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A method for numerical solution of boundary value problems with ordinary differential
equation based on the method of Green’s function incorporated with the double exponen-
tial transformation is presented. The method proposed does not require solving a system
of linear equations and gives an approximate solution of very high accuracy with a small
number of function evaluations. The error of the method is O (exp (−C1N/ log(C2N)))
where N is a parameter representing the number of function evaluations and C1 and C2

are some positive constants. Numerical examples also prove the high efficiency of the
method. An alternative method via an integral equation is presented which can be used
when the Green’s function corresponding to the given equation is not available.
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1. Introduction

There have been several methods for numerical solution of boundary value
problems with ordinary differential equation. The shooting method is a traditional
one and the implicit finite difference method is also one of the useful tools. In 2002
Sugihara [8] and in 2005 Nurmuhammad et al. [5] proposed sinc collocation methods
based on the double exponential transformation. In the present paper, a method
for numerical solution of boundary value problems based on the classical method
of Green’s function incorporated with the double exponential transformation is
presented. Although the method of Green’s function is a classical one for analytical
manipulation of solution of boundary value problems with differential equation, the
method presented here gives an approximate solution of very high accuracy with a
small number of function evaluations.

The differential equation we consider here is

L[u] + f(x) = 0, a < x < b, (1.1)

where u(x) is the function to be determined and L[u] is a self-adjoint operator
associated with the Sturm-Liouville eigen-value problem defined as

L[u] ≡ d

dx

{
p(x)

du

dx

}
+ q(x)u. (1.2)

We assume here that p(x), q(x) and f(x) are known and analytic on (a, b), and f(x)
may be singular at x = a, b provided that the equation is defined properly. We also
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assume that p(x) > 0 on (a, b). For the moment we assume that the boundary
condition is homogeneous, i.e.

u(a) = 0, u(b) = 0. (1.3)

However, if p(x) vanishes at x = a or x = b we can impose there an inhomogeneous
boundary condition

u(a) = finite �= 0, or u(b) = finite �= 0 (1.4)

as will be shown later in Example 2.

2. The Method of Green’s Function

We start with a short revisit to the method of Green’s function [1]. We consider
here the following boundary value problem with homogeneous differential equation
with the same L[u] as given in (1.2):

{
L[y] = 0

y(a) = 0, y(b) = 0.
(2.1)

It is well known that the Green’s function K(x, ξ) corresponding to the operator
L[y] in (2.1) with the homogeneous boundary condition is defined as follows:

1. For fixed ξ, K(x, ξ) is a continuous function of x and satisfies the homogeneous
boundary condition (1.3).

2. The first and the second derivatives ofK(x, ξ) with respect to x are continuous
on (a, b) except x = ξ and dK/dx satisfies

(
dK

dx

)
x=ξ+0

−
(
dK

dx

)
x=ξ−0

= − 1
p(ξ)

. (2.2)

3. K(x, ξ) satisfies the differential equation (2.1) on (a, b) except x = ξ as a
function of x.

Let y1 and y2 be fundamental solutions of L(y) = 0 which satisfy y1(a) = 0 and
y2(b) = 0, respectively. Then the Green’s function can be written

K(x, ξ) =

{
y1(ξ)y2(x), ξ ≤ x

y1(x)y2(ξ), x ≤ ξ.
(2.3)

Under these preliminaries the solution of the boundary value problem of inho-
mogeneous equation (1.1) is expressed as follows [1]:

u(x) =
∫ b

a

K(x, ξ)f(ξ)dξ. (2.4)
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3. The DE Formula for Indefinite Integrals

The derivative of the integrand in (2.4) has a discontinuity at ξ = x and we
can not apply the double exponential formula for definite integrals over (a, b) to
(2.4) [10]. However, we can write (2.4) in terms of a sum of two indefinite integrals
with an analytic integrand over each interval of integration:

u(x) =
∫ x

a

K(x, ξ)f(ξ)dξ +
∫ b

x

K(x, ξ)f(ξ)dξ. (3.1)

And hence it is quite natural that we employ a numerical integrator that gives a
good result for each of the indefinite integral whose integrand is regular on each
interval.

