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In this paper, we study the stabilization problem of a flexible cable with two rigid loads
which is described by two kinds of hyperbolic equations. From the engineering point of
view, the model can be regarded as a distributed parameter overhead crane which conveys
two loads simultaneously. After deriving a control law which does not increase an energy
defined for the model, we prove the asymptotic stability of the closed-loop system, using
the LaSalle’s invariance principle. Finally, we show that the control law works effectively
through a numerical simulation.
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1. Introduction

The stabilization and optimal control of strings without natural damping are
challenging topics in the field of distributed parameter systems. Since old times,
several types of problems in this direction have been investigated by many re-
searchers (see, for example, [1], [2], [3], [5, Chapter 6], [8, Chapter 6], [10], and the
references therein). Especially, from the practical point of view, Rao has treated
the stabilization problem of suppressing the vibration of a distributed parameter
overhead crane model with one rigid load [10]. In that paper, after deriving a con-
trol law, the energy multiplier method is applied to the closed-loop system and the
exponential stability of the energy is proved. Also, d’Andréa-Novel and Coron have
proposed a back-stepping approach for the similar problem [2].

On the other hand, in the field of lumped parameter systems, the problem
of stabilizing the double-pendulum system has been widely investigated from both
theoretical and experimental aspects. However, as far as the authors know, a
distributed parameter model for it, which may be regarded as a system subjected
to distributed perturbation such as wind, has not been treated. Therefore, we study,
in this paper, the stabilization problem of a flexible cable with two rigid loads which
is described by two kinds of hyperbolic equations. From the engineering point of
view, the model can be regarded as a distributed parameter overhead crane which
conveys two loads simultaneously. Our aim is to suppress the vibration of the two
loads as well as the cable, using a control law.
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In this paper, we first define an energy for the flexible cable with two rigid
loads and derive a control law by using the similar way as in [10]. However, it seems
difficult to use the energy multiplier method to show the exponential stability of the
energy for the closed-loop system consisting of the cable with two rigid loads and
the control law, because the model is complicated compared with Rao’s one. So,
we concentrate on the proof of the asymptotic stability of the closed-loop system
which is based on the LaSalle’s invariance principle. Moreover, we show that the
control law works effectively through a numerical simulation. In this paper, two
Hilbert spaces X and W will be introduced, where X is a Hilbert space on which
the closed-loop operator generates a C0-semigroup and W is another Hilbert space
such that the embedding of W in X is compact. The introduction of the Hilbert
space W will play an important role in the proof of Lemma 1.

2. System Description

Let b be a constant such that 0 < b < 1. We shall consider the following
flexible cable with two rigid loads:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2y

∂t2
(t, x) =

∂

∂x

(
a(x)

∂y

∂x
(t, x)

)
, t > 0, x ∈ (0, b),

∂2y

∂t2
(t, x) =

∂

∂x

(
ã(x)

∂y

∂x
(t, x)

)
, t > 0, x ∈ (b, 1),

a(0)
∂y

∂x
(t, 0) = u(t), t > 0,

y(t, b−) = y(t, b+), t ≥ 0,

M1
∂2y

∂t2
(t, b) = ã(b+)

∂y

∂x
(t, b+) − a(b−)

∂y

∂x
(t, b−), t > 0,

M2
∂2y

∂t2
(t, 1) = −ã(1)

∂y

∂x
(t, 1), t > 0,

y(0, x) = p(x),
∂y

∂t
(0, x) = q(x), x ∈ (0, 1).

(2.1)

In the above, u(t) denotes the control force, and a(x) := g(M1 +M2 + 1 − x) (0 ≤
x < b) and ã(x) := g(M2 + 1 − x) (b < x ≤ 1) the tension force of the cable at
the point x, where g is the gravitational acceleration, and M1 and M2 the masses
of rigid loads. As shown in Fig. 1, system (2.1) expresses a distributed parameter
overhead crane model with two rigid loads. Here, it is assumed that each load is a
mass point and that the mass of the cart, which is sufficiently small compared with
the one of each load, is neglected. Moreover, it is supposed that the displacement
y(t, x) and its derivative yx(t, x) are small through the cable and that the total
mass of the cable is 1, i.e., the line density is equal to 1.

