on 7*Q dual to ¢g. (The Hamiltonian flow of h is the
geodesic flow.)

Note that any symplectic group action on the punctured cotangent
bundle which commutes with dilations preserves the Liouville 1-form
and is, therefore, Hamiltonian. Consequently if a metric on a manifold
@ is toric integrable, the pull-back metric on a finite cover of () is toric
integrable as well. One is therefore lead to wonder if in the case where
(@ is a torus, the boundedness of eigenfunctions is necessary for the
flatness of the metric or if toric integrability by itself is enough. The
latter is indeed the case, as N. Shirokova and I proved in [LS]:

Theorem 1. Suppose that g is a toric integrable metric on a torus
T" :=R*/Z". Then g is flat.

Toth and Zelditch showed using hard results of Mane and of Burago
and Ivanov that the proof of Theorem 1 can be reduced to the following
proposition.

Proposition 1.1. Any (effective) action of the n torus T™ on the punc-
tured cotangent bundle T*T" . T™, which preserves the symplectic form
and commutes with dilations, is free.

We will refer to the torus actions satisfying the hypotheses of Proposi-
tion 1.1 as toric integrable.
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Toth and Zelditch additionally conjectured that there is only one
such action of T" (up to an isomorphism): the lift of the left multi-
plication. Any action of a group G on a punctured cotangent bundle
T*Q ~ @ which commutes with dilations induces an action of G' on the
orbit space S(T*Q) := (T*Q ~ Q)/R, which is the cosphere bundle of
(. Moreover any such action which is symplectic gives rise to a contact
action on S(7T*Q) (for more on contact actions see section 2 below).
Therefore Proposition 1.1 and hence Theorem 1 are a consequence of
the proposition below:

Proposition 1.2. Any (effective) contact action of T on the cosphere
bundle S(T*T") is free.

A proof of Proposition 1.2 is the content of [LS]. Note that dim S(7*T")
= 2dimT" — 1. It is therefore reasonable to define a contact toric
manifold to be a triple of the form (M, &, 7) where M is a manifold of
dimension 2n — 1, £ a contact structure on M and 7 : T" x M — M is
an effective action of a torus T™ preserving &.

When Shirokova and I started working on the questions of Toth
and Zelditch we did a literature search and were happy to discover
the work of Banyaga and Molino [BaM1]|. (Professor Banyaga kindly
provided us with a copy of [BaM2]| which is, as far as I can tell, an up-
dated version of [BaM1].) Unfortunately neither the results in [BaM2]
nor the later work of Boyer and Galicki [BG]| were strong enough for
our purposes. Shirokova and I ended up giving a topological classifica-
tion of compact connected toric manifolds with non-free torus actions
and proving that no such manifold could have the homotopy type of
S(T*T") ~ T" x S™'. An interesting question, however, remained
open — what are all (compact connected) contact toric manifolds? An
answer to this question is the content of the present paper. It turns
out that

Compact connected contact toric manifolds are classified by
rational polyhedral cones on simple polytopes with excep-
tional series occurring in dimensions 3 and 5.
A precise statement of the classification is given in Theorem 2.18 below.
The classification allows us to strengthen Propositions 1.2, thereby
proving a conjecture posed in in [TZ]:

Theorem 1.3. Up to appropriate isomorphisms there is only one ef-
fective contact action the n-torus T™ on the co-sphere bundle S(T*T").

REMARK 1.4. Theorem 1.3 is equivalent to
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1) There is only one toric integrable action of T" on the punctured
cotangent bundle 7T*T" ~ T".

2) Up to conjugation there is only one copy of the torus T" in the
group of the contactomorphisms Diff(S(7T*T"), ) (here & denotes
the standard contact structure on S(7*T™)). That is, maximal
tori in Diff(S(T*T"), ) are unique up to conjugation.

Similarly we will prove:

Theorem 1.5. Up to appropriate isomorphisms there is only one ef-
fective contact action of T? on S(T*S?).

REMARK 1.6. Theorem 1.5 is equivalent to

1) There is only one toric integrable action of T? on the punctured
cotangent bundle T*S?% \ S2.

2) The maximal tori in the group of contactomorphisms Diff(S(7*5?), €)
are unique up to conjugation.

Note, by way of contrast, that for every integer k£ > 1 there is a con-
tact structure &, on the cosphere bundle of S* such that the group
of contactomorphisms Diff(S(7*S?), &) has at least k& non-conjugate
maximal tori [L3].

I suspect that there are preciously few manifolds that admit toric
integrable geodesic flows. In fact the only examples I know are tori
and the low-dimensional spheres, and it would be surprising if there are
others. Note that it is an entirely different problem to classify all toric
integrable metrics on a given manifold. As was mentioned earlier, any
toric integrable metric on a torus has to be flat and conversely, any flat
metric is toric integrable. But even for the 2-sphere the classification
of toric integrable metrics s open.

We conclude the introduction by saying a few words about the or-
ganization of the paper. In section 2 we recall some basic notions
of contact geometry, discuss contact group actions and corresponding
moment maps, recall the notion of a contact quotient, define contact
toric manifolds and their isomorphisms and set up notation in order
to state the classification theorem, Theorem 2.18. In section 3 we
define pre-isotropic embeddings (by analogy with pre-Lagrangian em-
beddings), prove an equivariant version of the tubular neighborhood
for pre-isotropic embeddings and write out the local normal form the-
orem for a contact moment map in a neighborhood of a pre-isotropic
orbit. The local normal form theorem is then applied to contact toric
manifolds. Many of the results of this section are not original and
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have appeared elsewhere, such as in [BaM1, BaM2], in a somewhat
different form. In section 4 we gather a number of results describing
the properties of contact moment maps, such as convexity of the image
and connectedness of the fibers, and then apply them to moment maps
on contact toric manifolds. It is interesting to note that convexity and
connectedness fail in dimension 3. In section 5 we prove that compact
connected contact toric manifolds are classified by the elements of the
first Cech cohomology of their orbit spaces with coefficients in a cer-
tain sheaf. In section 6 we put together the results of sections 4 and 5
to prove the classification theorem. Section 7 contains two applica-
tions of the classification theorem: we prove Theorems 1.3 and 1.5 on
the uniqueness of toric integrable actions on the punctured cotangent
bundles T*TV \ T and T*5? \. S2.

A note on notation. If U is a subspace of a vector space V' we denote
its annihilator in the dual vector space V* by U°. Thus U° = {{ € V* |

Throughout the paper the Lie algebra of a Lie group denoted by a
capital Roman letter is denoted by the same small letter in the fraktur
font: thus g denotes the Lie algebra of a Lie group G etc. The vector
space dual to g is denoted by g*. The identity element of a Lie group
is denoted by 1. The natural pairing between g and g* is denoted by
(.

When a Lie group G acts on a manifold M we denote the action by
an element g € GG on a point x € M by g-x; G-z denotes the G-orbit of
x and so on. The vector field induced on M by an element X of the Lie
algebra g of G is denoted by X, (that is, Xy (x) = %‘0 (exptX) - x)
and the diffeomorphism induced by g € G on M by gp;. Thus in this
notation g-x = gps(z). The isotropy group of a point z € M is denoted
by G; the Lie algebra of G, is denoted by g, and is referred to as the
isotropy Lie algebra of z. Recall that g, = {X € g | X/ (x) = 0}.

If a Lie group G is a torus we denote the integral lattice of G by Zg
and the dual weight lattice by Z7,. Recall that Zqg = ker(exp : g — G),

*G = Homz(Zg, Z)

If X is a vector field and 7 is a tensor, then Lx7 denotes the Lie
derivative of 7 with respect to X.

If P is a principal G-bundle then [p,m] denotes the point in the
associated bundle P xg M = (P x M)/G which is the orbit of (p, m) €
P x M.

The symbol « always denotes a contact form and £ always denotes
a co-oriented contact structure.
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2. Group actions on contact manifolds

In this section we recall the basic notions of contact geometry, dis-
cuss contact group actions and corresponding moment maps, recall the
notion of a contact quotient, define contact toric manifolds and their
isomorphisms and set up the notation in order to state the main clas-
sification theorem, Theorem 2.18.

Definition 2.1. Recall that a 1-form « on a manifold M is contact
if a, # 0 for any x € M, so £ = ker « is a codimension-1 distribution,
and if additionally dafe is non-degenerate. Thus the vector bundle
& — M necessarily has even-dimensional fibers, and the manifold M is
necessarily odd-dimensional.

Definition 2.2. A codimension-1 distribution ¢ on a manifold M is
co-orientable if its annihilator (° C T*M is an oriented line bundle,
i.e., has a nowhere vanishing global section. It is co-oriented if one
component (7 of (°\ 0 (¢° minus the zero section) is chosen.

Definition 2.3. A co-oriented contact structure ¢ on a manifold
M is a co-oriented codimension-1 distribution such that £° ~\ 0 is a
symplectic submanifold of the cotangent bundle 7*M (the cotangent
bundle is given the canonical symplectic form). We denote the chosen
component of £° \ 0 by £; and refer to it as the symplectization of

(M, ).

REMARK 2.4. It is a standard fact that £ C T'M is a co-oriented contact
structure if and only if there is a contact form a with ker o = £ (given
¢ choose « to be a section of £° . 0 — M). If f is any function on
M then efa defines the same contact structure ¢ and conversely, if o
and o are two contact forms defining the same contact structure with
the same co-orientation, then o/ = e/a for some function f. That is, a
co-oriented contact structure is the same thing as a conformal class of
contact forms.

REMARK 2.5. In this paper « always denotes a contact form and &
always denotes a co-oriented contact structure (with a co-orientation
understood). We will refer to a pair (M, «) or to a pair (M,€) as a
(co-oriented) contact manifold.
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Lemma 2.6. Suppose a Lie group G acts properly on a manifold
M preserving a co-oriented codimension-1 distribution ¢ and its co-
orientation. That is, suppose the lifted action of G on T* M preserves
a component C3 of C°~\ 0. Then there is a G-invariant 1-form (3 on M
such that ¢ =ker § and G(M) C (5.

Proof. To choose 8 first choose any 1-form 8 on M with ker 3 = ¢
and B(M) C (7. If G is compact, we then let 3 to be the average
fG(gM)"‘B~ dg of B over the group G. If G is not compact, then due
to the existence of slices we may assume that M = G xg V for some
representation K — GL(V) of a compact Lie group K. We average
the restriction 3|y : V — T*(G xx V) over K and then extend it to
all of M by G-invariance. OJ

Therefore given a proper action of a Lie group GG on a contact man-
ifold (M, & = ker &) which preserves the co-orientation, we may (and
do) assume that the contact form « is G-invariant.

Definition 2.7. If a Lie group G acts on a manifold M preserving a 1-
form f3, the corresponding f-moment map ¥z : M — g* determined
by [ is defined by

(2.1) (Wg(z), X) = Bo(Xu(z))

for all x € M and all vectors X in the Lie algebra g of G, where, as
above, X, denotes the vector field induced by X: Xy/(z) = £|,—(exp tX)-
x.

If df is a symplectic form then, up to a sign convention, ¥g is a
symplectic moment map. If a a contact form then ¥, is a candidate
for a contact moment map. Note however that if f is a G-invariant
function, then e/« is also a contact form defining the same contact
distribution, while clearly ¥,;, = e/WU,. That is, this definition of the
moment map depends on a particular choice of a contact form and not
just on the contact structure.

Fortunately there is also a notion of a contact moment map that
doesn’t have this problem. Namely, suppose again that a Lie group
G acts on a manifold M preserving a co-oriented contact structure &.
The lift of the action of G to the cotangent bundle then preserves a
component £ of £° . 0. The restriction ¥ = & £ of the moment map
® for the action of G on T*M to £ depends only on the action of the
group and on the contact structure. Moreover, since ® : T*M — g* is
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given by the formula

(@(q,p), X) = (p, Xnm(q))

for all ¢ € M, p € T;M and X € g, we see that if « is any invariant
contact form with kera = & and (M) C & then (o*¥U(q), X) =
(a*®(q), X) = (g, X (q)) = (Wulg), X). Thus ¥oa = ¥,, that is,
U=l isa “universal” moment map.

