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This paper is concerned with an indefinite weight linear eigenvalue problem which is
related with biological invasions of species. We investigate the minimization of the positive
principal eigenvalue under the constraint that the weight is bounded by a positive and
a negative constant and the total weight is a fixed negative constant. For an arbitrary
domain, it is shown that every global minimizer must be of “bang-bang” type. When the
domain is an interval, it is proved that there are exactly two global minimizers, for which
the weight is positive at one end of the interval and is negative in the remainder. The
biological implication is that a single favorable region at one end of the habitat provides
the best opportunity for the species to survive, and also that the least fragmented habitat
provides the best chance for the population to maintain its genetic variability.
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1. Introduction

For more than two decades, the following linear eigenvalue problem with in-
definite weight (and also more general forms)⎧⎪⎨⎪⎩

Δϕ+ λm(x)ϕ = 0 in Ω ,

∂ϕ

∂n
= 0 on ∂Ω

(1.1)

has been extensively investigated, mainly because of its importance in the study
of nonlinear mathematical models from population biology. Here, Ω is a bounded
region in R

N with smooth boundary ∂Ω , n is the outward unit normal vector on
∂Ω , and m(x) ∈ L∞(Ω). Biologically, Ω refers to the habitat of a species, the
zero-flux boundary condition in (1.1) means that no individuals cross the boundary
of the habitat, and the function m(x) represents either the selective force of the
environment on alleles or the intrinsic growth rate of species at location x.
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We say that λ is a principal eigenvalue of (1.1) if λ has a positive eigenfunction
ϕ ∈ H1(Ω). By standard elliptic regularity and the Sobolev embedding theorem
[11], the function ϕ satisfies ϕ ∈ W 2,q(Ω) ∩ C1,γ(Ω ) for every q > 1 and every
γ ∈ (0, 1), and ϕ > 0 in Ω . It is clear that λ = 0 is a principal eigenvalue of (1.1)
with positive constants as its eigenfunctions. Of particular interest is the existence
of positive principal eigenvalues.

Define

Ω+ = {x ∈ Ω : m(x) > 0}, Ω− = {x ∈ Ω : m(x) < 0}.

Before reviewing previous work on (1.1), we impose the following condition onm(x):

(A1) The set Ω+ has positive Lebesgue measure, and
∫
Ω
m < 0.

The following result is well-known [2, 23, 13].

Theorem A. The eigenvalue problem (1.1) has a positive principal eigen-
value (denoted by λ1(m)) if and only if (A1) holds. Moreover, λ1(m) is the only
positive principal eigenvalue, and it is also the smallest positive eigenvalue of (1.1).

Next, we present two examples to illustrate the importance of λ1(m) in the
study of nonlinear mathematical models from population biology. The first model
concerns the evolution of gene frequencies at a single diallelic locus under the joint
action of migration and selection:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ut = Δu+ λm(x)u(1 − u) in Ω × R
+,

∂u

∂n
= 0 on ∂Ω × R

+,

0 ≤ u(x, 0) ≤ 1 in Ω , 0 <
∫
Ω

u(x, 0) dx < 1,

(1.2)

where u(x, t) and 1 − u(x, t) represent the frequencies of two alleles A1 and A2

at location x and time t, respectively. The integral
∫
Ω+

m represents the total
selection force favoring A1, whereas

∫
Ω−

(−m) is the selection force favoring A2.
The assumption

∫
Ω
m < 0 is equivalent to

∫
Ω+

m <
∫
Ω−

(−m), i.e., allele A2 is
favored over allele A1. The conditions on the initial data u(x, 0) ensure that both
alleles are present initially. By the maximum principle [20], we have 0 < u(x, t) < 1
for every x ∈ Ω and every t > 0. Moreover,
(i) if 0 < λ ≤ λ1(m), then u(x, t) → 0 uniformly for x ∈ Ω as t → ∞; i.e., allele

A1 is eliminated and allele A2 is maintained;
(ii) if λ > λ1(m), then u(x, t) → u∗(x) uniformly for x ∈ Ω as t → ∞, where

u∗ is the unique positive solution of (1.2) satisfying u∗ ∈ W 2,q(Ω) for every
q > 1 and 0 < u∗(x) < 1 for every x ∈ Ω . This implies that both alleles are
maintained if λ is larger than λ1(m).
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These results were established in [12] for Hölder-continuous weight m(x), and can
be extended to the case of bounded measurable weight. The study of the diallelic
case lays down the ground for further analysis of the much more difficult multiallelic
case, and we refer to [9, 12, 18, 22, 23] and references therein for the diallelic case
and [15, 16] for recent developments in the multiallelic case.

The second example is the diffusive logistic equation⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut = Δu+ λu[m(x) − u] in Ω × R

+,

∂u

∂n
= 0 on ∂Ω × R

+,

u(x, 0) ≥ 0, u(x, 0) �≡ 0 in Ω ,

(1.3)

which first appeared in the pioneering work of Skellam [24]. Here, u(x, t) represents
the density of a species at location x and time t. Hence, only non-negative solutions
of (1.3) are of interest. The function m(x) represents the intrinsic growth rate of
a species, which is positive in the favorable part of habitat (Ω+) and negative in
unfavorable one (Ω−). The integral

∫
Ω
m can be viewed as a measure of the total

resources in a spatially heterogeneous environment. The logistic equation (1.3) is
important in understanding the effects of dispersal and spatial heterogeneity in the
population growth of a single species, and we refer to [3, 5, 6] and references therein
for works on (1.3). In particular, it is known that
(i) if λ ≤ λ1(m), then u(x, t) → 0 uniformly in Ω as t → ∞ for all non-negative

and non-trivial initial data; i.e., the species goes to extinction;
(ii) if λ > λ1(m), then u(x, t) → u∗(x) uniformly in Ω as t→ ∞, where u∗ is the

unique positive solution of (1.3) in W 2,q(Ω) for every q > 1; i.e., the species
survives.

