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High magnetic force field plays an important role in the wide applications of magnetic
processing such as magnetic separation of ferromagnetic materials and magnetic levitation
of diamagnetic materials. Therefore, the research on magnetic force field enhancement has
been becoming a popular subject recent years. Many experimental methods have been
designed and applied to enhance magnetic force field, however those methods took higher
costs and longer time to set up real installations. A numerical optimization method was
developed, which used only superconducting coils to calculate a magnetic force field and
maximize it. In the method, the magnetic flux density B, the magnetic field gradient
grad B and the magnetic force field grad(B2/2), as objective functions respectively, were
maximized with constraints of the total volumes of coils and the B-J characteristics of
superconductors. By comparing the numerical optimization results with theoretical values
for single coil, we found that they are in good agreement. Also, in comparison with the
results obtained by random models for double coils, those by optimal models were better.
Moreover, the maximal magnetic force field was higher remarkably than that generated
by the previous optimal model in NIMS.
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1. Introduction

High magnetic fields can be used for the research and development of science
and technology in various areas (physics, biology, chemistry and materials science).
It can also enable us to understand microscopic states as well as control their move-
ment in materials, and so on. The research on magnetic force field enhancement has
been becoming a popular subject recent years, such as that a high-temperature su-
perconductor (HTS) bulk cylinder was used [1] and magnetic flux was concentrated
[2] to enhance magnetic force field, and a magnetic force field booster was developed
to create higher magnetic force field [3]. However those experimental methods took
higher costs and longer time to set up real installations. With the development
of computer and calculating technology, many numerical methods were widely used
in the optimal design to superconducting coils. An optimal design method utilizing
a modified simulated annealing algorithm to realize the minimum winding volume
[4] and a combined method of equivalent magnetization current and the simulated
annealing [5] were proposed. Both of them aimed at enhancing magnetic field homo-
geneity through minimizing the cost or weight of the total volumes of coils with
one of constraints—the central magnetic flux density B was assumed as a constant.
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Also, in order to store a higher energy, an optimal configuration design method for
HTS [6] was reported. All of them were limited in optimization on magnetic field
not on magnetic force field. Since a magnetic force field is the product of a mag-
netic field and a magnetic field gradient, magnetic force fields generated by each
coil cannot be added up, so the calculation of magnetic force field is more difficult
than that of magnetic field. Generation of a uniform and high magnetic force field
by designing to superconducting magnets [7] was published. They aimed to obtain
a very uniform magnetic force field in a sample space for protein crystal growth.
However, the volume of magnets and its cost were not considered at all.

A numerical optimization method was developed, in which superconducting
coils were only used. In the method, not only a magnetic field but also a mag-
netic force field can be calculated and optimized. The magnetic flux density B, the
magnetic field gradient gradB and the magnetic force field grad(B2/2), as objec-
tive functions respectively, were maximized with constraints of the total volumes
of coils and the B-J characteristics of superconductors. The method is a combi-
nation of FEM (Finite Element Method) and optimizations. It was carried out on
software ANSYS (version 9.0). By comparing the numerical optimization results
with theoretical values for single coil, we found that they are in good agreement.
Also, in comparison with the results obtained by random models for double coils,
those by optimal models were better. Moreover, the maximal magnetic force field
in our results was higher remarkably than that generated by the previous optimal
model in National Institute for Materials Science (NIMS).

2. Model

The numerical optimization method includes two parts—FEM and optimiza-
tions. FEM is used to set up a physical model and calculate magnetic field, mag-
netic field gradient and magnetic force field in each node. Optimizations aim at
producing higher magnetic field, magnetic field gradient and magnetic force field
by changing the configuration of coils and current densities.

2.1. Physical model
Fig. 1 is a three-dimensional physical model for double cylindrical coils (left:

general drawing, right: sectional view). We assume that coils are made of supercon-
ducting wires, called superconducting coils or magnets. Their electrical resistivity
is zero. Table 1 shows specifications of the superconducting wires. Equations (1)
and (2) express B-J characteristics about magnetic flux density B and critical cur-
rent density J on two kinds of materials Nb3Sn and NbTi, which are widely used
for superconducting wires.
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Fig. 1. A physical model of double coils.