There is another reason why the universal moment map ¥ : £ — g*
is a more natural notion of the moment map than the one given by
(2.1). The vector fields induced by the action of G preserving the
contact distribution & are contact. The space of contact vector fields is
isomorphic to the space of sections of the bundle TM /¢ — M (a choice
of a contact form identifies TM /& with M x R and contact vector fields
with functions). Thus a contact group action gives rise to a linear map

(2.2) g o T(TM/E), X Xy mod .

The moment map should be the transpose of the map (2.2). The total
space of the bundle (T'M/£)* naturally maps into the space dual to the
space of sections I'(T'M/¢):

(TM/E)" 2= (s (n,s(7(n)))),

where 7 : (TM/£)* — M is the projection and (-,-) is the paring
between the corresponding fibers of (T'M/£)* and TM/E. In other
words, the transpose U : (TM/£)* — g* of (2.2) should be given by

(2:3) (W(n), X) = (n, Xar(7(n)) mod &)
Under the identification £° ~ (T'M/£)*, the equation above becomes

(¥(g,p), X) = (p, Xns(q))

for all ¢ € M, p € §; and X € g, which exactly the definition of ¥
given earlier as the restriction of the moment map for the lifted action
of G on the cotangent bundle 7T* M. Thus part of the above discussion
can be summarized as

Proposition 2.8. Let (M, &) be a co-oriented contact manifold with an
action of a Lie group G preserving the contact distribution and its co-
orientation. Suppose there exists an invariant 1-form o with ker a = &
and a(M) C &5 (c.f. Lemma 2.6). Then the a-moment map ¥, for
the action of G on (M, «) and the moment map ¥ for the action of G
on the symplectization &3 are related by

Yoa=1Y,.
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Here &2 is the component of £\ 0 containing the image of o : M — £°.

REMARK 2.9. We will refer to ¥ : £ — g* as the moment map for
the action of a Lie group G on a co-oriented contact manifold (M, & =
ker o), that is, as the contact moment map. It is easy to show that
¥ is G-equivariant with respect to the given action of G on M and the
coadjoint action of G on g*. Hence for any invariant contact form «
the corresponding c-moment map V¥, : M — g* is also G-equivariant.

Later in the paper we will need a version of contact reduction due
to Albert [A] and, independently, to Geiges [Ge]:

Lemma 2.10 (Contact quotients). Suppose a Lie group G acts on a
manifold M preserving a I-form 3. Let Vg : M — g* denote the
corresponding moment map. Suppose \1151(0) 15 a manifold and suppose
that G acts freely and properly on \IJEI(O). Then [ descends to a 1-form
Bo on My := \I/EI(O)/G.

If B s contact than By is contact as well. Moreover the manifold
My and the contact structure on My defined by [y depends only on the
contact structure defined by [ and not on the form (3 itself.

Sketch of proof. It’s easy to see that B|q:;1(o) is basic! and hence de-

scends. For a proof that /3y is contact if 3 is contact see [A] or [Ge].
Note that the zero level set \IIEI(O) is the set of points of M where G-
orbits are tangent to the contact distribution ker 8. Thus M, depends
only on ker 8. It is not hard to see that ker 5y depends only on ker 3
as well. O

We now begin the study of contact toric manifolds.

Definition 2.11. An action of a torus G on a contact manifold (M, &)
is completely integrable if it is effective, preserves the contact struc-
ture ¢ and if 2dim G = dim M + 1.

A contact toric G-manifold is a co-oriented contact manifold
(M, &) with a completely integrable action of a torus G (but see Re-
mark 2.13 below).

Note that if an action of a torus G on (M, £) is completely integrable,
then the action of G on a component &3 of £\ 0 is a completely inte-
grable Hamiltonian action and thus £ is a symplectic toric manifold

lthat is, the form B|\I,;1 0) is G-invariant and its contraction with any vector

field induced by an element X in the Lie algebra of G is zero
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(for more information on symplectic toric manifolds and orbifolds see
[D] and [LT]).

Lemma 2.12. Suppose an action of a torus G on a contact manifold
(M, &) is completely integrable. Then zero is not in the image of the
contact moment map W : £ — g*.

Proof. Suppose not. Then for some point x € M the orbit G - x is
tangent to the contact distribution &. Therefore the tangent space
¢ :=T,(G-z) is isotropic in the symplectic vector space (&;,w,) where
wy = dogle and « is a G-invariant contact form with kera = & and
a(M) C &

We now argue that this forces the action of G not to be effective.
More precisely we argue that the slice representation of the connected
component of identity H of the isotropy group G, of the point = is
not effective. The group H acts on &, preserving the symplectic form
w, and preserving (,. Since (, is isotropic, & = (¢¥/C) @ (¢ X ()
as a symplectic representation of H. Here (¥ denotes the symplectic
perpendicular to (, in (&, w,). Note that since G is a torus, the action
of H on (, (and hence on () is trivial.

Observe next that the dimension of the symplectic vector space V' :=
“/(isdim&, —2dim(, = dim M —1—-2(dim G —dim H) = (dim M —
1) = (dim M + 1) + 2dim H = 2dim H — 2. On the other hand, since
H is a compact connected Abelian group acting symplectically on V/,
its image in the group of symplectic linear transformations Sp(V') lies
in a maximal torus 7" of a maximal compact subgroup of Sp(V'). Since
the maximal compact subgroup of Sp(V') is the unitary group U(n),
n = dimV/2, the dimension of T is n = dim H — 1. Therefore the
representation of H on V' (and hence of G) is not faithful. Since the
fiber at x of the normal bundle of G - x in M is T,M/&, @ &,/ ~
R@V @}, the slice representation of G is not faithful. Consequently
the action of G is not faithful in a neighborhood of an orbit G - x.
Contradiction. ([l

Suppose (M, ) is a contact toric G-manifold. Fix an inner product
on the Lie algebra g of G and thereby on the dual space g*. There
exists then a unique G-invariant contact form « defining £ and its co-
orientation and furthermore satisfying the normalizing condition that
[|Wo(z)|| =1 at all z € M (if o' is any contact form defining £ let

1

o ma; for x € M; by Lemma 2.12 this makes sense).



CONTACT TORIC MANIFOLDS 795

REMARK 2.13. ;From now on we fix an inner product on a torus G.
This allows us to normalize contact forms on contact toric G-manifolds
as above. Also, since the moment map ¥, : M — g* contains all the
information about the action of G on (M, & = ker ) we can and will
think of a contact toric G-manifold as a triple (M, a, ¥,) where «
is normalized so that ||U,(x)|| =1 for all x € M.

Definition 2.14. Let (M, ) be a co-oriented contact manifold with
an action of a Lie group G preserving the contact structure £ and its
co-orientation. Let W : £ — g* denote the corresponding moment
map. We define the moment cone C'(¥) to be the set

€)= ¥(E3) U {0},
Note that if o is a G-invariant contact form with £ = ker o and (M) C
£%, then
C(¥) ={tf | f € Va(M), t €[0,00)},

where ¥, : M — g* denote the a-moment map.

Definition 2.15. Two contact toric G-manifolds (M, a, ¥,,) and (M, o/, ¥,)
are isomorphic if there exists a G-equivariant co-orientation preserv-
ing contactomorphism ¢ : M — M’. We will refer to such a map ¢ as
an isomorphism between (M, a,¥,) and (M, o/, ¥).

We denote the group of isomorphisms of (M, «, ¥,,) by Iso(M, a, ¥,,) =
Iso(AM)

REMARK 2.16. Note that if ¢ : M — M’ is an isomorphism of two
contact toric G-manifolds (M, a, ¥,,) and (M, o/, ¥,,), then p*a’ = e/«
for some G-invariant function f € C*°(M). Consequently ¢*¥, =
e’ U,,. But forany x € M, 1 = ||Uy(p())|| = ||e/@ T, ()| = /@1 =
e/@ . Thus p*o/ = @ and * ¥y = V,,.

Definition 2.17 (Good cones). Let g* be the dual of the Lie algebra
of a torus GG. Recall that a subset C C g* is a rational polyhedral

cone if there exists a finite set of vectors {v;} in the integral lattice Z¢
of G such that

C=({neg |(nwv) >0}

Of course it is no loss of generality to assume that the set {v;} is
minimal, i.e., that for any index j

C#(\neg | (nwv) >0},
i#]
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and that each vector v; is primitive, i.e., sv; ¢ Zg for s € (0,1).
Therefore we make these two assumptions.

A rational polyhedral cone C' = X {n € g* | (n,v;) > 0}, {v;} C
Z¢ with non-empty interior is good? if the annihilator of a linear
span of a codimension k space, 0 < k£ < dim G is the Lie algebra of
a subtorus H of G and the normals to the face form a basis of the
integral lattice Zy of H. That is, if

{0} #Cn ﬂ{n €g' | (nuv,) >0}

is a face of C' for some {iy,...,ix} C {1,..., N} then

k k
(2.4) O avi; laj e Ry NZg={>_ myv;, | m; € L}
7=1 7j=1

and {v;, } is independent over Z.
We can now state the main classification result of the paper:

Theorem 2.18. Compact connected contact toric (c.c.c.t.) G-manifolds
(M,a, ¥, : M — g*) are classified as follows.

1. Suppose dim M = 3 and the action of G = T? is free. Then M is
a principal G-bundle over S, hence is diffeomorphic to T> = S x T2,
Moreover the contact form « is cosntdf; + sinntdfy ((t,01,0,) €
St x T?) for some positive integer n.

2. Suppose dim M = 3 and the action of G = T? is not free. Then
M s diffeomorphic to a lens space (this includes S' x S?) and, as a
c.c.c.t. G-manifold, (M,c,V,) is classified by two rational numbers
r,q with 0 <r<1,r<gq.

3. Suppose dim M > 3 and the action of G is free. Then M is a
principal G-bundle over a sphere S, d = dim G — 1. Moreover each
principal G-bundle over S® has a unique G-invariant contact structure
making it a c.c.c.t. G-manifold.

4. Suppose dim M > 3 and the action of G is not free. Then the
moment cone of (M,a,V,) is a good cone (cf. Definition 2.17 above).

2for the purposes of this paper
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Conversely, given a good cone C' C g* there is a unique c.c.c.t. G-
manifold (M, o, V) with moment cone C.

REMARK 2.19. Since principal n-torus bundles over a manifold are in
one-to-one correspondence with second cohomology classes of the mani-
fold with coefficients in Z™ and since H?(S?, Z™) = 0 for d # 2, the only
interesting case of the part 3 of the theorem occurs when dim G' = 3.
In this case the theorem asserts that each principal T bundle over the
2-sphere (there are Z3 of them altogether) carries a unique T?-invariant
contact structure. These contact manifolds were first constructed by
Lutz [Lu]. Their symplectization were also explicitly constructed by
Bates [Bt].

We will prove Theorem 2.18 over the course of the next four sections.

3. Local structure of contact toric manifolds

In this section we define pre-isotropic embeddings (by analogy with
pre-Lagrangian embeddings), prove an equivariant version of the tubu-
lar neighborhood for pre-isotropic embeddings and write out the local
normal form theorem for a contact moment map in a neighborhood
of a pre-isotropic orbit. The pre-isotropic embedding theorem uses an
equivariant relative Darboux theorem for submanifolds of contact man-
ifolds. We include its proof for completeness. The local normal form
theorem is then applied to contact toric manifolds. Many of the results
of this section are not original; similar results have appeared elsewhere,
such as in [BaM1, BaM2].

We start with a definition of a pre-isotropic embedding, the moti-
vation for which comes from Lemma 3.7 below. Note that given an
embedding ¢ : N — M we do not distinguish between the vector bun-
dles over N and over +(N).

Definition 3.1. Let (M, & = ker ) be a co-oriented contact manifold.
An embedded submanifold N < M is pre-isotropic if

1) N is transverse to the contact distribution & and

2) the distribution ( = T'N N ¢ is isotropic in the conformal sym-
plectic vector bundle (&, [w]) where |w] is the conformal class of
dOé|§.

