
Japan J. Indust. Appl. Math., 23 (2006), 1–19 Area 〈1〉

On the Steadily Rotating Spirals

Jong-Shenq Guo†1, Ken-Ichi Nakamura†2,
Toshiko Ogiwara†3 and Je-Chiang Tsai†4∗

†1Department of Mathematics, National Taiwan Normal University,
88, S-4 Ting Chou Road, Taipei 116, Taiwan

E-mail: jsguo@math.ntnu.edu.tw
†2Department of Computer Science, University of Electro-Communications,

Tokyo 182-8585, Japan
E-mail: nakamura@im.uec.ac.jp

†3Department of Mathematics, Josai University,
Saitama 350-0295, Japan
E-mail: toshiko@math.josai.ac.jp

†4Department of Computer Science, National Taiwan Ocean University,
2, Pei-Ning Road, Keelung 202, Taiwan
E-mail: tsaijc@mail.ntou.edu.tw

Received February 25, 2005

Revised May 26, 2005

We study an autonomous system of two first order ordinary differential equations. This
system arises from a model for steadily rotating spiral waves in excitable media. The
sharply located spiral wave fronts are modeled as planar curves. Their normal velocity is
assumed to depend affine linearly on curvature. The spiral tip rotates along a circle with
a constant positive rotation frequency. The tip neither grows nor retracts tangentially to
the curve. With rotation frequency as a parameter, we obtain the complete classification
of solutions of this system. Besides providing another approach to derive the results
obtained by Fiedler-Guo-Tsai for spirals with positive curvature, we also obtain many
more different solutions. In particular, we obtain spiral wave solutions with sign-changing
curvature and with negative curvature.
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1. Introduction

Rotating spiral wave patterns are commonly observed in many spatio-temporal
evolution of excitable systems, such as Belousov-Zhabotinsky system, FitzHugh-
Nagumo system, etc. These patterns are usually modeled by a sharp transition
layer in the related reaction-diffusion systems. In order to simplify the analysis of
this pattern, instead of using the reaction-diffusion system, one usually uses the
so-called kinematic theory of spiral waves. That is the sharply located spiral wave
fronts are modeled as a family of planar curves. For more physical background and
mathematical theory on the spiral waves, we refer the reader to the survey papers
of Meron [8] and Tyson-Keener [11] and the references therein. See also recent
papers by Keener [7], Mikhailov-Davydov-Zykov [9], Brazhnik [1], Ikoda-Ishimura-
Yamaguchi [6], Ogiwara-Nakamura [10], Fiedler-Guo-Tsai [2, 3], Guo-Lo-Tsai [5],
and Guo-Ishimura-Wu [4].

∗To whom the correspondence should be addressed.
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In the kinematic theory of spiral waves, the sharply fronts are represented by a
family of curves in R2 parametrized by t ≥ 0 such that each curve has one free tip.
We shall always choose the normal vector to be the left-hand normal to the tangent
vector. Also, we choose the curvature to be positive when the curve is winding in
the clockwise direction.

Let s be the arc length measured from the tip (so that the tip is corresponding
to s = 0), κ := κ(s, t) be the curvature, u := u(s, t) be the normal velocity, and
G := G(t) be the tangential velocity at the tip. Then the following equation can
be derived from the definitions of the normal and tangent vectors, normal and
tangential velocities, and the Frenet-Serret Theorem in the plane (see, for example,
[4]):

κt + uss +
(

κ

∫ s

0

κu dξ

)
s

+ Gκs = 0, s ≥ 0, t ≥ 0. (1.1)

In the study of steadily rotating spiral wave in the kinematic theory of excitable
media (cf. [1, 7, 8, 9]), we assume that the family of curves keep the same shape
for all t and rotate along a core circle in the counterclockwise direction with a
constant positive speed such that the tip of the curve neither grows nor retracts in
the tangential direction (i.e., G ≡ 0). Then (1.1) is reduced to

u′′(s) +
(

κ(s)
∫ s

0

κ(ξ)u(ξ)dξ

)′
= 0, s ≥ 0. (1.2)

Note that by assumption the position vector is always perpendicular to the normal
vector at the tip.