Remark 1. See [10] for a distributed parameter overhead crane model with
one rigid load.
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Fig. 1. Distributed parameter overhead crane model with two rigid loads.

3. Derivation of Control Law

Let us define the following energy E(t) for system (2.1):

E(t) :=
1
2

[∫ b

0

{
a(x)y2

x(t, x) + y2
t (t, x)

}
dx+

∫ 1

b

{
ã(x)y2

x(t, x) + y2
t (t, x)

}
dx

+ αy2(t, 0) +M1y
2
t (t, b) +M2y

2
t (t, 1)

]
, α > 0.

(3.1)

Differentiating (3.1) with respect to t, and using (2.1) and integration by parts
yields

d

dt
E(t) =

∫ b

0

{a(x)yx(t, x)yxt(t, x) + yt(t, x)ytt(t, x)} dx

+
∫ 1

b

{ã(x)yx(t, x)yxt(t, x) + yt(t, x)ytt(t, x)} dx+ αy(t, 0)yt(t, 0)

+M1yt(t, b)ytt(t, b) +M2yt(t, 1)ytt(t, 1)

= −yt(t, 0)(u(t) − αy(t, 0)).
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Here, choosing the control input u(t) as

u(t) = αy(t, 0) + γyt(t, 0), γ > 0, (3.2)

we have

d

dt
E(t) = −γy2

t (t, 0) ≤ 0.

Consequently, the energy E(t) for system (2.1) becomes nonincreasing under the
control law (3.2).

4. Closed-Loop System

The closed-loop system consisting of (2.1) and (3.2) is described by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ytt(t, x) = (a(x)yx(t, x))x, t > 0, x ∈ (0, b),

ytt(t, x) = (ã(x)yx(t, x))x, t > 0, x ∈ (b, 1),

a(0)yx(t, 0) = αy(t, 0) + γyt(t, 0), t > 0,

y(t, b−) = y(t, b+), t ≥ 0,

M1ytt(t, b) = ã(b+)yx(t, b+) − a(b−)yx(t, b−), t > 0,

M2ytt(t, 1) = −ã(1)yx(t, 1), t > 0,

y(0, x) = p(x), yt(0, x) = q(x), x ∈ (0, 1).

(4.1)

In order to formulate this closed-loop system in an abstract space, let us introduce
the Hilbert space

X =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

y( · )
z( · )
ỹ( · )
z̃( · )
ξ

η

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ H1(0, b) × L2(0, b) ×H1(b, 1) × L2(b, 1) × R × R ; y(b) = ỹ(b)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
with the inner product

〈f1, f2〉X =
∫ b

0

{a(x)y1x(x)y2x(x) + z1(x)z2(x)} dx

+
∫ 1

b

{ã(x)ỹ1x(x)ỹ2x(x) + z̃1(x)z̃2(x)} dx

+ αy1(0)y2(0) +M1ξ1ξ2 +M2η1η2,

for f1 = [y1, z1, ỹ1, z̃1, ξ1, η1]T ∈ X, f2 = [y2, z2, ỹ2, z̃2, ξ2, η2]T ∈ X.
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In the above, H1(0, b) and H1(b, 1) are the usual Sobolev spaces. Here, we define
the operator A : D(A) ⊂ X → X as follows:

A

⎡⎢⎢⎢⎢⎢⎢⎢⎣

y( · )
z( · )
ỹ( · )
z̃( · )
ξ

η

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−z( · )
−(a( · )yx( · ))x

−z̃( · )
−(ã( · )ỹx( · ))x

− ã(b
+)ỹx(b+) − a(b−)yx(b−)

M1

ã(1)ỹx(1)
M2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

y( · )
z( · )
ỹ( · )
z̃( · )
ξ

η

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ D(A),

D(A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

y( · )
z( · )
ỹ( · )
z̃( · )
ξ

η

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ H2(0, b) ×H1(0, b) ×H2(b, 1) ×H1(b, 1) × R × R ;

ξ = z(b) = z̃(b), η = z̃(1), a(0)yx(0) = αy(0) + γz(0), y(b) = ỹ(b)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
.