REMARK 3.2. Note that ¢ = ker(1*a). Note also that if o' = e/,
f € C®(M), is another contact form defining the contact structure &
then *o/ = e /¥ and do/|¢ = e/ (dae).
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Definition 3.3. Let ¢ : N — (M, & = ker a) be a pre-isotropic embed-
ding. We define the characteristic distribution of the embedding ¢
to be the co-oriented distribution ¢ = T'N N &. Equivalently we can
think of ¢ as the conformal class [t*a] of 1-forms. We define the con-
formal symplectic normal bundle (F, [wg]) of the embedding by
E = (¥/¢ where (¥ is the symplectic perpendicular to ¢ in the confor-
mal symplectic vector bundle (&, [w] = [da¢]) and [wg] is the conformal
class of symplectic structures induced on E by [w].

REMARK 3.4. Suppose ¢ : N — (M, = ker«) is a pre-isotropic
embedding. Suppose further that a Lie group G acts on N and M
preserving the contact form « and making the embedding ¢ equivari-
ant. Then G preserves the characteristic distribution ¢ and acts on
the conformal symplectic normal bundle E preserving the symplectic
structure wg and its conformal class.

Theorem 3.5 (Uniqueness of pre-isotropic embeddings). A pre-isotropic
embedding is uniquely determined by its characteristic distribution and
its conformal symplectic normal bundle.

More specifically suppose (M;,&; = kercy), j = 1,2 are two con-
tact manifolds and v; : N — (M;,&;), 7 = 1,2 are two pre-isotropic
embeddings such that

oy = el o
and
(B, wy) =~ (By, e"wy)  as symplectic vector bundles,
where f,h € C*®(N) are two functions and (Ey, [wi]) and (E2, [ws]) are
the conformal symplectic normal bundles of the embeddings.

Then there exist neighborhoods U; of 1;(N) in M; (j = 1,2) and a
diffeomorphism ¢ : Uy — Uy such that 15 = @ o 11 and ¢*as = e9ay for
some g € C=(Uy).

Moreover if a Lie group G acts properly on N, M, My making
the embeddings v; G-equivariant and if the action preserves the con-
tact structures, then we may choose the neighborhoods Uy, Uy to be
G-invariant and the map ¢ to be G-equivariant.

The proof of Theorem 3.5 relies on the following observation.

Theorem 3.6 (Equivariant relative Darboux theorem). Let N — M
be an embedded closed submanifold. Suppose there exist on M two
contact structures £ = ker a® and &' = ker o' (°, ol are 1-forms) and
a function f € C*°(M) such that

ol =e/@al  forallx € N.

T
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Then there exist neighborhoods Uy, Uy of N in M and a diffeomor-
phism ¢ : Uy — Uy such that o|y = idy and ¢*at = e"a® for some
h € C*>(Uy).

Moreover, if a Lie group G acts properly on M preserving N and the
two contact forms o, o, then we can choose the neighborhoods Uy, U,
to be G-invariant and arrange for the map ¢ above to be G-equivariant.

Proof. Consider the family of G-invariant 1-forms o' = ta! + (1 —t)a?,
t € 0,1]. For all z € N and all ¢ € [0,1] we have kera!, = &) = ¢!
and do|kerqt is nondegenerate. Therefore the forms o are contact in
a neighborhood of N for all £. It is no loss of generality to assume that
this neighborhood is all of M.

Denote the Reeb vector field of o' by Y;. Since the Reeb vector
field is uniquely defined by o!(Y;) = 1, «(Y;)da! = 0 and since o' is
G-invariant, Y; is G-invariant as well.

Define a time dependent vector field X; tangent to the contact dis-
tribution &' = ker o' by

X, = (da'le) ™" (—d[er)

where & = £a' is the derivative with respect to t. Clearly X, is

G-invariant. Note that X;(z) = 0 for all z € N. This is because
—l e = (0l — al)|e = (e/® —1)alle = 0 for 2 € N. We claim that
the Lie derivative of o' with respect to X, satisfies

(3.1) Ly, o' = &' (Y;)a' — &'

Indeed, since of(X;) =0, Ly, o = 1(X;)da’.

By definition of X, (¢(X;)dat)|e¢t = —dt|ee = (6'(Y;)a! — @) ¢r. On the
other hand, (:(X,)da')(¥;) = 0 = &(¥))1 — '(};) = 4(¥)a!(¥;) —
&' (Y;). This proves (3.1). Hence

(3.2) Ly, o' + &' = &' (V).

Denote the isotopy generated by X; by ¢;. Since X; vanishes on N,
@y is defined for all ¢ € [0,1] on a neighborhood of N. Since X; is
G-invariant, the isotopy is G-equivariant. Let g, = ¢} (¢*(Y;)). Then

L(prat) = ¢f(Lx,al + ') = g(pja’) by equation (3.2). Therefore
pral = elo 9: ds) pia®. In particular,
piat = etal

where h = fol gsds € C®(M). Note also that since X is zero at the
points of N, ¢, fixes N pointwise. O
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Proof of Theorem 3.5. Suppose ¢ : N — (M, & = ker o) is a G-equivariant
pre-isotropic embedding. Choose a G-invariant almost complex struc-
ture J on & compatible with w = dale. This gives us a G-invariant
inner product on the vector bundle ¢ — M. Extend it to a G-invariant
Riemannian metric g on M by, say, declaring the Reeb vector field Y
of the invariant contact form « to be of unit length and orthogonal to
¢ (as remarked previously, since a is G-invariant and the Reeb vector
field YV is uniquely determined by «, Y is G-invariant).

By construction of J, ¢ := ker(a|y) and J( are g-perpendicular and
(@ J( is a symplectic subbundle of (§,w). Let E be the w-perpendicular
to (@ J( in £&. The bundle £ is also g-perpendicular to (@ J(; E is iso-
morphic to the conformal symplectic normal bundle of the embedding
t. We therefore have a G-equivariant direct sum decomposition

flv=CaJ(®E=(TNN& @ JCaE.
Since N is transverse to £ it follows that
TM|y=TN & J(®E.

Note that the Reeb vector field Y need not be tangent to N, and so
JC @ E need not be g-perpendicular to T'N. Never the less, J{ @ E is
a topological normal bundle for the embedding ¢+ : N — M. Therefore
the restriction of the g-exponential map exp : TM — M to J(® E
gives an open GG-equivariant embedding of a neighborhood of the zero
section N — J( @ E into M; the embedding is identity on N.

Since ( is isotropic in (§,w), the map J{ — (* defined by v —
w(v, -)|¢ is an isomorphism. By composing the inverse of this map with
exp we get a G-equivariant map ¢ : (* ® F — M, which has the
following properties. The map ) is the identity on N. It is an open
embedding on a sufficiently small neighborhood of N in (* & E. For
any point (x,0,0) in the zero section of (* & E we have

ker(@b*&)(x,o,o) = Cx ¥ C; b Ex
and
d(w*a)(maoro)|ker("/}*0‘)(z,0,0) = wgﬁ@gg EB (wE)m7
where w¢,q¢: denotes the canonical symplectic form on ¢, @ (; and
(WE)Q; = dle Egp-
Now consider two pre-isotropic embeddings ¢; : N — (M, (), j =
1,2 satisfying the hypotheses of the theorem. Since tia; = e/ijay,

ker tjoy = ker tjay. Denote this distribution by (. Let o : B} — Ey
denote the vector bundle isomorphism with o*ws; = e®w;. The map
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T=id®o:(*®FE — (D FEy has the property that at the points
(x,0,0) of the zero section N

( ) dT(x,O,O) = Z.dTmN EB ch; @ O—|(E1)x

Consider the two G-equivariant maps ¢; : (; ® E; — M, j = 1,2
given by the construction at the beginning of the proof. We have, for
any point x € N,

ker((th2 0 7)"02) (2,0,0) = (dT(2,0,0)) I(Cz ®C D (Ea)a)
=GO G (B
= ker(¢7 1) (2,0,0)-
Also

(¢1a1) z,0,0) |ker (Wien)(z,00) — Yia®E D ( ):1:
while

d(T"502) (2,0,0) [cex (¥} 1) (z,0,0) = (id¢@id¢) we,me; Do (w2)e = wcx@cg@(ehwl)x-

We now apply the equivariant relative Darboux theorem to N —
(* @ Ey, Yoy and 7*9Yias to obtain a G-equivariant diffeomorphism
F Vi = Vo with Fly = idy, F*r*3as = e/ (i) for some neigh-
borhoods Vi, V5 of the zero section and some function f. The theorem
follows. O

Lemma 3.7. Let ¥, : M — g* be the a-moment map for an action of
a torus G on a contact manifold (M, ). Suppose for some point x we
have W, (x) # 0. Then the orbit G-z is pre-isotropic in (M, & = ker av).

Proof. Since the contact distribution £ is of codimension 1, in order
to show that the orbit G - x is transverse to &, it is enough to prove
that there is a vector X € g such that Xy (x) € &, i.e., such that
0 # a(Xpy(z)) = (Uu(z), X). But the latter is exactly the condition
that W, (z) # 0.

Next note that the fiber of the characteristic distribution ¢ at x is

G =To(G-2) N & = {Xu(2) | 0= 0u(Xn (7)) = (Va(2), X)}.

Let ¢ ={X € g | (¥u(x),X) = 0}. Since gis Abelian, ¢ is a subalgebra.
Consequently ( is an integrable distribution. Since the leaves of the
foliation defined by ( are tangent to the contact structure, ( is an
isotropic subbundle of the symplectic vector bundle (£, w), where as
usual w = dae. O



802 EUGENE LERMAN

Definition 3.8. Let (M, £ = ker «) be a contact manifold with an ac-
tion of a torus G preserving the contact form « and let ¥, : M — g¢*
be the corresponding moment map. Suppose a point x € M is such
that W,(x) # 0. Let (, denotes the fiber at = of the characteristic
distribution of the pre-isotropic embedding G -z — (M, &) and let ¥
denote its symplectic perpendicular in (§,w = dal¢). We define the
symplectic slice at z for the action of G on (M, &) to be the confor-
mal symplectic vector space V' = (¥/(, with the conformal symplectic
structure [wy] induced by [w]. We refer to the symplectic represen-
tation of the isotropy group G, on (V,wy) as the symplectic slice
representation.

We define the characteristic subalgebra of the embedding G-z —
(M,€) to be ¢ := (R¥,(z))°. Note that ¢, = ¢/g, and that € is co-
oriented.

Lemma 3.9. Let (M;,&; = keray), j = 1,2, be two contact manifolds
with actions of a torus G preserving the contact forms aq, as. Suppose
xj € Mj, 3 =1,2 are two points such that

1) 0 # U, (z1) = AU, (z2) for some X > 0 (i.e., the characteristic
subalgebras agree as co-oriented subspaces of g);

2) the isotropy groups are equal : G, = Gy, ;

3) the symplectic slice representations at ¥y and xo are isomorphic
as symplectic representation up to a conformal factor.

Then there exist G-invariant neighborhoods U; of G-x; in Mj, j = 1,2,
and a G-equivariant diffeomorphism ¢ : Uy — U, such that ¢*as =
elay for some function f.

Proof. The characteristic distributions and the conformal symplectic
normal bundles of the embeddings ¢; : G - z; — (M;,&;), j = 1,2, are,
respectively,

(=G xa,, (t/g:) and  E; =G xg, V;,

where € = (R¥,, (71))° = (R¥,, (22))° and G,; — Sp(Vj,wy;) are the
symplectic slice representations. The lemma follows from the unique-
ness of pre-isotropic embeddings (Theorem 3.5). 0

Lemma 3.10. Let (M, & = ker a) be a contact manifold with action of
a torus G preserving the contact form «. Suppose x € M is such that
U,(z) # 0. Let ¢ = (RU,(x))° be the characteristic subalgebra and
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G, — Sp(V,wy) the symplectic slice representation. Choose splittings
gz = (£/82)" ® RUq (2)
9 =0,99,
and thereby a splitting
g" = (¢/g:)" @ RY, (2) @ g;.