Table 1. Specifications of the superconducting wire materials.

Coil number coil 1 coil 2 coil 3
Superconductor Nb3Sn NbTi NbTi

Acu/Asc 0.75 2.80 4.78

Nb3Sn: J = −80B + 1500 [A/mm2] (1)

NbTi : J = −400B + 4200 [A/mm2] (2)

where Asc is the cross sectional area of the superconductor alone and Acu is an
area of copper encircling the superconductor.

2.2. Mathematical model
To enhance magnetic field, magnetic field gradient and magnetic force field

generated by the physical model, we need to construct a mathematical model from
their definitions. It is simply said, that the magnetic flux density B is a measure
of the amount of magnetic flux Φ in a unit area perpendicular to the direction
of magnetic flow. Their relationship is that,

Φ =
∫∫

s

B · ds (3)

where s is a finite surface area; Gradient of B is called as the magnetic field gradient,
indicated by gradB, which is expressed in the rectilinear coordinates as follows:

gradB = ∇B =
(
∂B

∂x
,
∂B

∂y
,
∂B

∂z

)
; (4)

Also, grad(B2/2) is defined as the magnetic force field, which can be easily obtained
by operation with operator from equation (4):

grad
(
B2

2

)
= B · gradB. (5)

We often regard B gradB as the magnetic force field too. Although equations (3),
(4) and (5) seem to be very simply, they can’t be indicated in any expression further
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in whole calculating area. So we have to describe a mathematical model as follows:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Maximum

{
f(x)

∣∣∣∣∣ f(x) := ‖B‖∞ , ‖gradB‖∞ or
∥∥∥∥grad

(
B2

2

)∥∥∥∥
∞

}

subject to

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑
j

Vj = const.

Jj ≤ gj(x) (j = 1, 2, . . . ,m)

x ∈ X ⊂ Rn

(P)

where ‖ · ‖∞ = max{| ·1 |, | ·2 |, . . . , | ·n |}, X is a design variable (independent
variable) set, Rn is real Euclidian n-dimensional vector space, Vj and Jj are a
volume and current density of the j-th coil, respectively, m is the number of coils,
gj(x) is a constraint function about the characteristic of superconducting wire for
the j-th coil.

3. Numerical optimization method

To solve the mathematical model (P), first, given initial design variables which
belong to design variable set X to form a physical model, by means of FEM on the
model, an initial magnetic field, magnetic field gradient and magnetic force field can
be calculated when resistivity and permeability of the coils are given. Next, let f(x)
be one of among B, gradB and grad(B2/2), then its inverse can be constructed in
an approximation f̂(x) using least squares fitting, that is, f̂(x) ∼= −f(x). We form
an approximation model (P′) of (P), written as follows. Solving the model (P′), we
find out an improved value f̂∗new(x) and solution Xnew. Comparing the new f̂∗new(x)
with old one, if optimal condition is satisfied, then finish this process; Otherwise,
iterate this process once Xnew replaces old one. Finally, the maximum magnetic
field, magnetic field gradient and magnetic force field as well as their optimal coils
can be obtained respectively. A flowchart is shown in Fig. 2.

Fig. 2. A flowchart of the numerical optimization method.
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3.1. Approximate model
In order to solve the mathematical model (P), we convert the mathematical

model (P) to an approximate form in the first step,∣∣∣∣∣∣∣∣∣∣∣∣

Min. f̂(x)

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v̂(x) =

∑
j

Vj − const. ≤ α

ĝj(x) ≥ Jj − βj (j = 1, 2, . . . ,m)

ai ≤ xi ≤ bi (i = 1, 2, . . . , n)

(P′)

where the objective function and constraints are expressed by their approximations
respectively. The design variables xi are constrained between lower boundary ai
and upper boundary bi. α and βj are small positive numbers.