Equation (1.3) also plays a crucial role in studying the dynamics of multiple
interacting species, and we refer to [6, 7, 8, 14, 17] and references therein for works
on models of two competing species with diffusion and spatial heterogeneity.

In this paper we are mainly concerned with the dependence of the princi-
pal eigenvalue λ1(m) of (1.1) on the weight function m(x). In particular, we are
interested in how spatial variation in the environment of the habitat affects the
maintenance of alleles or species. To be more precise, let m0, m, and m be three
given positive constants with m0 < m, and assume

(A2) −m ≤ m(x) ≤ m a.e. in Ω , and
∫
Ω
m ≤ −m0|Ω |.

We address the following mathematical question:

Question. Among all functionsm(x) that satisfy (A1) and (A2), whichm(x)
will yield the smallest λ1(m)?

This question is mainly motivated by the following biological considerations:
the alleles (or species) can be maintained if and only if λ > λ1(m), and the smaller
λ1(m) is, the more likely that both alleles can be maintained (or the species can
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exist, respectively). Biologically, for the genetic model, finding such a minimizing
function m(x) is equivalent to finding the spatial pattern in which it is easiest
to maintain the less favored allele A1 [19]; for the logistic model, it is the same
as determining the optimal spatial arrangement of the favorable and unfavorable
parts of the habitat for species to survive [3, 4]. This question was first addressed
by Cantrell and Cosner in [3, 4] from the ecological point of view, and it remains
largely open.

The question is also mathematically meaningful. Indeed, by (A1) and Theo-
rem A, the positive principal eigenvalue λ1(m) is uniquely determined. Moreover,
the infimum of λ1(m) among all those m that satisfy both (A1) and (A2) is positive.
In order to see this, we recall the following theorem of Saut and Scheurer [21]:

Theorem B. Suppose that (A1) holds. Then

λ1(m) ≥ ν1
∣∣∫

Ω
m
∣∣∫

Ω
m2(x) dx+

∣∣∫
Ω
m
∣∣ supΩ m

,

where ν1 is the smallest positive eigenvalue of the Laplace operator with homo-
geneous Neumann boundary condition.

As an immediate consequence of this theorem, we have

λ1(m) ≥ ν1m0

max(m2,m2) +mmax(m,m )
> 0, (1.4)

which gives a uniform positive lower bound of λ1(m), i.e., a bound that depends
only on m, m, m0, and Ω .

By the scaling m0 → μ, m → 1, m → κ, m → m/m, and λ → λm, for the
sake of simplicity, we may assume that m0 = μ, m = 1, and m = κ, where μ < 1
and κ > 0 are constants. With this scaling, (A2) becomes

(A2)′ −1 ≤ m(x) ≤ κ a.e. in Ω , and
∫
Ω
m ≤ −μ|Ω |.

Given μ < 1 and κ, we define

M =
{
m ∈ L∞(Ω) : m(x) satisfies (A1) and (A2)′

}
, (1.5)

and set

λinf := inf
m∈M

λ1(m).

By (1.4), we see that λinf > 0.
The existence and profile of global minimizers of λ1(m) in M with Dirichlet

boundary condition was first addressed by Cantrell and Cosner in [3]. Among
other things, Cantrell and Cosner showed that there exists some measurable set
E ⊂ Ω with |E| > 0 such that λ1(κχE − χΩ\E) = λinf . The result of Cantrell
and Cosner can be viewed as saying that there exists a “bang-bang” type optimal
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control for minimizing λ1(m) in M. For Neumann boundary condition, we show
that a stronger assertion holds true:

Theorem 1.1. The infimum λinf is attained by some m ∈ M. Moreover,
if λ1(m) = λinf , then m can be represented as m(x) = κχE − χΩ\E a.e. in Ω for
some measurable set E ⊂ Ω .

In particular, Theorem 1.1 implies that the global minimizers of λ1(m) in M
must be of “bang-bang” type, and in fact must be contained in the set

Mα = {m : m = κχE − χΩ\E for some E ⊂ Ω with |E| = α|Ω |},

where

α =
1 − μ

1 + κ
. (1.6)

It is easy to check that every m ∈ Mα satisfies
∫
Ω
m = −μ|Ω |, i.e., Mα ⊂ M.

By Theorem 1.1 and the above discussion, in order to determine all of the
global minimizers of λ1(m) in M, it suffices to characterize E ⊂ Ω such that
the corresponding weight function m(x) = κχE − χΩ\E minimizes the principal
eigenvalue λ1(m) in Mα. The main goal of this paper is to utilize this idea to give
a complete characterization of all global minimizers of λ1(m) in M when N = 1
and Ω is an interval. In this connection, we have

Theorem 1.2. Suppose that N = 1, Ω = (0, 1), and α is as defined in (1.6).
Then λ1(m) = λinf for some function m ∈ M if and only if m = κχE − χΩ\E
a.e. in (0, 1), where either |E ∩ (0, α)| = α or |E ∩ (1 − α, 1)| = α.