Leti: gt — g% j:(€/g.)" — g* be the corresponding embeddings.
There exists a G-invariant neighborhood U of the zero section G -
[1,0,0] in
N =G xgq, ((t/g:)" V)

and an open G-equivariant embedding ¢ : U — M with ¢([1,0,0]) =z
and a G-invariant 1-form ay on N such that

1) ¢*a = elay for some function f € C°(U) and

2) the ay-moment map ¥, is given by

Yoy ([a,n,0]) = Wa(z) + j(0) + i(Pv (v))

where ®y 1V — g* is the homogeneous moment map for the slice
representation.

Consequently,

Voop(la,n,v]) = (! Way)([a, 1, v]) = /1M D (W4 (2) +5 () +i(Pv (v))),

for some G-invariant function f on N.

Proof. By Lemma 3.9 it is enough to construct on N = G'x¢, ((£/g,)* X
V') a G-invariant contact form «y so that the embedding ¢ : G/G, —
(N, ker ay), t(aGy) = [a, 0, 0] is pre-isotropic, the symplectic slice rep-
resentation at [1,0,0] is G, — Sp(V,wy) and ¥, ([1,0,0]) = ¥4 (z).

We construct (N, apy) as a contact quotient (see Lemma 2.10). Since
(G is abelian, both right and left trivializations identify the cotangent
bundle T*G with G x g*. Consider the hypersurface

=G x (Ua(z) +j((/g:)) +i(gr)

in G x g¢ = T*G. Since ¥,(r) # 0, X is a hypersurface of contact
type (the expanding vector field X is generated by dilations (0, 00) X
G x g* > (t,g,v) — (g,tr)). Consider the action of G on G x g*
given by ¢ - (a,v) = (ga,v) and the action of G, on G x g* given by
b-(a,v) = (ab™',v). Both actions preserve ¥, X and the tautological
1-form ar-g. The action of G, on V preserves the 1-form ay = (R)wy
where R is the radial vector field on V. The diagonal action of G, on
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¥ x V preserves the contact form (arg|s) ® ay. The corresponding

moment map ® : X x V' — g¥ is given by
®((a, Vo (z) +j(n) +i(p)),v) = —p + Py (v)

where @y : V' — g& is the ay-moment map. Therefore the reduced
space at zero for the action of GG, is

N = & 0)/G,
~ {(a,n,p1,0) € G x (8/gs)" X gu XV [ p =2y (v)}/Gy = G xq,
and ar«g|x ® ay descends to a G-invariant contact form apn on V.
Note that the moment map for the action of G on ¥ X V descends

to the ay-moment map for the induced action of G on N. Hence it is
given by the desired formula:

Yay ([a,1,v]) = Wa(z) + (1) +i(Pv(v)).

We will need the following standard fact.

Lemma 3.11. A symplectic representation of a torus has well-defined
weights.

Proof. Since the unitary group is the maximal compact subgroup of
the symplectic group, given a symplectic representation of a torus p :
H — Sp(V,w) there exists on V' an H-invariant complex structure .J
compatible with the symplectic form w. We define the weights of p to
be the weights of the complex representation p : H — GL(V, J). Since
any two H-invariant complex structures on V' compatible with w are
homotopic, the weights do not depend on the choice of J, i.e., they are
well-defined. O

The next lemma is taken from [D].

Lemma 3.12. If p: H — Sp(V,w) is a faithful symplectic representa-
tion of a compact abelian group H and if 2dim H = dim V' then H is
connected and the weights of p form a basis of the weight lattice Z7; of
H.

Proof. Arguing as in the proof of Lemma 3.11 we may assume that p
maps H into the unitary group U (V). Since the dimension of a maximal
torus of U(V) is 3 dimV and since p is faithful, p maps the identity
component of H onto a maximal torus of U(V'). Since the centralizer
of a maximal torus of U(V') is the torus itself, H is connected. Finally,

((¢/g2)" x V)
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the weights of a maximal torus T of U(V') form a basis of the weight
lattice of T'. O

Recall that G-orbits in contact toric G-manifolds are pre-isotropic (Lemma 3.7
and Lemma 2.12).

Lemma 3.13. Let (M,a, ¥, : M — g*) be a contact toric G-manifold.
For any point x € M the symplectic slice representation p : G, —
Sp(V) is faithful and dimG, = $dimV. Consequently the isotropy
group Gy is connected. Also the image of the moment map @y (V') for
the slice representation p has the following properties: the cone ®y (V')
has d = dim G, edges; each edge is spanned by a weight of G,; these
weights form a basis of the integral lattice of G,. Hence the cone ®y (V)
completely determines the slice representation p.

Proof. Let ¢ = (R¥,(z))° denote the characteristic subalgebra of the
pre-isotropic embedding G - x — (M, = ker«). By Lemma 3.10
a neighborhood of G - x in M is G-equivariantly diffeomorphic to a
neighborhood of the zero section in N = G X¢, ((¢/g.)* x V). Since G
is abelian, the action of G, on (&/g,)* is trivial. Since by assumption
the action of G on M is effective, the slice representation of G, on V'
has to be faithful.

By definition of V', the dimension of V' is the dimension of the contact
distribution minus twice the dimension of the characteristic distribu-
tion, i.e., dimV = (dim M — 1) — 2dim(¢/g,). Now dimM — 1 =
2dimG — 2 and dim ¢ = dim G — 1. Therefore, dimV = 2dimG — 2 —
2((dimG — 1) —dimG,) = 2dim G,. By Lemma 3.12 G, is connected
and the weights vy,...v, (d = dim G, = £ dim V) of the slice represen-
tation p form a basis of the weight lattice of G;,. On the other hand,
Oy (V) = {2 ai | a; > 0}. The rest of the lemma follows. O

As a corollary of the first part of the proof and Lemma 3.10 we get

Theorem 3.14. Let (M,a,V, : M — g*) be a c.c.c.t. G-manifold
normalized so that Wo(M) C S(g*) = {n € ¢g* | ||n|| = 1}. Let z €
M be a point, G, be its isotropy group (which is connected). Let p :
G, — Sp(V,wy) denote the symplectic slice representation, ® : V — g*
denote the corresponding moment map, and let € = (R¥, (z))° be the
characteristic subalgebra. Choose the embeddings © : g; — g, J :
(¢/g.)* — g* as in Lemma 3.10.
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There exists an open embedding ¢ from a neighborhood of the orbit
G/G, x {0} x {0} in G/G, x (8/gs)* x V into M such that

Va(z) +(n) +i(2(v))
. o = .
G4 Wao @) (0G0 = g ) 5 ) + @)
Proof. Since the isotropy group G, is connected, the sequence 1 —
G, - G — G/G, — 1 splits. Hence G x¢, ((¢/g,)* x V) = G/G, x
(¢/g2)" x V. 0

REMARK 3.15. Recall that for the standard representation of the n-
torus T" on C* preserving the standard symplectic form w = /=15 dzj\
dZ;, the corresponding moment map ® : C* — (R")* is given by
®(2) = (|z1)% -, |2a|?). Hence the fibers of ® are T"-orbits. Con-
sequently if p : H — Sp(V,wy ) is a faithful representation of a torus
H with dimV = 2dim H, then the fibers of the corresponding moment
map ¢y : V — b* are H-orbits.

Lemma 3.16. Let (M,«, ¥, : M — g*) be a compact connected con-
tact toric G-manifold. Then

1) The connected components of the fibers of ¥, are G-orbits.

2) For any point x € M and any sufficiently small G-invariant
neighborhood U of x in M the pair (R U, (z),C(¥,|r)) deter-
mines the contact toric manifold (U, o|y,Va|y = Wy, ). (Recall
that C(V,ly)) = {t¥,(z) | t € [0,00), x € U} is the moment
cone of ¥,).

Proof. Fix a point x € M. Let p : G — Sp(V,wy) denotes the
corresponding symplectic slice representation and ¢ = (RU, (z))° the
characteristic subalgebra. Let i : g — g* and j : (¢/g,)* — g* be the
embeddings as in Lemma 3.10.

By Lemma 3.13, the isotropy group G, is connected. By Lemma 3.10
there exists a G-invariant neighborhood U of G -z in M, a G-invariant
neighborhood Uy of G - [1,0,0] in N = G xq, ((¢/g:)* x V), a G-
invariant contact form ay on N and a G-equivariant diffeomorphism
¢ : Uy — U such that ¢*a = efay for some G-invariant function
f. Consequently the a- and ay-moment maps are related by ¥, o
o([a,n,v]) = e/len* Dy, ([a,n,v]). Recall that the ay-moment map
U, is given by U, ([a,n,v]) = (¥u(x) + j(n) + (P (v))), where
®y V. — g is the moment map for the slice representation.

As observed previously the connectedness of G, implies that N
is diffeomorphic to G/G, x (¢/g,)* x V. Under this identification
Uy (aGeyn,v) = Vo(z) + j(n) + i(Py(v)). Hence a fiber of ¥, is
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of the form G /G, x {n} x ®};'(11). Since the fibers of ®y are G ,-orbits
(see Remark 3.15), the fibers of ¥, are G-orbits. It follows that for
any point i € g* the set ¥_'(n) N U is a G-orbit.

We next argue that the pair (R*¥,(z),C(¥,|y)) determines G,
and the symplectic slice representation p (it obviously determines the
characteristic subalgebra). It is no loss of generality to assume that
(M,a,¥,) = (N,an,¥,,) (note that the contact form ay is not
normalized but this won’t matter) and that U is a neighborhood of
G/G, x {0} x {0} in N = G/G, x (¢/g,)* x V. Since G, is connected
it is determined by its Lie algebra g, or, equivalently, by its annihi-
lator go. Let C' be the moment cone of (U, ay|y, Vay|r). We may
assume that U is of the form G/G, x Dy x Dy where Dy is a neigh-
borhood of 0 in (¢/g,)* and D, is a G,-invariant neighborhood of 0
in V. Then C = {0} URT (¥, (x) + j(D1) + i(Py(Dy))). Note that
R* (¥4 (z) + j(Dy)) is an open subset of g5. Hence

go = {w € g* | there is € > 0 such that ¥, (z)+tw € C for all t € (—¢, ¢€)}.

Once we determined g, we have the natural inclusion ¢ : g, — ¢
and the dual projection 7 : g* — g%. Note that t* o i = idg. There-
fore ,7(C) = @y (V). By Lemma 3.13, the cone ®y (V) completely
determines the representation p : G, — Sp(V, wy). O

4. Properties of contact moment maps

In this section we gather a number of results describing the properties
of contact moment maps, such as convexity of the image and connect-
edness of the fibers, and then apply them to moment maps on contact
toric manifolds.

Definition 4.1. Let ¥, : M — g* be the moment map for an action
of a torus G on a manifold M preserving a contact form a. The corre-
sponding orbital moment map is the map ¥, : M/G — g* induced
by W,.

The first property is the convexity of the image and the connected-
ness of the fibers which is due to Banyaga and Molino in the toric case
[BaM1, BaM2] (by Lemma 2.12 we know that Theorem 4.2 below
applies to contact toric manifolds).?

31 don’t understand the proof of convexity and connectedness in [BaM2]. In
particular it is not clear to me how the hypothesis that the dimension of the group
is at least 3 is being used.
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Theorem 4.2. Let (M,&) be a co-oriented contact manifold with an
effective action of a torus G preserving the contact structure and its
co-orientation. Let £ be a component of the annihilator of £ in T* M
minus the zero section: £°\0 = {5 U (—=E7). Assume that M is compact
and connected and that the dimension of G is bigger than 2. If 0 is not
in the image of the contact moment map W : £, — g* then the fibers of
U are connected and the moment cone C(¥) = ¥ (&)U {0} is a convex
rational polyhedral cone.