In 2003 Muhammad and Mori [3] and in 2004 Tanaka, Sugihara and Murota
[11] proposed a double exponential formula for indefinite integral which works well
for such kind of integrals. We first consider here an indefinite integral of a function
g(ξ) over (a, x) corresponding to the first term in the right-hand side of (3.1):

I1(x) =
∫ x

a

g(ξ)dξ, a < x < b. (3.2)

Here we assume that g(ξ) is regular over (a, b) except ξ = a and b. If we apply the
variable transformation

ξ = ψ(t) =
b− a

2
tanh

(π
2

sinh t
)

+
b+ a

2
(3.3)

to (3.2) we have

I1(x) =
∫ τ

−∞
g(ψ(t))ψ′(t)dt, τ = ψ−1(x). (3.4)

We assume here that g(ψ(t))ψ′(t) satisfies

g(ψ(t))ψ′(t) is regular in the strip | Im t | < d for some d > 0 (3.5)

and

g(x) = O
((

(x− a)(b− x)
)−1+α)

as x→ a, b (3.6)

with some positive constant α. Transformation (3.3) is first proposed by Takahasi
and Mori in 1974 [10] for numerical definite integration and is called the double
exponential transformation, abbreviated as the DE transformation, because the
integrand g(ψ(t))ψ′(t) after the transformation decays double exponentially, i.e.,

g(ψ(t))ψ′(t) = O

(
exp

(
−π(α− ε)

2
exp |t|

))
, as t→ ±∞ (3.7)

for an arbitrarily small positive number ε.
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Under the assumptions given above with some additional mild ones g(ψ(t))ψ′(t)
can be expanded in terms of the sinc function [9, 6, 3] with mesh size h:

g(ψ(t))ψ′(t) =
∞∑

j=−∞
g(ψ(jh))ψ′(jh) sinc

(
t

h
− j

)
+ lim

n→∞ en, (3.8)

en =
sin(πt/h)

2πi

∫
Cn

g(ψ(τ))ψ′(τ)
(τ − t) sin(πτ/h)

dτ,

where the sinc function sinc(t) is defined

sinc(t) =
sinπt
πt

(3.9)

and limn→∞ en is the error term in which the path Cn surrounds all the simple
poles τ = jh, j = 0,±1, . . . ,±n and τ = t in the positive direction but not the
singularities of g(ψ(τ))ψ′(τ). We substitute (3.8) into (3.4) and truncate the infinite
summation at ±N in such a way that

N =
1
h

log
2d
α′h

, α′ = α− ε (3.10)

holds. Relation (3.10) comes from the requirement that the discretization error
limn→∞ en due to the sinc expansion and the error due to the truncation of the
infinite summation (3.8) be the same order of magnitude. Then we have the double
exponential formula, abbreviated as the DE formula, for indefinite integral [3]

I1(x) = h
N∑

j=−N

g(ψ(jh))ψ′(jh)
(

1
2

+
1
π

Si
(
π
ψ−1(x)
h

− πj

))
+ EN1, (3.11)

where Si(t) is the sine integral defined by

Si(t) =
∫ t

0

sin τ
τ

dτ (3.12)

and EN1 is the error term given by

EN1 = O

(
exp

(
− πdN

log(2dN/α′)

))
(3.13)

which shows a nearly exponential decay of the errror of the DE formula in terms
of N . Here we first gave h and then determined N by (3.10). However, if we want
to give first N then to determine h, it should be determined

h =
1
N

log
2dN
α′ , α′ = α− ε. (3.14)

Although in (3.10) and (3.14) ε need to be an arbitrarily small positive number
from the theoretical view point, in actual computation we can take ε = 0.
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Next we consider the indefinite integral of g(ξ) over (x, b) corresponding to the
second term of the right-hand side of (3.1):

I2(x) =
∫ b

x

g(ξ)dξ, a < x < b. (3.15)

Completely in the same way as in I1(x) we obtain the DE formula for indefinite
integral (3.15):

I2(x) = h
N∑

j=−N

g(ψ(jh))ψ′(jh)
(

1
2
− 1
π

Si
(
π
ψ−1(x)
h

− πj

))
+ EN2, (3.16)

where EN2 is the same as EN1 in (3.13). Note that the only difference between
(3.11) and (3.16) is the sign of the term Si /π.

4. The DE Formula for the Method of Green’s Function

Now we return to the method of Green’s function. The integral we want to
evaluate is (3.1), i.e.

u(x) =
∫ x

a

K(x, ξ)f(ξ)dξ +
∫ b

x

K(x, ξ)f(ξ)dξ

= J1(x) + J2(x) (4.1)

where

J1(x) = y2(x)
∫ x

a

y1(ξ)f(ξ)dξ, (4.2)

J2(x) = y1(x)
∫ b

x

y2(ξ)f(ξ)dξ (4.3)

from (2.3). If we approximate J1(x) and J2(x) by (3.11) and (3.16), respectively,
we immediately have

u(x) = y2(x) h
N∑

j=−N

y1(ψ(jh))f(ψ(jh))ψ′(jh)
(

1
2

+
1
π

Si
(
π
ψ−1(x)
h

− πj

))