Theorem 1.2 implies that when Ω is an interval, then there are exactly two
global minimizers of λ1(m) (up to change of a set of measure zero). This sub-
stantially improves previous work in the one-dimensional case. In [4] Cantrell and
Cosner studied the case when Ω is the unit interval (0, 1) under three different
boundary conditions (Dirichlet, Neumann, and Robin type) in a rather restricted
situation. More precisely, for Neumann boundary condition, they showed that if
m(x) ≡ κ on a “single” subinterval of fixed length and m(x) = −1 on the remain-
der of the interval, then the smallest value of λ1(m) with m(x) so restricted occurs
when the subinterval where m(x) ≡ κ is at one of the ends of the interval (0, 1);
they also considered the situation when m(x) ≡ −1 in a “single” subinterval of
fixed length, and m(x) ≡ κ on the remainder of (0, 1). They proved that in the
latter case, the smallest value for λ1(m) occurs when m(x) ≡ −1 at one of the
ends of (0, 1). However, the method of [4] cannot be applied to a more general case
where m(x) has either arbitrarily many or infinitely many positive and negative
intervals. Therefore, in order to study such general case, we need to develop some
new ideas based on a characterization of critical points and continuous dependence
of λ1(m) with respect to m. We note that our analysis can also be useful in handling
Dirichlet, Robin, and periodic boundary conditions.



280 Y. Lou and E. Yanagida

Theorem 1.2 can be viewed as filling up the gap between the result of Cantrell
and Cosner and Theorem 1.1. For the genetic model, Theorem 1.2 suggests that
if m is fragmented, then it is difficult to maintain the genetic variability; for the
logistic model, this means that a single favorable region at one of the two ends of
the whole habitat provides the best opportunity for the species to survive.

As an application of Theorem 1.2, we have

Corollary 1.3. Suppose that N = 1 and Ω = (0, 1). Let λα denote the
unique, positive principal eigenvalue for the weight function m = κχ(0,α) − χ(α,1).
If λ ≤ λα, then for any m ∈ M, all solutions of (1.2) and (1.3) satisfy u(x, t) → 0
uniformly for x ∈ Ω as t→ ∞.

Biologically, Corollary 1.3 implies that for a one-dimensional habitat, if the
deleterious allele or species can not be maintained in the least fragmented step-
environment, it will be eliminated in any other habitat with the same total amount
of selective forces or resources.

Remark 1.4. The characterization of the optimal set E in Mα for higher-
dimensional domains is an open problem. We conjecture that if Ω is convex, then
both E and Ω/E are connected (up to a set of measure zero), and ∂E ∩ ∂Ω has
positive measure.

This paper is organized as follows. In Section 2, we establish some fundamen-
tal properties of the eigenvalue problem (1.1) for general and bang-bang weight
functions. We also show that the global minimizer must be of bang-bang type, i.e.,
Theorem 1.1 holds. In Section 3, we study the case where Ω is the unit interval,
and give a proof of Theorem 1.2.

2. Properties of the Eigenvalue Problem

Subsection 2.1 is devoted to the proof of Theorem 1.1, which states that the
global minimizers of λ1(m) in M must be of bang-bang type. In Subsection 2.2, we
establish the comparison principle and continuity of positive principal eigenvalues.
Finally, in Subsection 2.3 we study properties of the eigenvalue problem (1.1) with
bang-bang type weight functions m(x).

2.1. Bang-bang property of global minimizers
We first give the following well-known variational characterization of the pos-

itive principal eigenvalue [1, 2, 13, 23]:

Lemma 2.1. Suppose that (A1) holds. Then the positive principal eigenvalue
λ1(m) of (1.1) is given by

λ1(m) = inf
ϕ∈S(m)

∫
Ω
|∇ϕ|2∫

Ω
m(x)ϕ2

, (2.1)



Minimization of Principal Eigenvalue 281

where

S(m) :=
{
ϕ ∈ H1(Ω) :

∫
Ω

m(x)ϕ2 > 0
}
.

Moreover, λ1(m) is simple, and the infimum is attained only by associated eigen-
functions that do not change sign in Ω.

Next, we prove that λinf is attained.

Lemma 2.2. There exists m ∈ M such that λ1(m) = λinf .

Proof. By the definition of λinf , there exists a sequence {mn}∞n=1 in M such
that λ1(mn) → λinf > 0 as n→ ∞. Let ϕn > 0 be the corresponding eigenfunction
of λ1(mn), uniquely determined by supΩ ϕn = 1. By standard elliptic regularity and
the Sobolev embedding theorem [11], passing to a subsequence if necessary, we may
assume that ϕn → ϕ∞ in W 2,q(Ω) ∩C1,γ(Ω ) for every q > 1 and every γ ∈ (0, 1),
where supΩ ϕ∞ = 1 and ϕ∞ ≥ 0 in Ω . Since ‖mn‖L2(Ω) is uniformly bounded,
passing to a subsequence again if necessary, we may assume that mn(x) → m(x)
weakly in L2(Ω) for some function m ∈ L2(Ω), i.e.,

∫
Ω
mnψ → ∫

Ω
mψ for every

ψ ∈ L2(Ω) as n → ∞. Choose ψ ≡ 1. This together with
∫
Ω
mn ≤ −μ|Ω | implies

that
∫
Ω
m ≤ −μ|Ω |. For every non-negative L2 function ψ, we have − ∫

Ω
ψ ≤∫

Ω
mnψ ≤ κ

∫
Ω
ψ. Passing to the limit, we find that − ∫

Ω
ψ ≤ ∫

Ω
mψ ≤ κ

∫
Ω
ψ.