Proof. See [L1]. O

Lemma 4.3. Let (M,a, ¥V, : M — g*) be a c.c.c.t. G-manifold nor-
malized so that W, (M) C S(g*). Suppose dim M > 3. Then the fibers
of the moment map ¥V, are G-orbits. Consequently the orbital moment
map W, : M/G — S(g*) is a (topological) embedding.

Proof. By Theorem 4.2, the fibers of ¥, are connected. By Lemma 3.16
the connected components of the fibers of ¥, are G-orbits. Therefore
the fibers of W, are G-orbits and the orbital moment map is injective.

Since M /G is compact, the orbital moment map ¥, is an embedding.
O

Lemma 4.3 does not hold for 3-dimensional contact toric manifolds.
For example consider (M, «a) = (S x T?, cos nt df; + sinnt df,) with
the corresponding moment map W, (¢,0;,6,) = (cosnt,sinnt). The
orbital moment map is ¥, : S' = M/T? — S(R?) = S! is given by
U, (t) = (cosnt,sin nt), which is not an embedding for n > 1. However,

U, (t) is an embedding locally. This is true in general.

Lemma 4.4. Let (M,a,V, : M — g*) be a c.c.c.t. G-manifold nor-
malized so that Vo (M) C S(g*). For any v € M/G there is a neigh-
borhood U of x in M /G such that the restriction of the orbital moment
map V., to U is an embedding into S(g*).

Proof. This is an easy consequence of the local normal form theorem,
Theorem 3.14. O

Lemma 4.5. Let (M,a,V, : M — g*) be a c.c.c.t. G-manifold nor-
malized so that V(M) C S(g*). Assume dim M > 3. If the moment
map ¥, : M — S(g*) is onto, then the action of G on M is free, hence
U, : M — S(g*) is a principal G-bundle.

Proof. Suppose the action of GG is not free. Then for some point x € M
the isotropy group G is not trivial. By Lemma 4.3 for any G-invariant
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neighborhood U of the orbit G - = there is an open subset W of the
sphere S(g*) such that
U, (U) =W N T,(M).
By the local normal form theorem, Theorem 3.14, we may choose U
and W so that
~ Vo(z) +j(n) +i(2(v))
v, (U) :Wﬂ{ : . ne(t/g,),veV
1 a() +5(n) + i(P(v))]|

where as in Theorem 3.14 p : G, — Sp(V,wy ) denotes the symplectic
slice representation, ® : V' — g* denote the corresponding moment
map, ¢ = (R¥,(z))° is the characteristic subalgebra, and i : g& —
g, 7 : (8/g.)" — g* are the embeddings as in Lemma 3.10. Since
G, is nontrivial, the symplectic slice V' is not zero. It follows from
Lemma 3.13 that (V') is a proper cone in gi. Therefore U, NW # W,
i.e., U, is not onto. Contradiction. Therefore the action of G is free.
By Lemma 4.3, the fibers of ¥, are G-orbits. Therefore if the action
of G is free, then U, : M — S(g*) is a principal G-bundle. O

The next lemma is a partial converse to Lemma 4.5.

Lemma 4.6. Suppose a Lie group G acts on a manifold M preserving
a contact form «. Let V, : M — g* denotes the corresponding moment
map. Suppose the action of G at a point x is free and the value p of
moment map at x is non-zero. Then m, 0 d(Vy), : TuM — g* /Ry is
onto. Here m, : g* — g*/Ru is the obvious projection.

Proof. Since the action of G at x is free, for any 0 # X € g the induced
vector field X, is nonzero at x: Xp(x) # 0. Since the action of G
preserves «, 0 = diu(Xy)a + ¢(Xpr)da. Therefore, for any v € T, M
(d(Va)s(v), X) = d(Wa, X)o(v) = dag (v, Xpr(2)).

Now

(g"/Ru)" = kerp = {X € g | (Va(r), X) = 0}
(4.1) = {X egla(Xu(r) =0}

={X eg| Xy € kera,}.

Hence to prove that 7, o d(V,), : T,M — g*/Ru is onto, it’s enough
to show that for any 0 # X € g with a, (X (z)) = 0 there is v € T, M
with da, (v, Xy (x)) = (d(Va)2(v), X) # 0. Since « is contact, do|iera

is nondegenerate. Therefore, for any Xy, (x) # 0 with a, (X (z)) =0
there is v € ker o, so that da, (v, Xp(x)) # 0. O
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Corollary 4.7. Let (M,a, ¥, : M — g*) be a c.c.c.t. G-manifold
normalized so that V. (M) C S(g*). If the action of G is free then the
moment map W, : M — S(g*) is a submersion.

If additionally dim M > 3 then ¥, : M — S(g*) is a principal
G-bundle.

Proof. By Lemma 4.6, the differential d(V,), : T, M — Ty, (5)S(g") is
surjective for all x € M. Consequently the image ¥, (M) is open in
the sphere. On the other hand the image is closed since M is com-
pact. Thus the image is the whole sphere and ¥, : M — S(g*) is a
submersion. Since M is compact it follows that ¥, : M — S(g*) is a
fibration. If dim M > 3 then, by Lemma 4.3, ¥, : M — S(g*) is a
principal G-bundle. 0

Definition 4.8. Two contact toric G-manifolds (M, o, ¥,,) and (M, o', ¥ )
are locally isomorphic if

1) there exists a homeomorphism ¢ : M/G — M'/G and

2) for any point © € M/G there is a neighborhood U C M/G con-
taining it and an isomorphism of contact manifolds ¢y : 71 (U) —
(7")~1(@(U)) such that 7' o oy = @om where 7 : M — M/G and
n' ¢ M — M/G are the orbit maps (hence, by Remark 2.16,

o = ).

Lemma 4.9. Let (M, a1, V,, : My — g*) and (Ms, ap, Yy, : My —
g*) be two c.c.c.t. G-manifolds normalized so that ¥, (M;) C S(g*),
i = 1,2. Suppose there is a homeomorphism ¢ : My/G — My/G so
that U, o = W, , where ¥, , W, are orbital moment maps.

Then (M, aq,%,,) and (M, as, ¥,,) are locally isomorphic.

Proof. Denote the orbit map M; — M;/G by m;, i = 1,2. We want
to show that for any point x € M; there is a G-invariant neighbor-
hood U; C M; and a G-equivariant diffeomorphism ¢y : Uy — Uy =
75 (@(m (Uy))) such that ¢fay = a; and such that

T O Py = PO (7r1|U1)-

Pick a point 5 € 7, '(@(z1)). Then, since ¥,, o ¢ = ¥,,, we have
U, (x9) = ¥, (z1). Also, given a G-invariant neighborhood U; of
lp Ml, let U2 = 7T2_1(Q[_3(7T1(U1))). We have \IJOQ(UQ) = \Ijaz(@(ﬂ'l(Ul)) =
U, (m(Uy)) = U,, (Uy). Therefore by Lemma 3.16 (2) if U, is suffi-
ciently small there exists a G-equivariant contactomorphism ¢y : Uy —

Us,. Hence, as remarked earlier, ¥, o oy = ¥, and ¢j,a0 = a;.
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It remains to show that the map @y induced by ¢y on U /G is @.

If Uy is sufficiently small, then by Lemma 4.4 the maps ¥, : U;/G —
S(g*), i = 1,2, are embeddings. Since ¥, 09y = V,,, Vo,00y = Vg, .

_ — -1 = _
Therefore Yu = (\I/a2 |‘I’a1(U1)) 0] \Ifal |7r1(U1) = 90|7r1(U1)- D

5. From local to global

In this section we prove that compact connected contact toric manifolds
are classified by the elements of the first Cech cohomology of their orbit
space with coefficients in a certain sheaf. The argument here is an
adaptation of the argument in [LT] (which was due to Lerman, Tolman
and Woodward), which, in tern, was an adaptation of the argument in
[HS]. T recently learned that essentially the same idea was developed
earlier by Boucetta and Molino [BoM].

Let (M,& = ker «) be a co-oriented contact manifold. Recall that a
vector field = is contact if its flow preserves the contact distribution
&, or, equivalently, if Lza = fa for some function f € C*(M). A
choice of a contact form a with ker o = & establishes a bijection be-
tween contact vector fields and functions: given a contact vector field
= the corresponding function is «(Z). Conversely, given a function
f € C>(M) the corresponding contact vector field = is defined by

(5.1) = = fYa — (dalg) ' (dfle),

where Y, is the Reeb vector field of «, that is, the unique vector field
such that a(Y,) = 1, «(Y,)da = 0. Note that since da|¢ is nondegen-
erate, (dale) ' (df¢) is a well-defined vector field tangent to £. Also, if
= is contact then

Lza =Y, (a(Z))a.

If a Lie group G acts on the manifold M and if the contact form «
is G-invariant, then the form defines a bijection between G-invariant
contact vector fields and G-invariant functions.

Lemma 5.1. Suppose (M,a,V, : M — g*) is a contact toric G-
manifold. For any G-invariant function f the flow gp{ of the corre-
sponding contact vector field Z; preserves the contact form o and in-
duces the identity map on the orbit space M/G. In particular Z; is
tangent to G-orbits.

Proof. We first consider the special case of f = 1. Then the corre-
sponding contact vector field is the Reeb vector field Y,,. By definition
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of Y, the Lie derivative Ly, « satisfies Ly, o = di(Yy)a + (Y, )da =
d(1) +0 = 0. Hence for any X € g

Lya <\Ifa, X> = Lya (L(XM)Oé) = L(LanM)Oé + L(XM)(LYaOé).

Since Y, is unique, it is G-invariant. Hence LY, Xy = —Lx,, Y, =0
for any X € g. And by the previous computation Ly a = 0. Therefore
Ly, =0+0.

Thus the Reeb vector field is tangent to the fibers of the moment map
U,. Since (M, a,V, : M — g*) is toric, the connected components of
the fibers of ¥, are G-orbits (see Lemma 3.16). Therefore the Reeb
vector field is tangent to G-orbits. Hence for any G-invariant function
f, Ya(f) = 0 and consequently L=, = Y,(f)a = 0. That is, the flow

go,{ of Z; preserves a.
For any X € g

LEf <\Ifa,X> = LEf (L(XM)CY) = L([Ef,XM])CY + L(XM)(LEfOé) =0+40.

Since connected components of the fibers of ¥, are G-orbits, this proves
that the contact vector field = is tangent to G-orbits for any invariant
function f. Hence the flow of = induces the identity map on the orbit
space M/G. O

Proposition 5.2. For a fized torus G, the isomorphism classes of
contact toric G-manifold locally isomorphic to a given contact toric
G-manifold (M, a,¥,,) are in one-to-one correspondence with the ele-
ments of the first Cech cohomology group H'(M/G,S) where S is the
sheaf of groups on the orbit space M /G defined by

S(U) = Iso(r (1)),

the group of isomorphisms of the contact toric manifold (m='(U), o1,
Uolr-11ny) (cf. Definition 2.15). Here again © : M — M/G denotes
the orbit map.

Proof. The argument is standard (compare [HS] Proposition 4.2, or
[BoM]). Suppose (M’ o', ¥, ) is a contact toric G-manifold locally
isomorphic to (M, a, ¥,). Fix a homeomorphism ¢ : M = M/G —
M' = M'/G. Choose an open cover {V;} of M such that for each i there
is a G-equivariant contact diffeomorphism o; : 771(V;) — (7)1 (o(V;))
inducing @ on V; (here 7' : M" — M'/G is the orbit map). Let

fij = 0 oot

j Vzﬁvja



CONTACT TORIC MANIFOLDS 813

it is a Cech 1-cocycle whose cohomology class in H'(M, S) is indepen-
dent of the choices made to define it.