Denoting y(t, x) restricted to 0 ≤ x ≤ b by y(t, x), and y(t, x) restricted to b <

x ≤ 1 by ỹ(t, x), and moreover introducing the new variables z(t, · ) = yt(t, · ),
z̃(t, · ) = ỹt(t, · ), ξ(t) = yt(t, b) (= yt(t, b−) = ỹt(t, b+)), and η(t) = ỹt(t, 1), the
closed-loop system (4.1) can be written as

d

dt
f(t) = −Af(t), (4.2)

where f(t) := [y(t, · ), z(t, · ), ỹ(t, · ), z̃(t, · ), ξ(t), η(t)]T . If the operator −A gener-
ates a C0-semigroup e−tA on X, then the solution of (4.2) is expressed as

f(t) = e−tAf(0).

5. Closed-Loop Stability

In this section, we prove that the closed-loop system (4.2) is asymptotically
stable by using the LaSalle’s invariance principle. As the first step, we show that
the operator −A generates a C0-semigroup of contractions e−tA on X. Then, we
show that the operator (I + λA)−1 is compact for every λ > 0.

Theorem 1. The operator −A generates a C0-semigroup of contractions
e−tA on X.
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Proof. By the definitions of the inner product of X and the operator A, we
can calculate 〈−Af, f〉X as follows:

〈−Af, f〉X = −γz2(0) ≤ 0, ∀f = [y, z, ỹ, z̃, ξ, η]T ∈ D(A),

which implies that −A is dissipative. Next, we shall discuss whether, for each
f0 = [y0, z0, ỹ0, z̃0, ξ0, η0]T ∈ X, there exists a unique f = [y, z, ỹ, z̃, ξ, η]T ∈ D(A)
such that

(I +A)f = f0. (5.1)

Eliminating z in equation (5.1), we have

y( · ) − (a( · )yx( · ))x = y0( · ) + z0( · ), (5.2)

ỹ( · ) − (ã( · )ỹx( · ))x = ỹ0( · ) + z̃0( · ), (5.3)

y(b) − y0(b) − ã(b+)ỹx(b+) − a(b−)yx(b−)
M1

= ξ0, (5.4)

ỹ(b) − ỹ0(b) − ã(b+)ỹx(b+) − a(b−)yx(b−)
M1

= ξ0, (5.5)

ã(1)ỹx(1) +M2ỹ(1) = M2(ỹ0(1) + η0), (5.6)

a(0)yx(0) − (α+ γ)y(0) = −γy0(0). (5.7)

For equation (5.2), there exists a unique solution y( · ) ∈ H2(0, b), since y0( · ) +
z0( · ) ∈ L2(0, b). Similarly, for equation (5.3), there exists a unique solution ỹ( · ) ∈
H2(b, 1), since ỹ0( · ) + z̃0( · ) ∈ L2(b, 1). Here, defining z( · ) := y( · ) − y0( · ) and
z̃( · ) := ỹ( · )− ỹ0( · ), it follows that z( · ) ∈ H1(0, b) and z̃( · ) ∈ H1(b, 1), and that

z( · ) − (a( · )yx( · ))x = z0( · ), z̃( · ) − (ã( · )ỹx( · ))x = z̃0( · ).