+ y1(x) h
N∑

j=−N

y2(ψ(jh))f(ψ(jh))ψ′(jh)
(

1
2
− 1
π

Si
(
π
ψ−1(x)
h

− πj

))

+ EN , (4.4)

where EN is the same as EN1 in (3.13). This is the DE formula for numerical so-
lution of the boundary value problem (1.1) with homogeneous boundary condition
(1.3). Since we can compute y1(ψ(jh))f(ψ(jh))ψ′(jh) and y2(ψ(jh))f(ψ(jh))ψ′(jh)
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beforehand for each j, what we have only to compute for a given x is y1(x), y2(x)
and 1/2 ± Si

(
πψ−1(x)/h − πj

)
/π and their product sum. Thus, this formula for

x consists of evaluations of simple functions and their sum, so that the present
method is suitable for parallel computation. Also note that if x is equal to one of
the sinc points, i.e., x = ψ(kh) for some integer k,

Si
(
πψ−1(x)/h− πj

)
= Si

(
π(k − j)

)
(4.5)

holds and computation of Si becomes very simple.

5. Numerical Examples

In this section we give some numerical examples. The interval of definition
of the problems are (0, 1) in all the examples. For each example we first chose
N = 4, 8, 16, 32, . . . and computed h by (3.14). For each N we evaluated u(x) by
means of the formula (4.4) for

x = 0.01, 0.02, 0.03, . . . , 0.97, 0.98, 0.99 (5.1)

and picked up the maximum absolute value of the error. Since in the integrand of
(4.4) the singular points which lie nearest to the real axis are the poles of ψ′(t) =
π
4 cosh t/ cosh2(π/2 sinh t) with the distance π/2 [10], we set d = π/2 in all the
examples. In order to show the high efficiency of the present formula we carried
out numerical computation with quadruple precision arithmetic.

Example 1. ⎧⎪⎨
⎪⎩
d2u

dx2
− 3

4

(
x−

1
2 + (1 − x)−

1
2

)
= 0

u(0) = 0, u(1) = 0.
(5.2)

Here we take

L[u] =
d2u

dx2
, (5.3)

and the Green’s function corresponding to (5.3) is

y1(x) = x, y2(x) = 1 − x, (5.4)

i.e.,

K(x, ξ) =

{
ξ(1 − x), ξ ≤ x

x(1 − ξ), x ≤ ξ.
(5.5)

The exact solution of this problem is

u(x) = x
3
2 + (1 − x)

3
2 − 1. (5.6)
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In this example, as ξ tends to 0 f(ξ) = −3/4
(
ξ−1/2 + (1− ξ)−1/2

)
= O(ξ−1/2)

from (5.2) and y1(ξ) = O(ξ) from (5.4), so that g(ξ) = y2(x)f(ξ)y1(ξ) = O(ξ1/2) =
O(ξ−1+α), α = 3/2 holds. In a similar way we see that as ξ tends to 1 g(ξ) =
O((1 − ξ)1/2). In this way we chose α = 3/2 for (3.6) in this example. In other
examples we determined α in the same way.

We chose N = 4, 8, 16, 32, 64, 76, computed numerical solution for x’s given
in (5.1) and plotted the maximum absolute error of the numerical solution as a
function of N in Fig. 1. Although f(x) of this problem is singular at x = 0 and 1,
the result is very good. Actually, the error decays almost exponentially as given in
(3.13) and attains about 10−30 with N = 76.

Fig. 1. The maximum error of Example 1.

Example 2. ⎧⎪⎨
⎪⎩
x
d2u

dx2
+
du

dx
+ x = 0

u(0) = finite, u(1) = 0.
(5.7)

In this example we take

L[u] = x
d2u

dx2
+
du

dx
=

d

dx

(
x
du

dx

)
. (5.8)

The Green’s function corresponding to (5.8) is

y1(x) = 1, y2(x) = − log x, (5.9)

i.e.,

K(x, ξ) =

{
− log x, ξ ≤ x

− log ξ, x ≤ ξ.
(5.10)
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The exact solution of this problem is

u(x) =
1
4
(1 − x2). (5.11)

In this example p(x) = x in (1.2) and it vanishes at x = 0, so that we can impose a
boundary condition u(0) = finite �= 0. Actually we see from (5.11) that u(0) = 1/4.
We take α = 2 in this example. We chose N = 4, 8, 16, 32, 64, 76, computed
numerical solution for x’s given in (5.1) and plotted the maximum absolute error
as a function of N in Fig. 2. In this example also the error behavior given by (3.13)
is observed.