3.2. Penalty function and SUMT
The second step is the conversion of the model (P′) from a constrained problem

to an unconstrained one. This is accomplished by means of penalty functions. To
construct the functions, we change the model (P′) to a standard form as following∣∣∣∣∣∣∣∣∣∣∣∣

Min. f̂(x)

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ṽ(x) =

∑
j

Vj − const.− α ≤ 0

g̃j(x) = −ĝj(x) + Jj − βj ≤ 0 (j = 1, 2, . . . ,m)

ai ≤ xi ≤ bi (i = 1, 2, . . . , n).

(P′′)

From the model (P′′), a subproblem is set up:

F (x, pk) = f̂ + f0pk

⎡⎣ n∑
i=1

W (xi) +H(ṽ) +
m∑
j=1

G(g̃j)

⎤⎦ (6)

in which W is the penalty function used to enforce design variable constraints, and
H and G are penalty functions for state variable (dependent variable) constraints.
The reference objective function value f0 is introduced in order to achieve consistent
units. Notice that the unconstrained objective function (also called a response
surface) F (x, pk), is seen to vary with the design variables and the quantity pk,
which is a response surface parameter. A sequential unconstrained minimization
technique (SUMT) is used to solve equation (6) in each of design iteration. The
subscript k above reflects the use of subiterations performed during the subproblem
solution, whereby the response surface parameter is increased in value (p1 < p2 < p3

etc.) in order to achieve accurate and convergent results. All penalty functions are
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the extended-interior type. For example, near the upper limit, the design variable
penalty function is formed as

W (xi) =

⎧⎪⎨⎪⎩
c1 +

c2
bi − xi

if xi < bi − ε1(bi − ai)

c3 +
c4

xi − bi
if xi ≥ bi − ε1(bi − ai)

(i = 1, 2, . . . , n) (7)

where c1, c2, c3 and c4 are constants that are internally calculated and ε1 is a very
small positive number. State variable penalties H and G can be written as

H(ṽ) =

⎧⎪⎪⎨⎪⎪⎩
− 1
ṽ(x)

ṽ(x) ≤ ε2

−2ε2 − ṽ(x)
ε22

ṽ(x) > ε2

(8)

and

G(g̃j) =

⎧⎪⎪⎨⎪⎪⎩
− 1
g̃j(x)

g̃j(x) ≤ ε3

−2ε3 − g̃j(x)
ε23

g̃j(x) > ε3 (j = 1, 2, . . . ,m)
(9)

where both ε2 and ε3 are very small positive numbers. The SUMT algorithm is
employed to reach the minimum unconstrained objective function F (j) at design
iteration j; that is,

x(j) → x̃(j) as F (j) → F̃ (j) (10)

where x̃(j) is the design variable vector corresponding to F̃ (j).
The final step performed each iteration is the determination of the design

variable vector to be used in the next iteration j + 1. Vector x(j+1) is determined
according to the following equation.

x(j+1) = x(b) + C
(
x̃(j) − x(b)

)
(11)

where x(b) is the best design set constants, C is internally chosen between 0.0
and 1.0, based on the number of infeasible solutions.

3.3. Convergence
Subproblem approximation iterations continue until either convergence is

achieved or termination occurs. These two cases are checked only when the current
number of design sets equals or exceeds the number required for the approxima-
tions. Convergence is assumed when either the present design set x(j), or the
previous design set x(j−1), or the best design set x(b) is feasible; and one of the
following conditions is satisfied.∣∣∣f̂ (j) − f̂ (j−1)

∣∣∣ ≤ τ,
∣∣∣f̂ (j) − f (b)

∣∣∣ ≤ τ (12)∣∣∣x(j)
i − x

(j−1)
i

∣∣∣ ≤ ρi,
∣∣∣x(j)
i − x

(b)
i

∣∣∣ ≤ ρi (i = 1, 2, . . . , n) (13)
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where τ and ρi are objective function and design variable tolerances. Equation (12)
correspond to differences in objective function values; Equation (13) to design vari-
able differences.

If satisfaction of equations (12) and (13) is not realized, then termination can
occur if either of the below two condition is reached.

ns = Ns, nsi = Nsi (14)

where ns is the number of subproblem, nsi is the number of sequential infeasible
design sets, Ns is the maximum number of iteration andNsi is the maximum number
of sequential infeasible design sets.