Further, from (5.4)–(5.7), we get

z(b) − ã(b+)ỹx(b+) − a(b−)yx(b−)
M1

= ξ0,

z̃(b) − ã(b+)ỹx(b+) − a(b−)yx(b−)
M1

= ξ0,

z̃(1) +
ã(1)ỹx(1)

M2
= η0, a(0)yx(0) = αy(0) + γz(0),

respectively. From this, we have y(b) = ỹ(b) since y0(b) = ỹ0(b). Hence, [y( · ),
z( · ), ỹ( · ), z̃( · ), z(b), z̃(1)]T = [y( · ), z( · ), ỹ( · ), z̃( · ), z̃(b), z̃(1)]T ∈ D(A) solves
equation (5.1). In this way, we see that, for each f0 ∈ X, there exists a unique
f ∈ D(A) that satisfies (5.1). Also, it is not difficult to show that the domain D(A)
is dense in X. Consequently, by the Lumer–Phillips’ theorem [9, Theorem 1.4.3],
the operator −A generates a C0-semigroup of contractions e−tA on X. �
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Now, let us introduce another Hilbert space

W =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

y( · )
z( · )
ỹ( · )
z̃( · )
ξ

η

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ H2(0, b) ×H1(0, b) ×H2(b, 1) ×H1(b, 1) × R × R ;

ξ = z(b) = z̃(b), y(b) = ỹ(b)

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
with the inner product

〈f1, f2〉W = 〈y1, y2〉H2(0,b) + 〈z1x, z2x〉L2(0,b) + 〈ỹ1, ỹ2〉H2(b,1) + 〈z̃1x, z̃2x〉L2(b,1)

+ ξ1ξ2 + η1η2 + z1(0)z2(0),

for f1 = [y1, z1, ỹ1, z̃1, ξ1, η1]T ∈W, f2 = [y2, z2, ỹ2, z̃2, ξ2, η2]T ∈W.

Then, the inclusion relation D(A) ⊂W ⊂ X clearly holds, and it is not difficult to
show that the injection from W into X is continuous, i.e., there exists a positive
constant C such that ‖f‖X ≤ C‖f‖W , ∀f ∈ W . The Hilbert space W will be
used to prove the following Lemma 1. Hereafter, the notation Ci denotes a positive
constant.

Lemma 1. For every λ > 0, the operator (I + λA)−1 : X → X is compact.

Proof. First, for given f0 = [y0, z0, ỹ0, z̃0, ξ0, η0]T ∈ X, we solve f = [y, z, ỹ, z̃,
ξ, η]T ∈ D(A) such that

Af = f0. (5.8)

From (5.8), f = [y, z, ỹ, z̃, ξ, η]T is concretely calculated as

z( · ) = −y0( · ), (5.9)

z̃( · ) = −ỹ0( · ), (5.10)

ξ = −y0(b) = −ỹ0(b), (5.11)

η = −ỹ0(1), (5.12)

y( · ) = y(0) +
∫ ·

0

1
a(r)

{
αy(0) − γy0(0) −

∫ r

0

z0(s) ds
}
dr, (5.13)

ỹ( · ) = ỹ(b) +
∫ ·
b

1
ã(r)

{
M2η0 +

∫ 1

b

z̃0(s) ds−
∫ r

b

z̃0(s) ds
}
dr, (5.14)
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where

y(0) =
1
α

{
γy0(0) +M1ξ0 +M2η0 +

∫ b

0

z0(s) ds+
∫ 1

b

z̃0(s) ds

}
, (5.15)

ỹ(b) = y(b) = y(0) +
∫ b

0

1
a(r)

{
αy(0) − γy0(0) −

∫ r

0

z0(s) ds
}
dr. (5.16)

Therefore, the inverse operator A−1 exists and f is expressed as f = A−1f0.
Next, we shall estimate the W -norm bound of f = A−1f0. From (5.15) and

(5.16), we have

|y(0)| ≤ C1

{|y0(0)| + |ξ0| + |η0| + ‖z0‖L2(0,b) + ‖z̃0‖L2(b,1)

}
, (5.17)

|ỹ(b)| = |y(b)| ≤ C2

{|y0(0)| + |ξ0| + |η0| + ‖z0‖L2(0,b) + ‖z̃0‖L2(b,1)

}
, (5.18)

by using Hölder’s inequality. Based on (5.17) and (5.18), we get the following
H2-norm estimates for (5.13) and (5.14):