Fig. 2. The maximum error of Example 2.

Example 3. Next example is from [7, p. 550]:⎧⎪⎨
⎪⎩
d2u

dx2
− ν2u− ν2 cos2 πx− 2π2 cos 2πx = 0,

u(0) = 0, u(1) = 0.
(5.12)

Although the equation with ν = 20 is considered in [7] we compute here numerical
solutions with ν = 1, ν = 10 and ν = 20, and compare the accuracy. In this
example we take

L[u] =
d2u

dx2
− ν2u. (5.13)

The Green’s function corresponding to (5.13) is

y1(x) =
sinh νx
ν sinh ν

, y2(x) = sinh ν(1 − x), (5.14)
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i.e.,

K(x, ξ) =

⎧⎪⎪⎨
⎪⎪⎩

sinh νξ sinh ν(1 − x)
ν sinh ν

, ξ ≤ x

sinh ν(1 − ξ) sinh νx
ν sinh ν

, x ≤ ξ.

(5.15)

The exact solution of this problem is

u(x) =
exp(−ν)

1 + exp(−ν) exp(νx) +
1

1 + exp(−ν) exp(−νx) − cos2 πx. (5.16)

We take α = 2 in this example. We chose N = 4, 8, 16, 32, 64, 128, computed
numerical solution for x’s given in (5.1) and plotted the maximum absolute error
as a function of N in Fig. 3.

Fig. 3. The maximum error of Example 3.

If we try to solve this equation with ν = 20 by means of one of the conventional
difference methods we usually find it difficult to obtain a good solution because of
a sharp growth and a sharp decay of the solution due to the latent factors exp(νx)
and exp(−νx) in (5.16). In the present method, on the other hand, while with
small N we fail to obtain a good result, we observe in Fig. 3 an exponential rate of
convergence of the error expressed as (3.13) as N becomes large. For smaller ν the
situation is much better. See the error curves corresponding to ν = 10 and ν = 1
in Fig. 3.

The reason why the present method fails to obtain a good result when ν is
large and N is small can be explained as follows. First note that the support of the
function 1/2+Si(πψ−1(x)/h−πj)/π in (3.11) is the entire interval (a, b), although
the amplitude of 1/2 + Si(πψ−1(x)/h− πj)/π is small if x < ψ(jh) [3]. And hence
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the formula for indefinite integration (3.11) samples values not only from inside the
interval (a, x) but also from outside the interval (a, x). This is one of the significant
characteristics of the formula (3.11). As for (4.4), the first term in the right-hand
side samples the values of y1(ψ(jh)) even when ψ−1(x)/h < j. If ν is large, while
the shape of the Green’s function K(x, ξ) is very sharp, y1(ψ(jh)) becomes quite
large for large j, although ψ′(jh) and other factors lower the effect of y1(ψ(jh)) to
some extent. Thus, when ν is large and N is small, the major part of the sample
points are located outside the effective support of the Green’s function and the
distribution of the sample points does not follow properly the sharp peak of the
Green’s function, which deteriorates the accuracy of the formula. Situation is the
same for the second term in the right-hand side of (4.4). As N becomes large the
distribution of the sample points comes to follow properly the shape of the Green’s
function and the accuracy changes for the better quickly.

6. Integral Equation

It is not always possible to find a relevant Green’s function corresponding to
the given differential operator. In such a case we separate the given operator into a
sum of L[u] whose Green’s function is known and other terms including u. In this
section we consider a boundary value problem with a linear differential equation

{
L[u] + ρ(x)u+ f(x) = 0,

u(a) = 0, u(b) = 0
(6.1)

where the Green’s function corresponding to L[u] is known but not known corre-
sponding to L[u] + ρ(x)u. If we regard ρ(x)u + f(x) as an inhomogeneous term
we see from (2.4) that the equation (6.1) can be transformed into the following
equivalent integral equation:

u(x) =
∫ b

a

K(x, ξ)
(
ρ(ξ)u(ξ) + f(ξ)

)
dξ. (6.2)

This equation seems to be formally a Fredholm integral equation. However, as seen
from (3.1) we should regard (6.2) as a sum of two Volterra integral equations, i.e.
we should divide the integral over (a, b) into the integral over (a, x) and the other
one over (x, b):

u(x) =
∫ x

a

K(x, ξ)
(
ρ(ξ)u(ξ) + f(ξ)

)
dξ +

∫ b

x

K(x, ξ)
(
ρ(ξ)u(ξ) + f(ξ)