This implies that −1 ≤ m ≤ κ a.e. in Ω .
To have m ∈ M, it remains to show that m(x) > 0 in a set of positive measure.

Note that ϕ∞ is a weak solution of

Δϕ+ λinfmϕ = 0 in Ω , ∂ϕ/∂n = 0 on ∂Ω .

If m(x) ≤ 0 a.e. in Ω , then ϕ∞ satisfies∫
Ω

|∇ϕ∞|2 = λinf

∫
Ω

mϕ2
∞ ≤ 0,

i.e., ∇ϕ∞ = 0 in Ω . Since supΩ ϕ∞ = 1, we have ϕ∞ = 1, which implies that
m = 0 a.e. in Ω . However, this contradicts

∫
Ω
m ≤ −μ|Ω | < 0. Therefore, m ∈ M.

By the equation of ϕ∞, we see that λ1(m) = λinf . This shows that λinf is attained.
�

To complete the proof of Theorem 1.1, we extend some idea from [4].

Proof of Theorem 1.1. Suppose that m ∈ M and λ1(m) = λinf . Let ϕ > 0
with supΩ ϕ = 1 be the corresponding eigenfunction of λ1(m). By elliptic regularity,
we have ϕ > 0 in Ω . For every η > 0, define

Eη = {x ∈ Ω : ϕ(x) > η}.

Since μ < 1, there exists some η∗ > 0 such that |Eη∗ | > 0 and

−μ|Ω | = κ|Eη∗ | − |Ω \ Eη∗ |. (2.2)
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Define m∗(x) = κχEη∗ −χΩ\Eη∗ . Equation (2.2) ensures that
∫
Ω
m∗ = −μ|Ω |.

Hence, we have m∗ ∈ M, which implies that λinf ≤ λ1(m∗).
We claim that m(x) = m∗(x) a.e. in Ω . To establish our assertion, we first have∫

Ω

(m∗ −m)ϕ2 =
∫
Eη∗

(κ−m)ϕ2 −
∫
Ω\Eη∗

(1 +m)ϕ2

≥ (η∗)2
∫
Eη∗

(κ−m) − (η∗)2
∫
Ω\Eη∗

(1 +m)

≥ 0,

(2.3)

where the last inequality follows from (2.2) and
∫
Ω
m ≤ −μ|Ω |. Since

∫
Ω
mϕ2 > 0,

we have
∫
Ω
m∗ϕ2 > 0. Hence, ϕ ∈ S(m∗). Therefore, applying (2.1) we have

λ1(m∗) ≤
∫
Ω
|∇ϕ|2∫

Ω
m∗ϕ2

≤
∫
Ω
|∇ϕ|2∫

Ω
mϕ2

= λ1(m). (2.4)

Since λ1(m) = λinf ≤ λ1(m∗), equalities must hold in (2.4). In particular, λ1(m∗) =
λ1(m) and

λ1(m∗) =

∫
Ω
|∇ϕ|2∫

Ω
m∗ϕ2

.

Therefore, from Lemma 2.1 we see that ϕ is also an eigenfunction of λ1(m∗), and
it satisfies

Δϕ+ λ1(m∗)m∗ϕ = 0 in Ω , ∂ϕ/∂n = 0 on ∂Ω

weakly in H1(Ω) and strongly in W 2,q(Ω) for every q > 1. Since ϕ > 0 in Ω ,
we have

m∗ = − Δϕ
λ1(m∗)ϕ

= − Δϕ
λ1(m)ϕ

= m

a.e. in Ω . This completes the proof of Theorem 1.1.

2.2. Comparison and continuity of principal eigenvalues
For later purposes, we establish two lemmas in this subsection, one of which is

a comparison principle for positive principal eigenvalues of (1.1), and the other is
concerned with the continuous dependence of λ1(m) on the weight function m(x)
in suitable topology. Since we can not locate their proofs of the generality needed
in this paper, for the sake of completeness we include both of the proofs here.

Lemma 2.3. Suppose that m∗,m∗ ∈ L∞(Ω), m∗ ≤ m∗ a.e. in Ω ,
∫
Ω
m∗ < 0,

and m∗ > 0 in a set of positive measure. Then λ1(m∗) ≥ λ1(m∗). If we further
assume that m∗ < m∗ in a set of positive measure, then λ1(m∗) > λ1(m∗).
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Proof. Let ϕ∗ be a positive eigenfunction associated with λ1(m∗). Since∫
Ω
m∗ϕ2

∗ > 0, we have
∫
Ω
m∗ϕ2

∗ ≥ ∫
Ω
m∗ϕ2

∗ > 0. Hence ϕ∗ ∈ S(m∗). There-
fore, by Lemma 2.1 we have

λ1(m∗) ≤
∫
Ω
|∇ϕ2

∗|∫
Ω
m∗ϕ2∗

≤
∫
Ω
|∇ϕ2

∗|∫
Ω
m∗ϕ2∗

= λ1(m∗). (2.5)

If m∗ > m∗ in a set of positive measure, then from the fact that ϕ∗ > 0 in Ω , we
have

∫
Ω
m∗ϕ2

∗ >
∫
Ω
m∗ϕ2

∗. Hence, λ1(m∗) > λ1(m∗). �

Lemma 2.4. Suppose that {mk}∞k=1, m satisfy (A1), and ‖mk‖L∞(Ω) ≤ C

for some constant C independent of k. If ‖mk − m‖L1(Ω) → 0 as k → ∞, then
λ1(mk) → λ1(m) as k → ∞.