‖y‖2
H2(0,b) = ‖y‖2

L2(0,b) + ‖yx‖2
L2(0,b) + ‖yxx‖2

L2(0,b)

≤ C3

{
y2
0(0) + ξ20 + η2

0 + ‖z0‖2
L2(0,b) + ‖z̃0‖2

L2(b,1)

}
,

(5.19)

‖ỹ‖2
H2(b,1) = ‖ỹ‖2

L2(b,1) + ‖ỹx‖2
L2(b,1) + ‖ỹxx‖2

L2(b,1)

≤ C4

{
y2
0(0) + ξ20 + η2

0 + ‖z0‖2
L2(0,b) + ‖z̃0‖2

L2(b,1)

}
.

(5.20)

Also, from (5.11) and (5.12), we have

|ξ| ≤ |y0(0)| + ‖y0x‖L2(0,b), (5.21)

|η| ≤ |y0(0)| + ‖y0x‖L2(0,b) + ‖ỹ0x‖L2(b,1), (5.22)

since y0 ∈ H1(0, b) and ỹ0 ∈ H1(b, 1). In the above, we also used Hölder’s inequality.
Here, using (5.9), (5.10), and (5.19)–(5.22), we get

‖A−1f0‖2
W = ‖f‖2

W

= ‖y‖2
H2(0,b) + ‖zx‖2

L2(0,b) + ‖ỹ‖2
H2(b,1) + ‖z̃x‖2

L2(b,1) + ξ2 + η2 + z2(0)

≤ C5

{
y2
0(0) + ξ20 + η2

0

+ ‖z0‖2
L2(0,b) + ‖z̃0‖2

L2(b,1) + ‖y0x‖2
L2(0,b) + ‖ỹ0x‖2

L2(b,1)

}
.

(5.23)
On the other hand, it follows from the definition of the inner product of X that

‖f0‖2
X = 〈f0, f0〉X

≥ C6

{
y2
0(0) + ξ20 + η2

0

+ ‖z0‖2
L2(0,b) + ‖z̃0‖2

L2(b,1) + ‖y0x‖2
L2(0,b) + ‖ỹ0x‖2

L2(b,1)

}
.

(5.24)
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Combining (5.23) and (5.24), we obatin

‖A−1f0‖W ≤ C7‖f0‖X , ∀f0 ∈ X. (5.25)

From the Sobolev’s embedding theorem, it follows that the embedding of H1(Ω) in
L2(Ω) and the one of H2(Ω) in H1(Ω) are compact, Ω being (0, b) or (b, 1), which
implies that the embedding of W in X is compact. From this fact and (5.25),
we see that A−1 is a compact operator from X into itself. Moreover, noting that
ρ(−A) ⊃ (0,∞) holds since −A generates a C0-semigroup of contractions e−tA on
X, ρ(−A) being the resolvent set of −A, we can conclude that (I+λA)−1 : X → X

is compact for every λ > 0. �

The following theorem is our main result in this paper.

Theorem 2. The closed-loop system (4.2) is asymptotically stable, that is,
for every f(0) ∈ X, ‖e−tAf(0)‖X → 0 as t→ ∞.

Proof. Let ω be the largest invariant subset of {f ∈ X ; dE(t)/dt = 0}. If
ω = {0}, then we can conclude that, for every f(0) ∈ X,∥∥e−tAf(0)

∥∥
X

→ 0 as t→ ∞, (5.26)

by the LaSalle’s invariance principle [8, Theorems 3.64 and 3.65], since we have
already shown that Theorem 1 and Lemma 1 hold. In Section 3, it was also shown
that dE(t)/dt = −γy2

t (t, 0). Hence, in order to show ω = {0}, we have only to
prove that system (4.1) with the condition yt(t, 0) = 0 implies y(t, x) = 0.

First, let us consider the subsystem⎧⎪⎪⎨⎪⎪⎩
ytt(t, x) = (a(x)yx(t, x))x, t > 0, x ∈ (0, b),

a(0)yx(t, 0) = αy(t, 0) + γyt(t, 0), t > 0,

yt(t, 0) = 0, t ≥ 0.