Conversely, given an element of H'(M,S) we can represent it by a
Cech cocycle {f;; : 7' (VinV;) — 7 %V;NV;)}. We construct the
corresponding contact toric G-manifold by taking the disjoint union
of the manifolds (7~ (V;), a|z-1(v;), Yalr-1(1;)) and gluing 71 (V;) to
71 (V;) along 7=1(V;N'V;) using fi;. The cocycle condition guarantees
that the gluing is consistent. 0

Proposition 5.3. Let (M, «,¥,) be a contact toric G-manifold. Let
w: M — M/G denote the orbit map, and let Z¢g = ker{exp : g — G}
denote the integral lattice of the torus G. There exists a short exact
sequence of sheaves of groups

(5.2) 052, 5CdS—1,

where for a sufficiently small open subset U of the orbit space M /G

1) Zg(U) := C*(x1(U), Za)“;
2) C(U) = C(r Y (U))Y, the sheaf of “smooth” functions on M/G;
3) S(U) :=TIso(r~'(U)) is the sheaf defined in Proposition 5.2.

Hence 8 is a sheaf of abelian groups and the cohomology groups H' (M /G, S)
are defined for all indices i > 0.

Proof. Let U be an open subset of M = M/G and let f € C(U). By
Lemma 5.1, the time t-flow ¢! : 7 1(U) — 7~ (U) induces the identity

map on U and preserves the contact form «. Hence for any ¢, gp{ is in
S(U). We define the map A : C(U) — S(U) by

We next argue that A is onto. Suppose ¢ € S(U). By Theorem 3.1
of [HS], there exists a smooth G-invariant map o : 7 '(U) — G such
that

p(r) =o(x) =

for all z € 7 '(U). Moreover, if U is contractible, then o(z) =
exp(X (z)) for some smooth G-invariant map X : 7='(U) — g. It’s
not hard to check that x — exp(X(z)) -  is the time-1 flow of the
vector field X (z) := (X (x)p)(z). Note that X is a G-invariant vector
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field: for any g € G and z € 7~ (U)

Xlg-a) = (Xlg-0)ulg-0) = | exp(eX(g-)-(5-2)
= |0 EpX(@) ) = dou ()

where the third equality holds because X is G-invariant and G is
abelian. .

We next prove that the Lie derivative of @ with respect to X is zero:
L ;o = 0. To do this we recall a few facts about basic forms [K]. Given
an action of a compact Lie group G on a manifold M, a form f is basic
if it is G-invariant and if for any X € g, the contraction (X )5 is zero
(for zero forms we only require invariance). The set of basic forms is
a subcomplex of the de Rham complex of differential forms, i.e., if 3
is basic then so is df. Also, if ¢ : M — M is a G-equivariant map
inducing the identity on M /G and S is basic, then ¢*3 = . This is
because it is a closed condition that holds on the open dense subset of
points of principal orbit type.

We claim that Lga is basic for the action of the torus G' on the
manifold 7~ 1(U). Note that Lza = du(X)a + «(X)da. Since X and a

are G-invariant, o(X) is G-invariant hence basic. Therefore dv(X)a is
basic. Also, since X and « are G-invariant, the second term (X )da is
G-invariant. It remains to show that for any Y € g, 0 = +(Ya)[¢(X)da.

Now for any Y, Z € g
do(Yar, Znr) = Yar(e(Znr)) = Zu(a(Yr)) — o([Yar, Zu]) =0 -0 -0,

because a(Yys), a(Zyr) are G-invariant functions and because [V, Zy/| =
—([Y;, Z])ar = 0 (since @G is abelian). Therefore for any z € 7~(U)

v(Yar)[((X)da] = doe(Ya (2), (X () m(2)) = 0.

Next let 7, denote the time-t flow of the vector field X. Clearly 7 is
G-equivariant and induces the identity map on U. Thus , since (L ;)
is basic we have (73)*(Lya) = (Li«) for all t. We also know that
71 = ¢ and that ¢*a = a. Therefore

1
d

O=¢'a—a=ra—T1a = /—(Tt*a)dt

L di

= /OIT;‘(LX@) dt = /OI(LXOz) dt = (Lga).
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We conclude that X is a contact vector field. We define f = a(X).
Then the contact vector field of f is X and A(f) = ¢! = 7 = ¢. This
concludes the proof that A : C — § is onto.

We define the map j : Zg — C by j(X) = (¥,, X). Thus it remains
to show that for any sufficiently small set U C M/G and any function
fec)if ol (x) =z for all z € 7=1(U) then

f = <\Pa7 X>

for some X € Zg. In fact it is enough to show that the above equation
holds on the open dense subset 7~'(Uy) of 7=!'(U) consisting of the
points where the action of G'is free. Now the contact vector field Z;
of f is G-invariant and is tangent to G-orbits (Lemma 5.1). Therefore
there exists on 77 '(Up) a G-invariant smooth map X : 7='(Uy) — ¢

such that
Zp(r) = (X(@))m ().

Now the time-1 flow of X (z) := (X (x))u(z) is z — exp(X(x)) - z.
Thus if ¢! () = z, then exp(X (z)) - 2 = z for all 2 € 7 (U,). Hence
exp(X(z)) =1 and so X (z) € Zg for all z € 7 1(Up). Therefore, since
Z¢ is discrete and X is continuous and since we may take 71 (U) to be
connected, X (x) = X for some fixed vector X € Zq. It follows, since
71 (Up) is dense in 7= (U) that Z;(z) = Xy (z) for all z € 771(U).
Consequently f = a(Zy) = a(Xy) = (V,, X). O

Corollary 5.4. Under the hypotheses of the proposition above,
H'(M/G,8) = H"'(M/G, L)
for all i > 0.

Proof. The sheaf C is a fine sheaf, so the long exact sequence in co-

homology induced by (5.2) breaks up for i > 0 into isomorphisms
HI(M/G,S) ~ H+'(M/G, Z.,). O

6. Proof of the classification theorem

In this section we finally put the results of sections 4 and 5 to work
and prove the classification theorem.

6.1. Proof of Theorem 2.18 (1). Suppose (M, a,¥,) is a c.c.c.t.
G = T? manifold and suppose the action of G is free. Then the orbit
space M/G is a 1-dimensional compact connected manifold without
boundary, hence is a circle S'. Moreover, since any principal T2-bundle
over St is trivial, M is diffeomorphic to S* x T? = T?. It remains to
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show that the contact form « equals a,, = cosntdf; + sinnt df, for
some positive integer n.

By Lemma 4.6 the orbital moment map ¥, : S' = M/G — S(g*) =
S is a submersion, hence is a covering map. Therefore there is a
homeomorphism ¢ : M/G — S* such that ¥, o p = ¥, where ¥,
is the a,-moment map and n is the number of sheets in the cover
U, : St — S'. By Lemma 4.9 (M,a,¥,) is locally isomorphic to
(M, 0, V,,). It follows from Proposition 5.2, Corollary 5.4 and the
fact that H%(S',Z?%) = 0 that (M, a, ¥,) is isomorphic to (M, a,,, ¥, ).

6.2. Proof of Theorem 2.18 (2).

Lemma 6.1. Let (M, a,¥,) be a c.c.c.t. G = T? manifold normalized
so that ¥,(M) C S(g*) and suppose the action of G is not free. Then

1) The orbit space M /G is homeomorphic to the interval [0, 1].

2) The orbital moment map ¥, : M/G — S(g*) = S* lifts to an
embedding Vo, : M/G — R so that TloW, = ¥, where IT: R — S"
is the covering map I1(t) = (cost,sint).

3) Uo(M/G) = [t1,t5], and tant,,tant, are rational numbers.

4) If (M', o/, W) is another c.c.c.t. G-manifold with ¥ (M']G) =
U, (M/G) then (M', o/, W) is isomorphic to (M, a, U,).

5) Given ti,ty € R with 0 < t; < 2w, t; < ty and tanty, tanty ratio-
nal, there is a c.c.c.t. G-manifold (M, o, ¥,) with Wo(M/G) =
[tl, tg] .

Proof. Since (M, a,¥,) is contact toric, U,(z) # 0 for any = € M
(Lemma 2.12). Therefore the action of G on M has no fixed points.
By Lemma 3.13 all the isotropy groups are connected. Therefore they
are either trivial or circles. Suppose the isotropy group G, at x is a
circle. Then its Lie algebra g, equals the characteristic subalgebra €.
Hence ¥, (z) is a multiple of a weight p € Z,.

Also, the dimension of the symplectic slice V' at x is 2. Hence the
symplectic slice representation is isomorphic to the standard action of
St on C: \-z = \z. Consequently, by the local normal form theorem,
Theorem 3.14, a neighborhood of z in M is diffeomorphic to S! x C,
and a neighborhood of G-z in M /G is homeomorphic to C/S! = [0, o).
We conclude that M/G is a 1-dimensional C° manifold with boundary.
Since M is compact and connected and since G = T? it follows that

1) M/G is homeomorphic to [0, 1];

2) there are exactly two orbits G - 1, G - xo which are diffeomorphic

to S
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3) Fori=1,2, ¥,(z;) = HZ%H where p; = dy; and the character x;

is the map G — G/G,,.

Since G' = T? we may identify g* With R? and the weight lattice Z7,
with Z2. Then for any weight p of G, 2 Tl = = (cost,sint) for some t € ]R
with tan ¢ rational.

Since M/G is homeomorphic to [0, 1], the orbital moment map v,
M/G — S(g*) = S" lifts to a map ¥, : M/G — R such that ITo ¥,
U,. Note that ¥,(M/G) is an interval with end points being the
images of the exceptional orbits G - x1, G - ©5. Hence we may assume
that W,(M/G) = [t,ts], 0 < t; < 27, and that tant;, tant, are
rational numbers. .

Moreover since ¥, is locally an embedding (Lemma 4.4), ¥, is an
embedding. Thus W, : M/G — [t1, 5] is a homeomorphism.

Now suppose (M', o/, W) is another c.c.c.t. G-manifold
with W (M'/G) = [ti,t2). Then ¢ := (U)o ¥, : M/G — M'/G
is a homeomorphism with ¥, o ¢ = ¥,. By Lemma 49 (M, o, ¥,)
and (M' o/, ¥, ) are locally isomorphic. Since M/G is contractible,
H?*(M/G,Z*) = 0. By Corollary 5.4 H'(M/G,S) = H*(M/G,Z?),
where S is the sheaf in Proposition 5.2. Hence, by Proposition 5.2,
(M,a,¥,) and (M', o/, ¥, ) are isomorphic.

To prove part (5) we use an equivariant version of Proposition 2.15
in [L2]:

Proposition 6.2. Suppose (M «) is a contact mamfold M is a man-
ifold with boundary of the same dimension as M embedded in M. Sup-
pose further that there is a neighborhood U in M of the boundary OM
and a free St action on U preserving o such that the corresponding
moment map f: U — R satisfies

1) f740) =0M and

2) f7H([0,00)) =UNM.

Let Moy = M/ ~, where, for m #m/, m ~m' if and only if

1) m,m' € OM and

2) m=\-m for some A\ € S,
Then M.y is a contact manifold, OM/S' is a contact submanifold of
My, and Moy ~ (OM/SY) is contactomorphic to M N OM.

Moreover if there is an action of a Lie group G on M preserving M,

a and commuting with the action of S* on U, then there is an induced
action of G on M, preserving the induced contact structure.
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Suppose we are given ti,t, € R with tant;, tants rational, 0 < ¢; <
21 and t; < ty. For each i there is a weight (m;,n;) € Z? such that
(cost;,sint;) lies on the ray through (m;, n;).

Choose € > 0 sufficiently small so that f;(¢) = —nj cost 4+ m; sint is
non-negative on [t1,t; +¢€) and fo(t) = ny cost—ms sin t is non-negative
on (ty —€,t5] and t; + € < t, —e. Consider M = R x S' x S' with
the contact form o = cost df; + sint dby, (t,0,,0,) € R x S* x S*. Let
M = [tl,tg] X 51 X 51, U= ((tl —6,t1—|—€) U (tg—e,tQ—FG)) X 51 X 51.
Consider f : U — R given by f(¢,601,02) = —njcost + mysint for
t € (t1—€,t1+¢€) and f(¢,61,62) = nocost+msysint for t € (ta—e, to+e).
The function f is a moment map for a circle action on U generated on
(t; —€,t1+€) x St x St by —nla%l—i-mla%; and on (ty —¢, ta+€) x ST x St

el el
by ’nga—gl — m23—92.