Proof. We first claim that there exists some δ > 0 such that δ ≤ λ1(mk) ≤ 1/δ
for sufficiently large k. Since ‖mk−m‖L1(Ω) → 0 and ‖mk‖L∞(Ω) ≤ C, we see that
‖mk −m‖Lq(Ω) → 0 for every q ≥ 1 as k → ∞. To find a uniform lower bound of
λ1(mk), it suffices to apply Theorem B to get

λ1(mk) ≥
ν1
∣∣∫

Ω
mk

∣∣∫
Ω
m2
k + C

∣∣∫
Ω
mk

∣∣ → ν1
∣∣∫

Ω
m
∣∣∫

Ω
m2 + C

∣∣∫
Ω
m
∣∣ > 0.

For the uniform upper bound of λ1(mk), since m > 0 in a set of positive measure,
there exists ψ ∈ L1(Ω) such that ψ ≥ 0 a.e. and

∫
Ω
mψ > 0. Then the proof

of Theorem 3.1 in [3] (the necessity part, pp. 305–306) applies, and it yields that
λ1(mk) ≤ 1/δ for some δ > 0 and all sufficiently large k.

Passing to a subsequence if necessary, we may assume that λ1(mk) → λ∗ for
some λ∗ > 0. It remains to show that λ∗ = λ1(m). To this end, let ψk > 0 with
supΩ ψk = 1 be the corresponding eigenfunction of λ1(mk). By elliptic regularity
and the Sobolev embedding theorem, passing to a subsequence if necessary, we may
assume that ψk → ψ in W 2,q(Ω) for every q > 1, ψ ≥ 0, supΩ ψ = 1, and ψ is
a weak solution of Δψ + λ∗mψ = 0 in Ω and ∂ψ/∂n = 0 on ∂Ω . Hence, λ∗ is
the positive principal eigenvalue corresponding to the weight function m(x). By
Theorem A, we have λ∗ = λ1(m). Note that λ∗ is independent of the subsequence
chosen. This shows that λ1(mk) → λ1(m) for the whole sequence {mk}. �

2.3. Eigenvalue problems of bang-bang type
In this subsection, we consider properties of the eigenvalue problem (1.1) in

the case where m is of bang-bang type.
Let E be a measurable subset of Ω satisfying |E| < |Ω |/(κ+ 1), and set

mE(x) :=

{
κ if x ∈ E,

−1 if x /∈ E.
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Then we consider the eigenvalue problem⎧⎪⎨⎪⎩
Δϕ+ λmE(x)ϕ = 0 in Ω ,

∂ϕ

∂n
= 0 on ∂Ω .

(2.6)

For simplicity, we denote by λE := λ1(mE) the positive principal eigenvalue of (2.6),
and by φE(x) the positive eigenfunction associated with λE .

As corollaries of Lemmas 2.3 and 2.4, we have the following two lemmas.

Lemma 2.5. Let E1 and E2 be measurable subsets of Ω with |E1|, |E2| <
|Ω |/(κ+ 1). If E1 ⊂ E2, then λE1 ≥ λE2 . If we further assume |E1| < |E2|, then
λE1 > λE2 .

Lemma 2.6. If {Ek}∞k=1 and E satisfy |Ek \E| → 0, |E \Ek| → 0 as k → ∞,
and |E| < |Ω |/(κ+ 1), then λEk

→ λE as k → ∞.

We say that E is admissible if φE(x) ≥ φE(y) for x ∈ E and y ∈ Ω \ E a.e.
We show that the minimum of λE can be attained only by admissible E.

Lemma 2.7. Suppose that E is not admissible. Then there exists a measur-
able set E0 ⊂ Ω such that |E| = |E0| and λE0 < λE .

Proof. By assumption, there exist two measurable sets D1 ⊂ E and D2 ⊂
Ω \ E with |D1| = |D2| such that φE(x) ≤ φE(y) for x ∈ D1 and y ∈ Ω \D2 a.e.
Define E0 = (E \D1) ∪D2. Then we have |E| = |E0|. Since∫

Ω

mE0φ
2
E −

∫
Ω

mEφ
2
E = (κ+ 1)

(∫
D2

φ2
E −

∫
D1

φ2
E

)
> 0

and
∫
Ω
mEφ

2
E > 0, we have

∫
Ω
mE0φ

2
E > 0, i.e., φE ∈ S(mE0). Hence, by

Lemma 2.1 we obtain

λE =

∫
Ω
|∇φE |2∫

Ω
mE(x)φ2

E

>

∫
Ω
|∇φE |2∫

Ω
mE0(x)φ2

E

≥ λE0 .

This completes the proof. �

3. One Dimensional Case

In this section we restrict our attention to the case N = 1. Without loss of
generality, we may assume that Ω is the unit interval (0, 1). Thus, the eigenvalue
problem (2.6) is reduced to{

φ′′ + λmE(x)φ = 0 in (0, 1),

φ′(0) = 0 = φ′(1).
(3.1)

Let α be a constant satisfying 0 < α < 1/(κ+ 1), and define

Sα = {E ⊂ (0, 1) : |E| = α}.
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For every E ∈ Sα, mE satisfies (A1). Hence, (3.1) has a unique positive principal
eigenvalue λE for every E ∈ Sα. The goal of this section is to show that if λE
attains the global minimum at some E∗ ∈ Sα, then either |E∗ ∩ (0, α)| = α or
|E∗ ∩ (1 − α, 1)| = α.

3.1. Preliminaries
We define subsets of Sα by

Skα := {E ∈ Sα : E consists of k disjoint open intervals},

k = 1, 2, . . . , and

S∞
α :=

∞⋃
k=1

Skα.