(5.27)

From the second and third equations of (5.27), we have

a(0)yx(t, 0) = αy(t, 0).

Here, differentiating this equation with respect to t yields

a(0)yxt(t, 0) = αyt(t, 0) = 0,

which implies that yxt(t, 0) = 0 since a(0) > 0. Now, let us set y(t, x) = T (t)Φ(x).
Then, it follows that Φ(0) = Φx(0) = 0, and from the first equation of (5.27) that

Ttt(t)
T (t)

=
a(x)Φxx(x) − gΦx(x)

Φ(x)
= k,
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k being a constant, which leads to{
Ttt(t) − kT (t) = 0,

a(x)Φxx(x) − gΦx(x) − kΦ(x) = 0, Φ(0) = Φx(0) = 0.
(5.28)

Solving the second equation of (5.28), we get Φ(x) = 0. Therefore, we see that
y(t, x) = T (t)Φ(x) = 0 for x ∈ (0, b).

Next, we consider the other subsystem⎧⎪⎪⎨⎪⎪⎩
ytt(t, x) = (ã(x)yx(t, x))x, t > 0, x ∈ (b, 1),

M1ytt(t, b) = ã(b+)yx(t, b+) − a(b−)yx(t, b−), t > 0,

y(t, b) = 0, t ≥ 0.

(5.29)

From the third equation of (5.29), we have yt(t, b) = ytt(t, b) = 0. Moreover, noting
that yx(t, b−) = 0 holds from the above discussion, it follows from the second
equation of (5.29) that ã(b+)yx(t, b+) = 0, which implies that yx(t, b+) = 0 since
ã(b+) > 0. Setting y(t, x) = T (t)Φ(x), we get Φ(b) = Φx(b) = 0, and it can be
similarly shown that y(t, x) = T (t)Φ(x) = 0 for x ∈ (b, 1).

In this way, we see that y(t, x) = 0 for x ∈ (0, 1), since y(t, b−) = y(t, b+).
Consequently, (5.26) holds for any f(0) ∈ X. �

Remark 2. The LaSalle’s invariance principle [8, Theorems 3.64 and 3.65]
has been often used to show the asymptotical stability in the field of distributed
parameter systems. For example, in [7] the invariance principle was used to prove
the closed-loop stability with direct strain feedback control law for a flexible robot
arm, and, in [4] it was used to prove that a rotating body beam can be stabilized by
the torque feedback control law. Recently, the invariance principle was also applied
to a force control problem for a constrained one-link flexible manipulator [6].

6. Numerical Simulation

Let us set g = 9.8, M1 = 0.7, M2 = 1.0, and b = 0.7 in system (2.1). We set the
initial conditions as p(x) = 0.001(e5x−1)+0.1 and q(x) = 0.0 for x ∈ (0, 1). Fig. 2
shows the evolution of y(t, 0.7) and y(t, 1) under zero control input, i.e., u(t) ≡ 0.
The vibration does not decay at all as shown in this figure, since no damping terms
are contained in system (2.1) with u(t) ≡ 0.

Next, we set the parameters of the control law (3.2) as α = 1.5, γ = 3.0, and
consider the closed-loop system (4.1). Fig. 3 and Fig. 4 show the evolution of u(t)
and the evolution of y(t, 0.7) and y(t, 1), respectively. Fig. 5 shows the evolution
of y(t, x) and yt(t, x).

Thus, we see that the control law works effectively for the flexible cable with
two rigid loads, although the exponential stability of the closed-loop system is not
assured theoretically at this stage. In this numerical simulation, we used MATLAB.
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Fig. 2. y(t, 0.7) and y(t, 1) under zero control input.

Fig. 3. Control input u(t).
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Fig. 4. y(t, 0.7) and y(t, 1) under the control law.

Fig. 5. Evolution of y(t, x) and yt(t, x) under the control law.
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