Note that the obvious action of G = S* x S* on M preserves M, a,
U and commutes with the action of S! defined by f. Therefore we may

apply Proposition 6.2. The contact manifold M,,; so obtained with the
induced action of G is the desired manifold (M, a, ¥,). O

REMARK 6.3. It is not hard to see that the manifolds M., we con-
structed above out of R x S x S' are lens spaces. Indeed, topologi-
cally they are obtained by from [t;, ;] x St x S! by dividing out the
boundary components by circle actions, which is equivalent to gluing
two solid tori along their boundaries by various automorphisms of the
boundary.

6.3. Proof of Theorem 2.18 (3). Let (M,a,¥,) be a c.c.ct. G-
manifold normalized so that W, (M) C S(g*), suppose the action of G
is free and suppose dim M > 3. By Corollary 4.7 the moment map
U, : M — S(g*) is a principal G-bundle. By Lemma 4.9 (M, a, ¥,,)
is locally isomorphic to the co-sphere bundle S*G = G x S(g*) of
the torus G with the standard contact structure and the obvious ac-
tion of G. By Proposition 5.2 (M, «, ¥,) corresponds to a class in
H'(M/G,S) = H'(S(g*),S). By Corollary 5.4 H'(S(g*),S) is iso-
morphic to H?(S(g*),Zs). On the other hand the cohomology group
H?(S(g"), Z) classifies principal G-bundles over the sphere S(g*). This
suggests (but doesn’t yet prove!) that every principal G-bundle over
S(g*) has a unique invariant contact structure. To prove this we need
to trace through identifications.

Recall that principal G-bundles (for G a torus) over B = S(g*)
are in 1-1 correspondence with classes in the first Cech cohomology
H'(B,G) where G is the sheaf defined by G(U) = C®(U,G), for U C B
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sufficiently small. Recall also that we have a short exact sequence of
sheaves

0= Zg—g—G—1,
where Z(U) = C®(U, Z¢) ~ Zg, g(U) = C*(U,g) and exp : g — G

is induced by exp : g — G. On the other hand, by Proposition 5.3 we
have the short exact sequence

052, 5CHS—1.

We claim that there are morphisms a : C — g and b : § — G so that
the diagram

L l,c -5 s
[T
YA > g > G

commutes and that, moreover, b induces an isomorphism H'(S(g*), S) —
H'(S(g"), G).

Denote the projection M — S(g*) by 7. Fix an open set U C S(g*)
small enough so that 7= (U) = U x G. By Lemma 5.1 for any f € C(U)
the contact vector field =y of f is tangent to G-orbits, i.e., to the fibers
of m. Since the vector field Z; is also G-invariant, for any x € U there
is a unique X (z) € g such that for any m € 7! ()

(cf. proof of Proposition 5.3). We define a(f) to be the map X : U — g,
x +— X(z). Since an element ¢ € S(U) is a G-equivariant diffeomor-
phism of 77 (U) = U x G into itself, it is completely determined by
¢luxpy. We define b: S(U) — G by b(¢)(x) = ¢(z,1).

By definition of A : C — S, A(f) is the time 1 flow of Z;. Thus
if Z¢(m) = (X(x(m)))a(m) then A(f)(m) = (exp X(m(m))) - m =
exp(a(f)(m(m))) - m. Consequently b(A(f))(z) = exp(a(f)(x)), ie.,
bo A = expoa.

Finally the left hand square commutes by definition of j and the
fact that the contact vector field of the function (¥,, X) is Xj,. This
proves the claim.
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Since C and g are fine sheaves we have

Hl(S(g*) S) —— H*(S(g"), Zg)

H%id)l
),G) —— H*(S(g"), Z¢)
b) induced by b on the first Chech cohomology

HY(S

Therefore the map H*
is an isomorphism.

(g
(

6.4. Proof of Theorem 2.18 (4).

Lemma 6.4. Let g* be the dual of the Lie algebra of a torus G. Let
C C g* be a good polyhedral cone. There exists a c.c.c.t. G-manifold
(M, a,¥,,) such that the moment cone of U, is C.

Proof. Suppose C' = ({n € g* | (n,v;) > 0} is a good polyhedral cone
defined by some subset {v;}, of the integral lattice Zg.

As a first step we construct a symplectic cone (S,w)? with a sym-
plectic action of G commuting with dilations such that the image of
the corresponding moment map ®g : S — g* is C'. The construction is
a slight adaptation of a well-known construction of Delzant (c.f. [D],
[LTY)).

Let {e;} denote the standard basis of RY. Consider the map w :
RY — g given by @w(>_ a;e;) = Y a;v;. Since w(ZY) C Z¢, w induces
amap @: TV =RV /ZN — g/Zs = G. We write [a] for the image of
a=(ay,...,ay) € RV in TV. Note that the kernel T' of @ is

al | Zaivi € Z¢}.

It is a compact abelian subgroup of TV with Lie algebra t = ker w.
Note that 7" need not be connected.
Consider the standard action of TV on (CV, %=1 3" dz; A dz)):

[a] - (21,...,25) = (5™ 2y, ... eZmaNzN).
The corresponding symplectic moment map @ : CV — (RY)* is given
by ®(21,...,2n) = 3 |2;]%€; where {e}} is the basis dual to {e;}. We

claim that the symplectic quotient S of CV¥ \ {0} by the induced action
of T is the desired manifold S, i.e., that

S = (27'(0) ~ {0})/T

4Recall that a symplectic cone is a symplectic manifold (S, w) with a free proper
action {p;}er of the real line such that pjw = elw for all t € R
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where &7 = j* o ® and j : t — RY is the inclusion.

We clalm first that ®7'(0) = ®~(w(C)). Indeed, since 0 — g* =
(RV)* 5o 5 0is exact, (j*)’ (0) = w*(g*) and hence ®5'(0) =
O=H((j*)7H(0) N ®(CY)) = 7! (w*(g") N © ((C )). Now

w*(g)N®(CY) = {w*(n) |n € g* and (w*(n),e;) > 0 for all i}
={w*(n) |ne€g" and 0 < (n, w(e;)) = (n,v;) for all i}
={@"(n) |ne€C}.

Thus ®,'(0) = &~ (w*(0)).

Next we claim that for any 0 # z = (z1,...,2y) € ®3'(0) the
isotropy group T, is trivial. It would then follow that S = (®3'(0) ~
{0})/T is a smooth symplectic cone: the action of R on S is induced by
the action of R on CV given by ¢-z = e’2. Now T, = TN(TY), = {[a] €
RN/ZN | zaivi € Zg} N {[a] € RN/ZN | a; € Z for all 1 with z; 7é
0} = {[a] € RY/ZN | 30,c, aju; € Zgand a; € Zforall j ¢ J.}
where J, = {j € {1,...,N} | z; = 0}.

On the other hand, z € ®,'(0) if and only if there is a (unique)
n € C such that ®(z) = w*(n). Hence z; = 0 if and only if 0 = |z;|* =
(®(2),€e;) = (@w*(n), ej) = (n,v;). Since C is a good cone, for any fixed
vector n € C' the set {v; | (n,v;) =0} = {v; | j € J,} is a Z basis
of {3 ;cs. ajvj | aj € R} NZg. Hence Y . ; ajv; € Zg implies that
aj € Z for all j € J,. Therefore T, = {[a] € RN /Z" | a € Z"}, i.e., T,
is trivial.

Finally note that the image of ®'(0) under ® is precisely @*(C).
Hence the image of the reduced space S = &' (0)/7 under the induced
TV /T = G moment map & : ®,1(0)/T — € = w*(g*) is w*(C) ~ C.

Since the sphere SN~ = {z € CV | ||z]|> = 1} is a TV-invariant
hypersurface of contact type in CV, and since the action of R on CV
commutes with the action of TV

M = (®;'(0) N SN YT

is a TV /T = G-invariant hypersurface of contact type in the quotient
®71(0)/T. Moreover |y : M — t© = w*(g*) is the corresponding
contact moment map, and its moment cone is precisely @w*(C') ~ C. O

Lemma 6.5. Suppose (M,ca, ¥, : M — g*) is a c.c.c.t. G-manifold,
dim M > 3 and the action of G is not free. Then the moment cone
C (W) is a good rational polyhedral cone.
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Proof. We first introduce some notation and a simple fact. Let C' C g*
be a cone and F' C C be a face of C'. Let spangF' denote the linear
subspace of g* spanned by the vectors in F. Let mp : g* — g*/spangF’
denote the projection. For any point ¢ in the interior of F' there is an
open neighborhood W of ¢ in g* such that

CNW =r. (mr(C)) NW.

Note that the cone 7' (7 (C)) is isomorphic to 7 (C) x spangF.
Now suppose that C' is the moment cone C (V) of ¥, and that x
is a point in M. By Lemma 4.3 for any G invariant neighborhood
U of G - = there is an open subset W of the sphere S(g*) such that
U, (U) =W NV, (M). Let W =R W U {0} be the cone on W. Then

C(Vulr) =C(T,) NW.
By the local normal form theorem, Theorem 3.14,

C(Woly) =W N (RY (Pa(2) +5((¢/82)") + (P (V) U{0}),
where as usual £ is the characteristic subalgebra, ®y : V' — g¥ is the
moment map for the slice representation etc.. Note that

WNR (Ta(z) +7((8/80)7) = W N gg
for any sufficiently “small” open cone W. Thus
C(Woly) =W N (g; +i(Pr(V))) = W, (@r(V)),
where 7, : g* — g is the natural projection. It follows that if F"is the
face of C'(¥,) containing ¥, (z) in its interior, then spangF’ = g2 and
mr(C(¥,)) is isomorphic to @y (V') (once we identify g*/gS with g%).

Moreover, if we represent C' as C' = ({n € g* | (n,v;) > 0} for some
minimal set {v;} C Z¢ and consisting of primitive vectors, then g2 =

spang F' = ﬂ?d{?? € g* | (n,vi;) = 0} for some subset {v;,,...,v;} C
Zg, and
k
WNO(W,) =Wn(m (@v(V) =Wn({neg | (nv,) >0}

j=1
Hence 7, (D (V) = ﬂ?zl{n € g* | (n,vi,) > 0}. Since Z¢, = g.N%Zg,
{vi,} is a subset of (g3)° N Zg = g N Zg = Z¢,. For any v € g, we
have m,({n € g* | (n,v) > 0}) ={n € g% | (n,v) > 0}). Therefore

Oy (V) =, (ﬂ{n cg' | (nuv) > 0}> =({neglmuv,) >0}

J=1 J=1
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By minimality of {v;} the set {v;; } is the minimal set with this property.
On the other hand, by Lemma 3.13,

Py (V) = {Z a;vj | a; > 0}

for some basis {v;} of Z¢, . Therefore the set {v;} is a basis of the
lattice Z¢, . OJ

7. Uniqueness of toric integrable actions on the punctured
cotangent bundles of T" and S*

Having proved the classification theorem, Theorem 2.18, we are now in
position to prove two applications: Theorems 1.3 and 1.5.

Proof of Theorem 1.3. Let (M,a, ¥, : M — g*) be a contact toric
G-manifold (G = T") such that (M,«) is contactomorphic to the
co-sphere bundle S*T" of the n-torus T” with the standard contact
structure. We will argue that (M, a, ¥,) is unique as a contact toric
manifold.

It was shown in [LS] that if M = S*T", then the action of G is
necessarily free. The argument roughly goes as follows (see [LS] for
details). Suppose the action of G is not free. Consider first the case
of dim M = 3. Then M is a lens space (cf. Theorem 2.18 (2)), hence
cannot be S*T? = T3.