Note that Skα may contain an empty interval (a, a) and two intervals tangent to
each other; (a, b) and (b, c). By definition, E ∈ Skα is admissible if φE(x) ≥ φE(y)
for any x ∈ E and y ∈ (0, 1) \ E.

The following lemma is obtained immediately from definition of the admissi-
bility.

Lemma 3.1. The set E ∈ Skα is admissible if and only if φE(x) takes the
same value at all points on ∂E ∩ (0, 1).

Proof. Since φE is continuous, E is not admissible if φE(x) takes different
values on ∂E ∩ (0, 1). Since φE(x) is convex on E and concave on (0, 1) \ E, the
proof is complete. �

The next lemma will be needed later.

Lemma 3.2. Let E ∈ Skα. Suppose that φ′E(c) = 0 for some c ∈ (0, 1). Then
there exists E0 ∈ Skα such that

λE0 ≤ max{c2, (1 − c)2}λE .

Proof. We see from assumption |E| = α that either

|E ∩ (0, c)| ≤ cα or |E ∩ (c, 1)| ≤ (1 − c)α (3.2)

holds. Suppose that the former is the case. Then the set

Ec = {x ∈ (0, 1) : cx ∈ E}

is measurable and satisfies |Ec| ≤ α. Setting

ψ(x) := φE(cx), x ∈ [0, 1],

we have {
ψ′′(x) + c2λEmEc

(x)ψ(x) = 0 in (0, 1),

ψ′(0) = 0 = ψ′(1).
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This implies that λEc
= c2λE is the positive principal eigenvalue for mEc

. Now we
take E0 ∈ Skα such that E0 ⊃ Ec and |E0| = α. Then by Lemma 2.5, we obtain
λE0 ≤ λEc

= c2λE .
Similarly, if the latter is the case in (3.2), then there exists E0 ∈ Sα such that

λE0 ≤ (1 − c)2λE . Thus, the proof is complete. �

3.2. A single interval
In this subsection we consider the case where E ∈ S1

α, i.e., E is an open interval
(s, s+ α) ⊂ (0, 1) for some s ∈ [0, 1 − α].

Lemma 3.3. The set E ∈ S1
α is admissible if and only if E is one of (0, α),

((1 − α)/2, (1 + α)/2), and (1 − α, 1).

Proof. We first consider the case E = (0, α). Since φ′′E(x) < 0 for x ∈ (0, α)
and φ′E(0) = 0, we have φ′E(x) < 0 for x ∈ (0, α). Also, since φ′′E(x) > 0 for
x ∈ (α, 1) and φ′E(1) = 0, we have φ′E(x) < 0 for x ∈ (α, 1). Therefore, φE(x) is
monotone decreasing in (0, 1). This implies that E is admissible.

Similarly, if E = (1−α, 1), then φE(x) is monotone increasing in (0, 1) so that
E is admissible.

Finally, assume that E = (a, b) with 0 < a < b < 1. If E is admissible, then
φE(a) = φE(b) by Lemma 3.1. This implies that φE(x) is symmetric with respect
to x = (a + b)/2. Since φ′′E(x) > 0 for x ∈ (0, 1) \ (a, b), the boundary conditions
φ′(0) = 0 = φ′(1) are satisfied only if φ′E(x) is symmetric with respect to x = 1/2.
Hence, E = ((1 − α)/2, (1 + α)/2). Conversely, if E = ((1 − α)/2, (1 + α)/2), then
φE(x) is symmetric with respect to x = 1/2, monotone increasing in (0, 1/2), and
monotone decreasing in (1/2, 1). Hence, E is admissible in this case.

Let us compute the positive principal eigenvalue for E = (0, α). In this case,
the eigenvalue problem is written as⎧⎪⎪⎨⎪⎪⎩

φ′′ + λκφ = 0 in (0, α),

φ′′ − λφ = 0 in (α, 1),

φ′(0) = 0 = φ′(1).

Assuming λ > 0 and φ > 0, we may put

φ(x) =

{
C0 cos

√
λκx, x ∈ (0, α),

C1 cosh
√
λ(1 − x), x ∈ (α, 1),

where C0, C1 are positive constants and 0 < λ < (π/2α)2/κ. In order to match
these expressions at x = α, the following condition must be satisfied:

det
[
φ(α− 0) φ(α+ 0)
φ′(α− 0) φ′(α+ 0)

]
= det

[
cos

√
λκα cosh

√
λ(1 − α)

−√
λκ sin

√
λκα −√

λ sinh
√
λ(1 − α)

]
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= − cos
√
λκα ·

√
λ sinh

√
λ(1 − α) + cosh

√
λ(1 − α) ·

√
λκ sin

√
λκα

= 0.

Thus, we obtain the characteristic equation
√
κ tan

√
λκα = tanh

√
λ(1 − α). (3.3)

For every α ∈ (0, (κ + 1)−1), there exists a unique solution of the characteristic
equation satisfying 0 < λ < (π/2α)2/κ. If we denote the unique solution by λα,
then the positive principal eigenvalue is obtained as λE = λα.

Similarly, we have the positive principal eigenvalue λE = λα for E = (1−α, 1).
Finally, the positive principal eigenvalue for E = ((1 − α)/2, (1 + α)/2) is

computed as λE = 4λα by solving⎧⎪⎪⎨⎪⎪⎩
φ′′ − λκφ = 0 in (0, (1 − α)/2),

φ′′ + λφ = 0 in ((1 − α)/2, 1/2),

φ′(0) = 0 = φ′(1/2).