By integrating (1.2) once, we obtain that u and κ satisfy the equation

u′(s) + κ(s)
∫ s

0

κ(ξ)u(ξ)dξ = ω, (1.3)

where ω is the positive constant angular frequency of the wave. It is also important
to note that the radius of the core circle is given by ρ = |u(0)|/ω with the tip
tangent pointing inward to the center of the core circle if u(0) < 0; outward to the
center if u(0) > 0 (cf. [3]).

Now set

v(s) :=
∫ s

0

κ(ξ)u(ξ)dξ, s > 0. (1.4)

Then (1.3) is reduced to the following system determining the desired relationship
between the function κ(s), u(s) and v(s):

dv

ds
= κu, (1.5)

du

ds
= ω − κv. (1.6)
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If we assume the normal velocity u of the curve depends on the local curvature κ

according to the following relation

u = c − Dκ, (1.7)

then (1.5)–(1.6) is reduced to the following system:

dv

ds
= κ(c − Dκ), (1.8)

dκ

ds
= (κv − ω)/D. (1.9)

The initial condition for (1.8)–(1.9) shall be given by

v(0) = 0, κ(0) = κ0, (1.10)

where κ0 is the curvature at the tip.
Following [12], to obtain the dimensionless form, we introduce the following

change of variables:

κ̃ = (D/c)κ, ṽ = v/c, s̃ = (c/D)s, ω̃ = (D/c2)ω.

In these variables the problem (1.8)–(1.10) can be reduced to the following problem
(Pω̃):

dṽ

ds̃
= κ̃(1 − κ̃), (1.11)

dκ̃

ds̃
= ṽκ̃ − ω̃, (1.12)

ṽ(0) = 0, κ̃(0) = b, (1.13)

where b = (D/c)κ0. The local existence and uniqueness of solutions of (Pω̃) are
trivial.

Hereafter for notational convenience we shall suppress the tilde by assuming
that c = D = 1. In the sequel, we denote (v(s;ω, b), κ(s;ω, b)) the solution of (Pω)
to specify the dependence of (v, κ) on the parameters ω and/or b.

In [6], they studied the equations (1.3) and (1.7) with the initial condition

κ(0) = κ0, κ′(0) = 0.

They obtained many interesting results for any ω ∈ (−∞,∞). In particular, for
ω = 0 the solution is periodic if κ0 ∈ (0, 2) \ {1}; a constant if κ0 = 1; and is
monotone decreasing with κ(s) → 0 as s → ∞ if κ0 ≥ 2. In [5], we studied a
simplified equation of (1.3), namely,

−κ′(y) + κ(y)
∫ y

0

κ(ξ)dξ = ω
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and obtained a family of steadily rotating spiral waves. In [2], we prove that there
is a critical value ω̄ > 0 such that a spiral wave solution (v, κ) of (1.8)–(1.10) with
κ > 0 on [0,+∞) exists if and only if ω ∈ (0, ω̄]. Moreover, we are able to count the
exact number of such spiral wave solutions for any given ω ∈ (0, ω̄]. In a companion
paper [3], we present an alternative approach via center manifolds and study the
Archimedean shape of the rotating spirals.

In this paper, we shall present some new results on the kinematic equation (1.3)
with normal-curvature relation (1.7) for steadily rotating spiral waves by studying
the associated problem (Pω) for ω > 0. We obtain the complete classification of
solutions of this system. Besides providing another approach to derive the results
obtained in [2, 3] for spirals with positive curvature, we also obtain many more
different solutions. In particular, we obtain spiral wave solutions with sign-changing
curvature and with negative curvature.

This paper is organized as follows. In §2, we first give some preliminary results.
In §3, we shall use another approach to reproduce the result in [2], i.e. we prove
that there exists ω̄ > 0 such that there is a global solution (v, κ) of (Pω) with κ > 0
on [0,+∞) if and only if ω ∈ (0, ω̄]. Moreover, we are able to count the exact
number of such spiral wave solutions for any given ω ∈ (0, ω̄]. In §4, we shall use
the tip curvature b as a parameter to classify the solution of (Pω). Some geometric
explanations shall be given in §5.

2. Preliminary

For ω > 0, we define

D1 = {(v, κ) | v > 0, 0 < κ < 1, vκ − ω > 0},
D2 = {(v, κ) | v > 0, κ > 1, vκ − ω > 0},
D3 = {(v, κ) | κ > 1, vκ − ω < 0},
D4 = {(v, κ) | 0 < κ < 1, vκ − ω < 0},
B1 = {(v, κ) | κ < 0, vκ − ω < 0},
B2 = {(v, κ) | v < 0, κ < 0, vκ − ω > 0}.