4. Calculation

For magnetic field calculation, the following Maxwell equations and relational
expression on material property are necessary:⎧⎨⎩rotH = J +

∂D

∂t
, rotE = −∂B

∂t
divB = 0, divD = ρ.

(15)

Where E is intensity of electric field; H is strength of magnetic field; D is electric
flux density and ρ is charge density. However, based on equation (15) only, it is very
difficult even impossible to obtain a precise solution of magnetic field generated by
cylindrical superconducting coil especially, when the magnetic field is accompanied
by nonlinearity (magnetic yoke or shield) and eddy current, etc. In a steady current
field, which is the sources of magnetic field, vector potential A shown in Fig. 3 can
be calculated so long as current i or current density j is given:

Fig. 3. A vector potential A.

where μ0 is permeability in vacuum. There is a relationship between A and B:

rotA = B. (16)
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When a cylindrical coil is expressed by r-θ-z in the cylindrical coordinates system,
B has the following equations:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Br =
1
r

∂Az
∂θ

− ∂Aθ
∂z

,

Bθ =
∂Ar
∂z

− ∂Az
∂r

,

Bz =
1
r

[
∂(rAθ)
∂r

− ∂Ar
∂θ

]
.

(17)

Therefore, once we calculate A in a numerical method, then approximate distribu-
tions of B, thereby those of gradB and grad(B2/2), can be obtained. We carried
out our numerical optimization method on single and double cylindrical coils. Be-
cause all of coils are rotationally symmetric, a 2D model can be substituted for
its 3D model. Therefore, it is enough to calculate a half of a 2D model shown in
Fig. 4. However, in general, a 2D magnetic model includes not only a coil but also
a vacuum region, which is larger about 3 times than the coil size to keep higher
accuracy. And the boundary region of the model is full with infinite elements. Ma-
terial property of the coil is defined as a superconductor, that is, its resistivity is
less than 10−8 Ω · m.

Fig. 4. A 2 D model of single coil.

4.1. Single coil
To confirm the accuracy of the numerical optimization method, we used a

formula [8] to calculate theoretical values in the z-axis. Since the formula can be
only used for single coil, we took coil 3 in Table 1 as shown in Fig. 4 as a sample to
calculate. We assumed its internal radius R as a constant, thickness T and current
density J as design variables.
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4.1.1. Theoretical formula
The theoretical formula (18) and its own derivatives of the equation were used

to calculate accurately the maximum B, gradB and grad(B2/2) in the z-axis. The
formula is given by

B(z) =
2πJR
107

{
(γ + β) ln

(
α+

√
α2 + (γ + β)2

1 +
√

1 + (γ + β)2

)

− (γ − β) ln

(
α+

√
α2 + (γ − β)2

1 +
√

1 + (γ − β)2

)} (18)

where α = 1+T/R, β = B/R, γ = z/R and each parameter expressed as in Fig. 4.

4.1.2. Comparison
Figs. 4, 5 and 6 show the two kinds of results, in which one was obtained by

the theoretical method and another by numerical method for several volumes V
about the maximum B, gradB and grad(B2/2) in the z-axis. From Fig. 5, we can
see that, the numerical results were in very good agreement with the theoretical
ones for each volume. However, there were errors in Figs. 6 and 7, Fig. 6 specially.
The reason is that, gradB varied very roughly in area near the coil. That is why
the numerical calculation on magnetic force field is more difficult than that on
magnetic field.

Fig. 5. Relationship between

V and max B.

Fig. 6. Relationship between

V and max grad B.

Fig. 7. Relationship between V

and max grad(B2/2).
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4.2. Double coils
In order to prove its validity on more than one coil, we also carried out the

numerical optimization method on double coils. In this case, coil 1 and coil 2 in
Table 1 were used as samples. Their total volumes were assumed as V = 1.3 ×
10−2 m3. The model is shown in Fig. 8 and its specifications in Table 2. In order to
consider B-J characteristic, the constraint was applied to different point on each
coil. A is a constraint point for the inner coil, P which is selected between P1 and
P2 for the outer one.