Thus, the following result is obtained.

Proposition 3.4. Let λα be the smallest positive solution for (3.3). Then
the minimum of λE in S1

α is given by λα, and is attained only by E = (0, α) and
E = (1 − α, 1).

Proof. Since λE for E = (s, s + α) ∈ S1
α is continuous in s ∈ [0, 1 − α], λE

takes the minimum in S1
α at some s ∈ [0, 1 − α]. By Lemma 2.7, the minimum

is attained only by admissible E. Then E is either (0, α) or (1 − α, 0), and the
minimal value is given by λα. �

3.3. A finite number of intervals
Next, let us consider the case where E ∈ Skα for some k ≥ 2. Let xi, yi,

i = 1, 2, . . . , k, be variables satisfying

0 ≤ x1 ≤ y1 ≤ x2 ≤ y2 ≤ · · · ≤ xk ≤ yk ≤ 1 (3.4)

and
k∑
i=1

(yi − xi) = α. (3.5)

For simplicity, we use the notation x = (x1, y1, . . . , xk, yk) ∈ R
2k and denote by

Xk
α ⊂ R

2k the set defined by

Xk
α := {x ∈ R

2k : x1, y1, . . . , xk, yk satisfy (3.4) and (3.5)}.
For x ∈ Xk

α, we define E = E(x) ∈ Skα by

E(x) =
k⋃
i=1

(xi, yi).
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We note that (xi, yi) is regarded as an empty set if xi = yi.
Let λE(x) denote the positive principal eigenvalue of (3.1) for E(x) ∈ Skα. Since

λE(x) is continuous in x and Xk
α is compact in R

2k, λE(x) takes the minimum at
some point in Xk

α. By Lemma 2.7, the minimum is attained by some admissible
E. Let xmin denote a minimal point of λE(x). For x = xmin, if xi = yi for some
i, then we may remove the interval (xi, yi), and if yi = xi+1 for some i, we can
glue together two intervals (xi, yi) and (xi+1, yi+1) to create an interval (xi, yi+1).
Hence, we may assume without loss of generality that E(xmin) consists of l (≤ k)
nonempty open intervals (xi, yi) with

0 ≤ x1 < y1 < x2 < y2 < · · · < xl < yl ≤ 1.

Since Slα ⊂ Skα, the minimum of λE in Slα is attained by E(xmin).
Consequently, the following result is obtained.

Proposition 3.5. The minimum of λE in Skα is attained only by E ∈ Skα
such that E = [0, α] or E = [1 − α, 1].

Proof. The minimum is attained only by admissible E. Suppose that E is
not connected. Then by Lemma 3.1, there exist yi and xi+1 such that

φE(yi) = φE(xi+1), 0 < yi < xi+1 < 1,

and hence φ′E vanishes at some x ∈ (yi, xi+1). Then by Lemma 3.2, E is not a
minimal point. Hence, E must be connected. Then by Proposition 3.4, the proof
is complete.

3.4. The general case
In this subsection, we consider the general case where E ∈ Sα is barely mea-

surable and may consist of infinitely many open intervals. Our idea to deal with
this case is to approximate E ∈ Sα by some Eε ∈ S∞

α and use the continuity of
the principal eigenvalue. If λEε

is considerably larger than λα for any E �= (0, α),
(1 − α, 1), then the continuity implies that λE is larger than λα.

We first approximate E ∈ Sα by some Eε ∈ S∞
α .

Lemma 3.6. Let 0 < a ≤ b < 1 be fixed. Assume E ∈ Sα and |E ∩ (0, a)| =
α1, |E ∩ (a, b)| = α2, |E ∩ (b, 1)| = α3, where α1, α2, α3 are non-negative constants
satisfying α1 + α2 + α3 = α. Then for any ε > 0, there exists Eε ∈ S∞

α such that

|E \ Eε| < ε, |Eε ∩ (0, a)| = α1, |Eε ∩ (a, b)| = α2, |Eε ∩ (b, 1)| = α3.

Proof. It is standard (see, e.g., [10]) that for any ε > 0, there exists E0 ∈ S∞
α

such that

|E0 \ E| < ε

4
, |E \ E0| < ε

4
.

Then we have

α1 − ε

4
< |E0 ∩ (0, a)| < α1 +

ε

4
,
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α2 − ε

4
< |E0 ∩ (a, b)| < α2 +

ε

4
,

α3 − ε

4
< |E0 ∩ (b, 1)| < α3 +

ε

4
.

Hence, by adding and removing appropriate intervals, we can find Eε ∈ S∞
α

such that

|E0 \ Eε| < 3ε
4
, |Eε ∩ (0, a)| = α1, |Eε ∩ (a, b)| = α2, |Eε ∩ (b, 1)| = α3.

Since

|E \ Eε| ≤ |E \ E0| + |E0 \ Eε| < ε,

the proof is complete. �

Let Eε be as in the above lemma. We may assume without losing generality
that α /∈ Eε. Indeed, if there is an interval (xi, yi) of Eε containing α, then we
may divide it into two intervals (xi, α) and (α, yi). Similarly, we may assume that
1 − α /∈ Eε.