Next consider the case of dimM > 3. Then the moment cone
C of (M,«a,¥,) is a good polyhedral cone determining (M, a, ¥,)
uniquely (cf. Theorem 2.18 (4)). If the maximal linear subspace of
C has dimension k£ > 0 then C is isomorphic to the moment cone
of M' = TF x S* 17k where M’ gets its contact toric structure
as a hypersurface of contact type {(q,p,2) € TF x (RF)* x C=F |
Ip||? + ||2]|* = 1} in T*T* x C*=*. Consequently M is homeomorphic
to M' =Tk x §2n—1=k L Tn x Sn=l = S*Tn,

Finally if the dimension of the maximal linear subspace of C' is zero,
i.e., if C'is a proper cone, then by a theorem of Boyer and Galicki [BG]
M has a locally free circle action so that the quotient M/S! is a com-
pact connected symplectic toric orbifold. The real odd-dimensional co-
homology of a compact symplectic toric orbifold is zero. Consequently
dim H'(M,R) < 1. Hence M # S*T" n > 1.

We conclude that if (M,a, ¥, : M — g*) is a contact toric G-
manifold (G = T") and M = S*T" then the action of G is necessarily
free. We argue next that it is unique.
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Suppose dim M = 3 and the action of G = T? is free. By the classifi-
cation theorem (M, ) = (T?, cp = cos kt dfy +sinkt dfy), k =1,2,.. ..
By a theorem of Giroux [Gi], (T?, o) and (T?, ) are distinct as con-
tact manifolds for k # [. Since ay is the standard contact structure on
S*T2, it follows that there is only one contact toric manifold contacto-
morphic to (S*T?,ay). In other words there is only one T?-action on
S*T? making it a contact toric manifold.

Suppose next that dim M > 3 and the action of G is free. By
Theorem 2.18 (4), M is a principal G-bundle over the sphere S"~! n =
dim GG, and each such principal G-bundle carries only one G-invariant
contact structure. Now, principal T" bundles over S™ ! are in one-to-
one correspondence with elements of H?(S™ ! Z") which is 0 unless
n — 1 = 2, in which case it’s Z®. Note however that no nontrivial
T3 bundle over S? is homeomorphic to S? x T?>. We conclude that if
(M,a,V,) is a contact toric G-manifold such that the action of G is
free, M = S*G and dim M > 3 then (M, a,¥,) is a unique contact
toric G-manifold with such properties. In other words there is only one
T"-action on S*T™ making it a contact toric manifold. UJ

Proof of Theorem 1.5. Suppose 71, T» are two effective actions of the
torus G = T? on M = S*S? = RP? preserving the standard contact
structure. Let ¥, Uy : M — S' C g* be the moment maps for the
actions corresponding to a normalized contact form g defining the
standard contact structure. We will argue that the images W;(M) are
arcs in S' of length less than 7 (hence W¥; are one-to-one). Moreover
we’ll show that there is an element A € SL(g*) preserving the weight
lattice Zg, such that A(Uy(M)) = ¥o(M). It would then follow that
the action 7y composed with the isomorphism of GG defined by A is 7.

Note that since RP? # T?, the actions 7; are necessarily not free (cf.
Theorem 2.18 and the proof of Theorem 1.3 above). Now consider one
of the two actions, say 7. By Lemma 6.1 the action is free except at
two orbits G - x; and G - x5. The isotropy groups K; of x; are circles,
and the images Wy (x;) are of the form IZ—lH where p; € Z7, are primitive

(2

weights such that ker y; is the Lie algebra of the circle K;.

It follows from the proof of Lemma 6.1 that the contact toric manifold
(M, 0, ¥y : M — g*) can be obtained by cutting (B,a) = (T2 x
R, cos t df; +sint dfy) using B = T? x [t;, ], where (cost;,sint;) = ﬁ
(we identify g* with R? and Z, with Z?). Hence as a topological space
M = B/ ~ where (g,t1) ~ (ag,t;) for all a« € K; and (g,t2) ~ (ag,ts)
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for all a € K5. Note that t5 —t; # 7n , n = 1,2,..., for otherwise
p1 = +p9 and then B/ ~ is S? x St £ RP3.

Next observe that since the standard contact structure on S*S? = M
is tight, we must have to—t; < 7 (cf. [L2]). Indeed, ift; = 0 and ¢, > T,
the image of the cylinder {(1,¢”,#) |0 <t <t,, 0 € R} C BCT?xR
in M = B/ ~ is an overtwisted disk. One can write a similar formula
for an overtwisted disk if ¢; > 0. We conclude that the image W, (M)
in S is an arc of length less than 7. Consequently the fibers of ¥, :
M — S* are connected.

We next argue that the weights pq, po, which span the edges of the
moment cone C'(¥;), span a sublattice of the weight lattice Z7, of index
two.

Lemma 7.1. Let G = T? and let Ky, Ky C G be two closed subgroups
isomorphic to S*. Let M be the topological space (G x [0,1]/ ~ where
(0,9) ~ (0,ag) for all g € G, a € Ky and (1,g9) ~ (1,ag) for all
g € G and a € Ky. In other words M 1is obtained from the manifold
with boundary G x [0,1] by collapsing circles in the two components
of the boundary by the respective actions of two circle subgroups. Let
H1, o € Z¢ be the two primitive weights determined by K, and K,
respectively, i.e., the kernel of the character defined by p; is K;.

Then H'(M,7Z) =~ {(ny,ns) € Z* | nypy+naue = 0} and H*(M,Z) ~
Ziof (T + Zo).

Proof. Recall that H' (G, Z) is isomorphic to the weight lattice Zg, and
that the isomorphism is given as follows. A weight v € Z7, defines a
character x, : G — S' by x, (exp(X)) = >™(X): the class x*[df)] is the
element in H' (G, Z) corresponding to v. Here df is the obvious 1-form
on St

Consequently if G = T? and K; C G is a circle subgroup, then
7 G — G/K; ~ S' is a character and hence the weight u; = (dm;);
defines an element of H'(G, Z). Thus if we identify H'(G/K;, Z) with
Z and H'(G,Z) with Z}, then the map H'(G/K;,Z) — H'(G,Z)
becomes the map Z > n — np; € Zg,.

The sets U = (G x [0,2/3))/ ~ and V = (G x (1/3,1])/ ~ are two
open subsets of M. We have M = UUV, UNV =G x (1/3,2/3)
is homotopy equivalent to G, U is homotopy equivalent to G/K;, V
is homotopy equivalent to G/K, and the inclusion maps U NV < U,
UNV < V are homotopy equivalent to projections m : G — G/K7,
7o : G — G /K, respectively. Hence under the above identifications of
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H'(U) and H'(V) with Z, the inclusions UNV — U, UNV — V
induce the maps Z > n +— nu; € Zg, j = 1, 2, respectively.

We now apply the Mayer-Vietoris sequence to compute the integral
cohomology of M. We start with

0— H°(M) — H°(U)® H*(V) — H°(G) RN HY (M) — H (U)® H (V) = H(G)
2 HA(M) — HX(U) ® H2(V) = HX(G) > H¥(M) — 0.
Clearly the map H°(U) ® H°(V) — H°(G) is onto. Given the identi-
fications above the map
e H'(U)o H' (V) — H'(G)
becomes
ZDZL> (n,m)— npy +mpy € Ly,
We therefore have
0— H' (M) = Z&Z % 7., % H* (M) — 080 — H*(G) > H¥ (M) — 0
and the lemma follows. ([l
Since M = RP?*, H*(M,Z) = Z/2. Hence Z/2 = 7/ (Zpy + Zps).
Consequently, since i, po are primitive, the parallelogram
{arp + agpe | 0 < ay,ae <1}
contains exactly five point of Z¢: four vertices plus the point p =

%(ul + 2) in its interior. Hence {ui, p} is a basis of Zf,. Of course

fho = 24 — fu1.
By the same argument the image Wy(M) is an arc in S' of length

less than 7 with endpoints —2 “2_where v1,15 € ZF, are primitive
[[rall? [lv2l| ! G

weights. Moreover {vy,v = (v + 15)} is a basis of Z},. The linear
map A : g* — g* defined by Au; = vy, A = v is the desired map. [




Bibliography

[BaM1]

[BaM2]

[Bt]

[BoM]

[BG]

C. Albert, Le théoreme de réduction de Marsden-Weinstein
en géométrie cosymplectique et de contact, J. Geom. Phys.
6 (1989), no. 4, 627-649.

A. Banyaga, The geometry surrounding the Arnold-
Liouville theorem in Advances in geometry, edited by Jean-
Luc Brylinski, Ranee Brylinski, Victor Nistor, Boris Tsy-
gan and Ping Xu. Progress in Mathematics, 172. Birkhauser
Boston, Inc., Boston, MA, 1999. xii+399 pp. ISBN 0-8176-
4044-4

A. Banyaga and P. Molino Géométrie des formes de contact
completement intégrables de type toriques in Séminaire
Gaston Darbouz de Géométrie et Topologie Différentielle,
1991-1992 (Montpellier), 1-25, Univ. Montpellier IT, Mont-
pellier, 1993.

A. Banyaga and P. Molino, Complete integrability in con-
tact geometry, Penn State preprint PM 197, 1996.

L. Bates, Examples for obstructions to action-angle coor-
dinates, Proc. Roy. Soc. Edinburgh Sect. A 110 (1988), no.
1-2, 27-30.

M. Boucetta and P. Molino, Géométrie globale des systemes
hamiltoniens completement intégrables: fibrations lagrang-
iennes singulieres et coordonnées action-angle a singu-
larités, C. R. Acad. Sci. Paris Sér. I Math. 308 (1989),
no. 13, 421-424.

C. P. Boyer and K. Galicki, A note on toric contact
geometry, J. of Geom. and Phys. 35 (2000) 288-298;
math.DG/9907043v2.

T. Delzant, Hamiltoniens périodiques et images convexes de
I'application moment, Bull. Soc. Math. France 116 (1988),
no. 3, 315-339.

827



[L1]

[L.2]

[L3]

BIBLIOGRAPHY

H. Geiges, Constructions of contact manifolds, Math. Proc.
Cambridge Philos. Soc. 121 (1997), no. 3, 455-464.

E. Giroux, Une structure de contact, méme tendue, est plus
ou moins tordue, Ann. Sci. Ecole Norm. Sup. (4)27 (1994),
no. 6, 697-705.

V. Guillemin and S. Sternberg, Symplectic techniques in
physics, Cambridge University Press, Cambridge — New
York, 1984. xi+468 pp. ISBN: 0-521-24866-3

A. Haefliger and E. Salem, Action of tori on orbifolds, Ann.
Global Anal. Geom. 9 (1991), 37-59.

J. L. Koszul, Sur certain groupes de transformations de
Lie, dans Colloque de Géométrie Différentielle, Colloque
du CNRS 71 (1953), 137-141.

E. Lerman, A convexity theorem for torus actions on con-
tact manifolds, IIl. J. Math, 46 (2002), 171-184.
http://xxx.lanl.gov/abs/math.SG/0012017.

E. Lerman, Contact cuts, Israel J. Math, 124 (2001), 77—
92;

http://xxx.lanl.gov/abs/math.SG/0002041.

E. Lerman, Maximal tori in the contactomorphism groups
of circle bundles over Hirzebruch surfaces, Math. Res. Lett.,
to appear; http://xxx.lanl.gov/abs/math.SG/0204334.
E. Lerman and N. Shirokova, Toric integrable geodesic
flows, Math. Res. Lett. 9 (2002), 105-115;
http://xxx.lanl.gov/abs/math.DG/0011139.

E. Lerman and S. Tolman, Symplectic toric orbifolds,
Trans. A.M.S. 349 (1997), 4201-4230.

R. Lutz, Sur la géométrie des structures de contact invari-
antes, Ann. Inst. Fourier (Grenoble), 29 (1979), no. 1, xvii,
283-306.

J. Toth and S. Zelditch, Riemannian mani-
folds  with uniformly  bounded eigenfunctions,
Duke  Math  Journal, 111 (2002), 97-132. See
http://xxx.lanl.gov/abs/math-ph/0002038.

Received September 18, 2003

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS, URBANA, IL 61801
E-mail address: lerman@math.uiuc.edu

Partially supported by NSF grant DMS - 980305, the American Institute of Math-
ematics and R. Kantorovitz.