Table 2. Specifications of the double coils.

coils
volume
(m3)

interval
(mm)

inside radius
(mm)

constraint
at A & P
points
(A/mm2)

design/state variable

coil 1 V1 No R = 50 JA ≤ g21(x)
coil 2 V2 D = 1 R+D + t1 JP ≤ g22(x)

b1, b2, t1, J1, J2/t2

Fig. 8. A 2 D model for double coils.

4.2.1. Random tests
In Figs. 9, 10 and 11, we tested 20 random models to calculate maxB,

max gradB and max grad(B2/2), respectively, and compared their results (rhombic
points) with that (square point) obtained by the numerical optimization method.
From the figures we can see that the optimal results are better.

4.2.2. Optimal models
For three optimal models above, Figs. 12, 13 and 14 show their optimal con-

figurations, which are only a half of whole model in 2D about the symmetric axis,
respectively. Because the maximal B was generated at the center of the symmetric
axis, Nb3Sn material in coil 1 can produce high magnetic flux density, and both
coils were constrained by critical current density, so the volume of inner coil became
as larger as possible and the volume of outer coil had to become smaller. Therefore,
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Fig. 9. The results about the

maximum B.

Fig. 10. The results about the

maximum grad B.

Fig. 11. The results about the

maximum grad(B2/2).

Fig. 12. The optimal model

for max B.

Fig. 13. The optimal model

for max grad B.

Fig. 14. The optimal for

max grad(B2/2).
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as shown in Fig. 12, the outer coil is longer more than the inner one. But, in the
case of Fig. 13, the outer coil is not so long that the configuration can generate the
maximal gradB since the maximal gradB existed near the top of both coils. As for
the configuration of the max grad(B2/2) shown in Fig. 14, which is a result about
the product of magnetic field and magnetic field gradient. Also, the distributions
of B, gradB and grad(B2/2) along the z-axis are displayed in Figs. 15, 16 and 17,
respectively. The maximal magnetic flux density B is 14.428T, magnetic field
gradient gradB 107.352T/m and magnetic force field grad(B2/2) 1085.414T2/m.

Fig. 15. The B distribution

along the z-axis.

Fig. 16. The grad B distribution

along the z-axis.

Fig. 17. The grad(B2/2) dis-

tribution along the

z-axis.

4.2.3. Comparison
Figs. 18 and 19 show other two optimal coils A and B [7], which had been

designed and set up by Tsukuba Magnet Laboratory, NIMS. Fig. 20 shows a real
one of coil B called Prototype 1, which has been used for the study of protein
crystallization at the National Institute of Bioscience and Human-Technology in
Japan. Unfortunately, they generated the maximal magnetic force field only to
281.5T2/m and 240T2/m by coil A and B, respectively, which were as about one
fourth as that generated by our optimal coil. On the other hand, their volumes
were 10.2 × 10−2 m3 and 13.6 × 10−2 m3, respectively, but our volume was only a
tenth of them. This means that, if our optimal design is adopted, then an amount
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of expensive superconducting material and electric power can be saved.

Fig. 18. Cross-section of the

optimal coil A.

Fig. 19. Cross-section of

the optimal coil B.

Fig. 20. Photograph of

coil B (Proto-

type 1).

5. Conclusions

In this paper, a numerical optimization method, which used only the total
volumes of superconducting coils, was developed to enhance not only a magnetic
field, magnetic field gradient but also a magnetic force field. By comparing the
numerical optimization results with theoretical values for single coil, we observed
they were in good agreement. Also, we carried out the method for more than
one coil to confirm its validity. Although there are some errors in the numerical
optimization method, specially, in case of calculating the maximum gradB (relative
error about 2%), it can be revised in magnet design. Therefore, when planning to
design superconducting coils, as a tool, using the numerical optimization method,
we could make a device at less costs and shorter time to obtain higher magnetic
field, magnetic field gradient and higher magnetic force field.
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