Now let 0 < a ≤ b < 1 be fixed, and let xi, yi, where i = 1, 2, . . . , l+m+ n, be
variables satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ x1 ≤ y1 ≤ x2 ≤ y2 ≤ · · · ≤ xl ≤ yl ≤ a,

a ≤ xl+1 ≤ yl+1 ≤ xl+1 ≤ yl+2 ≤ · · · ≤ xl+m ≤ yl+m ≤ b,

b ≤ xl+m+1 ≤ yl+m+1 ≤ xl+m+1 ≤ yl+m+2 ≤ · · · ≤ xl+m+n ≤ yl+m+n ≤ 1,
l∑
i=1

(yi − xi) = α1,

l+m∑
i=l+1

(yi − xi) = α2,

l+m+n∑
i=l+m+1

(yi − xi) = α3.

(3.6)
We define a compact set X l,m,n

a,b = X l,m,n
a,b (α1, α2, α3) ⊂ R

2(l+m+n) by

X l,m,n
a,b =

{
x ∈ R

2(l+m+n) : x satisfies (3.6)
}
,

where x := (x1, y1, . . . , xl+m+n, yl+m+n), and put

E(x) :=
l+m+n⋃
i=1

(xi, yi).

We denote by λE(x) the principal eigenvalues of (3.1) for E(x). Since λE(x)
is continuous in x and X l,m,n

a,b is compact, for each (α1, α2, α3), λE(x) takes the
minimum at some x ∈ X l,m,n

a,b . Let xmin be a minimal point of λE(x) in X l,m,n
a,b ,

and φmin be the corresponding positive eigenfunction.

Lemma 3.7. For any fixed β1, β2 ∈ [0, α), there exists λβ1,β2 > λα depending
only on β1 and β2 such that λE ≥ λβ1,β2 holds for any E ∈ S∞

α with |E∩(0, α)| = β1

and |E ∩ (1 − α, 1)| = β2.
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Proof. It suffices to consider the case where E is written as E(xmin) for some
xmin ∈ X l,m,n

a,b . We assume without loss of generality that the intervals of E(xmin)
are separate from each other in (0, a), (a, b) and (b, 1), respectively. We shall show
that there exists λβ1,β2 > λα independent of l,m, n such that λE(xmin) ≥ λβ1,β2 .

We note that if φ′min(c) = 0 for some c ∈ (0, 1), Lemma 3.2 implies

λE(xmin) ≥ min
{
(1 − c)−2, c−2

}
λE0

for some E0 ∈ S∞
α . By Propositions 3.4 and 3.5, we have λE0 ≥ λα. Hence, if

φ′min(c) = 0 for some c ∈ (0, 1), we obtain

λE(xmin) ≥ min
{
(1 − c)−2, c−2

}
λα. (3.7)

First we consider the case of α ≤ 1/2 and take a = α, b = 1 − α, α1 = β1,
and α3 = β2. Assume l ≥ 2, i.e., α1 > 0 and 0 < xl < yl ≤ a. If yl < a, then
we can show in the same manner as in Lemma 3.1 that φmin(xl) = φmin(yl). This
implies that φ′min(c) = 0 for c = (xl + yl)/2. Since xl > 0 and yl > α1, we have
α1/2 < c < a. Hence, (3.7) yields

λE(xmin) ≥ (1 − α1/2)−2λα.

Similarly, if yl = a, then φmin(yl−1) = φmin(xl), so that φ′(c) = 0 for c = (yl−1 +
xl)/2. Since xl > a − α1 and yl−1 > 0, we have (a − α1)/2 < c < a. Hence, (3.7)
yields

λE(xmin) ≥
{

1 − a− α1

2

}−2

λα.

The case m ≥ 2 or n ≥ 2 can be treated in the same manner. It remains
to consider the case where l,m, n ≤ 1. In this case, since β1, β2 < α, we see
that E(xmin) �= (0, α), (1 − α, 1). Hence, it follows from Propositions 3.4 and 3.5
that λE(xmin) > λα for every l,m, n ≤ 1. Thus, we can choose λβ1,β2 > λα
independent of l,m, n such that the inequality λE ≥ λβ1,β2 holds for any E ∈ S∞

α

with |E ∩ (0, a)| = β1 < α and |E ∩ (b, 1)| = β2 < α.
In the case α > 1/2, we take a = 1−α, b = α, α1 +α2 = β1 and α2 +α3 = β2.

Then we easily see that α1 = α − β2 > 0 and α2 = α − β1 > 0. Once α1, α2, α3

are fixed, we can use the same method as above to obtain the conclusion. �

3.5. Completion of the proof of Theorem 1.2
Now we are in a position to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Assume that E ∈ Sα satisfies |E ∩ (0, α)| = β1 <

α and |E ∩ (1 − α, 1)| = β2 < α. Let λβ1,β2 be the positive constant found
in Lemma 3.7. Choose

δ =
λβ1,β2 − λα

2
> 0. (3.8)
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By Lemma 3.6, for any ε > 0, there exists Eε ∈ S∞
α such that |E \ Eε| < ε,

|Eε ∩ (0, α)| = β1, and |Eε ∩ (1 − α, 1)| = β2. By Lemma 3.7, we have

λEε
≥ λβ1,β2 . (3.9)

Choose ε > 0 sufficiently small; by Lemma 2.6 we have

|λE − λEε
| ≤ δ

2
. (3.10)

Hence, by (3.10), (3.9), and (3.8) we have

λE ≥ λEε
− δ

2
≥ λβ1,β2 −

δ

2
= λα +

δ

2
.

Thus, if |E ∩ (0, α)| < α and |E ∩ (1 − α, 1)| < α, we obtain λE > λα. Conversely,
if |E ∩ (0, α)| = α or |E ∩ (1 − α, 1)| = α, Proposition 3.4 implies λE = λα. The
proof is now complete. �
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