)
dξ. (6.3)

In order to solve this integral equation numerically we employ the method proposed
by Muhammad et al. [4]. Incidentally we should note here that a general theory
of the method of Green’s function based on quadrature is developed as integral
equations methods in the book by H. B. Keller [2] 1. Now, first we apply the DE

1The authors are indebted to the referee for bringing this book to their notice.
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formula (4.4) to the right-hand side and have

u(x) = y2(x) h
N∑

j=−N

y1(ψ(jh))
(
ρ(ψ(jh))u(ψ(jh)) + f(ψ(jh))

)

× ψ′(jh)
(

1
2

+
1
π

Si
(
π
ψ−1(x)
h

− πj

))

+ y1(x) h
N∑

j=−N

y2(ψ(jh))
(
ρ(ψ(jh))u(ψ(jh)) + f(ψ(jh))

)

× ψ′(jh)
(

1
2
− 1
π

Si
(
π
ψ−1(x)
h

− πj

))
+ EN . (6.4)

Then, in order to derive an equation whose solution gives an approximation to
u(xj), j = 0,±1, . . . ,±N we apply the collocation method based on the sinc points
x = ψ(kh), k = 0,±1,±2, . . . ,±N and obtain [4]

uk = y2(ψ(kh)) h
N∑

j=−N

y1(ψ(jh))
(
ρ(ψ(jh))uj + f(ψ(jh))

)

× ψ′(jh)
(

1
2

+
1
π

Si
(
π(k − j)

))

+ y1(ψ(kh)) h
N∑

j=−N

y2(ψ(jh))
(
ρ(ψ(jh))uj + f(ψ(jh))

)

× ψ′(jh)
(

1
2
− 1
π

Si
(
π(k − j)

))
,

k = 0,±1,±2, . . . ,±N (6.5)

where ui is an approximate value to the solution u(x) at the sinc point x = ψ(ih).
Here we used the relation (4.5). This equation can be written in a matrix form:

(I − hM)u = hb, (6.6)

where I is the identity matrix and

Mkj = y2(ψ(kh))y1(ψ(jh))ρ(ψ(jh))ψ′(jh)
(

1
2

+
1
π

Si
(
π(k − j)

))

+ y1(ψ(kh))y2(ψ(jh))ρ(ψ(jh))ψ′(jh)
(

1
2
− 1
π

Si
(
π(k − j)

))
, (6.7)

u = (u−N , u−N+1, . . . , uN−1, uN )T, (6.8)

b = (b−N , b−N+1, . . . , bN−1, bN )T, (6.9)
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bk = y2(ψ(kh))
N∑

j=−N

y1(ψ(jh))f(ψ(jh))ψ′(jh)
(

1
2

+
1
π

Si
(
π(k − j)

))

+ y1(ψ(kh))
N∑

j=−N

y2(ψ(jh))f(ψ(jh))ψ′(jh)
(

1
2
− 1
π

Si
(
π(k − j)

))
.

(6.10)

This is a linear system of algebraic equations with respect to uj ’s and we can usually
solve it.

If we want to get an approximate value of the solution at an arbitrary x we
can compute it by (6.4) without En in which u(ψ(jh)) is replaced by uj .

Example 4. We again consider the problem (5.12), i.e.,

⎧⎪⎨
⎪⎩
d2u

dx2
− ν2u− ν2 cos2 πx− 2π2 cos 2πx = 0,

u(0) = 0, u(1) = 0,
(6.11)

in which we take here

L[u] =
d2u

dx2
, (6.12)

and hence the Green’s function is given by (5.5). We choose ν = 1 and ν = 20
and assign the same values to α, N and h as those given in Example 3. We solved
algebraic equation (6.6) using the LU decomposition. We evaluated approximate
solution for the same x’s in (5.1) and plotted the maximum absolute error as a

Fig. 4. The maximum error of Example 4.
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function of N in Fig. 4 for ν = 1 and ν = 20. We again see high efficiency of this
method via the integral equation.

If we compare the error graph for ν = 20 in Fig. 4 with that in Fig. 3 we see that
the accuracy of the result presented in Fig. 4 is much better than that given in Fig. 3
with the method of Green’s function. On the other hand, for ν = 1 both graphs
almost overlap with each other. While the method of Green’s function presented in
Section 4 does not require solving a linear system of algebraic equations, the method
via the integral equation requires solving one. In this respect, if the Green’s function
corresponding to the entire operator L[u] of (1.1) is available the method of Green’s
function incorporated with the DE transformation is recommended, in particular
for mild problems.
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