The next lemma follows easily from the phase plane analysis for the following
system:

dv

ds
= κ(1 − κ), (2.1)

dκ

ds
= vκ − ω. (2.2)

Lemma 2.1. Let ω > 0. The following statements hold.
(1) v′ > 0, κ′ > 0 for (v, κ) ∈ D1 and v′ < 0, κ′ > 0 for (v, κ) ∈ D2.
(2) v′ < 0, κ′ < 0 for (v, κ) ∈ D3 and v′ > 0, κ′ < 0 for (v, κ) ∈ D4.
(3) v′ < 0, κ′ < 0 for (v, κ) ∈ B1 and v′ < 0, κ′ > 0 for (v, κ) ∈ B2.
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(4) B2 and {(v, κ) | κ < 0} are positively invariant regions for the system (2.1)–
(2.2).

Fig. 1. The (normalized) vector field generated by (2.1)–(2.2) for

ω = 0.250. The solid lines denote the set {dv/ds = 0} and

the dashed curves denote the set {dκ/ds = 0}.

For any ω > 0, (ω, 1) is the only equilibrium point of (2.1)–(2.2). Since (ω, 1) is
a spiral source for ω ∈ (0, 2), it is convenient to use the new variables (r, θ) defined
by

v = ω + r cos θ, κ = 1 + r sin θ.

Then the system (2.1)–(2.2) becomes

dr

ds
= ωr sin2 θ, (2.3)

dθ

ds
= 1 + ω sin θ cos θ + r sin θ. (2.4)

Since r′(s) ≤ ωr(s), we see that r(s) is finite (hence both v(s) and κ(s) are finite) if
s is finite. This and the strict monotonicity of r(s) imply that all solutions of (2.1)–
(2.2) are defined for all s ∈ R and that lims→−∞ r(s) = 0, lims→+∞ r(s) = +∞.

Lemma 2.2. Let (v, κ) be the solution of (2.1)–(2.2) with the initial value
(d, 0) for d ∈ R. Then the semi-trajectory {(v, κ) | s ≥ 0} of (v, κ) intersects
{(v, κ) | v < 0, vκ − ω = 0} at (v(s1), κ(s1)) for some s1 > 0 such that it goes
into the region B2 after s1 and (v(s), κ(s)) → (−∞, 0) as s → +∞. More precisely,
v′ < 0 and κ′ < 0 on (0, s1), v′ < 0 and κ′ > 0 on (s1,+∞), and (v(s), κ(s)) →
(−∞, 0) as s → +∞.
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Proof. Note that v′(s) < 0 and κ′(s) < 0 for sufficiently small positive s.
Suppose that the semi-trajectory C+ := {(v, κ) | s ≥ 0} of (v, κ) does not enter B2.
Then C+ stays in B1 for all s ≥ 0. Therefore, by Lemma 2.1, we have

κ(s) ≤ κ(δ) < 0 and v′(s) ≤ κ(δ)(1 − κ(δ)) < 0

for all s ≥ δ for an arbitrarily fixed δ > 0. From this it follows that v(s) → −∞
as s → +∞. This contradicts v(s)κ(s) < ω for all s > 0. Thus C+ shall intersect
{(v, κ) | v < 0, vκ − ω = 0} at (v(s1), κ(s1)) for some s1 > 0 and then stay in B2

on (s1,+∞), by Lemma 2.1.
Therefore, by Lemma 2.1 again, v′(s) < 0 and κ′(s) > 0 for all s > s1. Thus

we have v(s) → −∞ and κ(s) → c as s → +∞ for some c ≤ 0. We claim that
c = 0. If c < 0, then κ′(s) → +∞ as s → +∞ and hence we reach a contradiction.
Thus c = 0 and the lemma is proved. �

In the sequel, except otherwise stated, the trajectory of (v, κ) is referred to the
semi-trajectory C+ of (v, κ) as above.

Lemma 2.3. Let (v, κ) be a solution of (2.1)–(2.2) with κ(0) > 0. Then the
following statements hold.
(1) If (v(s0), κ(s0)) ∈ D1 for some s0 ≥ 0, then there exists s1 > s0 such that the

trajectory of (v(s), κ(s)) intersects {v > ω, κ = 1} at (v(s1), κ(s1)).
(2) If (v(s0), κ(s0)) ∈ D2 for some s0 ≥ 0, then there exists s1 > s0 such that the

trajectory of (v(s), κ(s)) intersects {vκ − ω = 0, κ > 1} at (v(s1), κ(s1)).
(3) If (v(s0), κ(s0)) ∈ D3 for some s0 ≥ 0, then there exists s1 > s0 such that the

trajectory of (v(s), κ(s)) intersects {v < ω, κ = 1} at (v(s1), κ(s1)).
(4) If (v(s0), κ(s0)) ∈ D4 for some s0 ≥ 0, then either there exists s1 > s0 such

that the trajectory of (v(s), κ(s)) hits {κ = 0} at (v(s1), κ(s1)), or intersects
{vκ − ω = 0, 0 < κ < 1} at (v(s1), κ(s1)), or stays in the region D4 on
(s0,+∞).

Proof. The lemma can be proved in a similar way to that in the proof of
Lemma 2.2 by using the phase plane analysis. �

Lemma 2.4. Let (v, κ) be the solution of (2.1)–(2.2) with the initial value
(0, b) for b > 0. If (v(s), κ(s)) stays in the region {κ > 0} for all s ≥ 0, then the
trajectory of (v, κ) can go around (ω, 1) only finitely many times. Moreover, it stays
in D4 on (s0,+∞) for some s0 > 0 and lims→+∞(v(s), κ(s)) = (+∞, 0).

Proof. First, we claim that the trajectory of any solution (v(s), κ(s)) can go
around (ω, 1) only finitely many times. We fix s0 > 0 satisfying r(s0) > 1. Since
r(s) > r(s0) for s > s0 and the circle {(v, κ) | (v−ω)2+(κ−1)2 = r(s0)2} intersects
the line {κ = 0}, we have θ(s) ≤ θ(s0) + 2π for s > s0. On the other hand, from
(2.4) it follows that θ′(s) ≤ 1 + ω/2 + r(s0) on [0, s0], integrating the inequality
from 0 to s ≤ s0, we obtain θ(s) ≤ θ(0) + (1 + ω/2 + r(s0))s0 for 0 ≤ s ≤ s0. Thus
the trajectory of (v(s), κ(s)) goes around (ω, 1) only finitely many times.

Moreover, by Lemma 2.3, (v, κ) shall stay in the region D4 on (s0,+∞) for
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some s0 ≥ 0. Noting that v′ > 0 and κ′ < 0 in D4 and that there is no equilibrium
point of (2.1)–(2.2) in this region, we have v → ∞ and κ → c as s → ∞ for some
c ≥ 0. By a similar argument to that in the proof of Lemma 2.2, we have c = 0.
This completes the proof of this lemma. �

With these lemmas, we can classify the solutions of (Pω) into the following two
types (see Figures 2 and 3).

Fig. 2. The semi-trajectory of a type I solution (solid curve) and that

of a type II solution (dashed curve) for ω = 0.250.

Fig. 3. Spiral curves which correspond to the type I solution (left) and the type II

solution (right) in Figure 2. The center circles denote the core of the spirals.
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Definition 1.

(I) The solution (v(s), κ(s)) of (Pω) stays in the region {κ > 0} for all s ≥ 0,
and lims→+∞(v(s), κ(s)) = (+∞, 0).

(II) There exists s0 ≥ 0 such that the solution (v(s), κ(s)) of (Pω) stays in the re-
gion {κ < 0} for all s ∈ (s0,+∞). Moreover, we have lims→+∞(v(s), κ(s)) =
(−∞, 0).

Though trajectories of (Pω) for different ω may intersect, the next lemma shows
that they do not intersect for a while.

Lemma 2.5. Let 0 < ω1 < ω2 and let (vi(s), κi(s)) be the solution of (2.1)–
(2.2) for ω = ωi with the initial value (vi(0), κi(0)) = (pi, 1) and pi < ωi (i = 1, 2).
Define

σ−
i = inf{s < 0 | κi > 1 on (s, 0)},

σ+
i = sup{s > 0 | 0 < κi < 1 on (0, s)},

and

γ−
i = {(vi(s), κi(s)) | σ−

i < s < 0},
γ+

i = {(vi(s), κi(s)) | 0 < s < σ+
i },

for i = 1, 2. If p2 ≤ p1 < ω1, then the following statements hold :
(i) γ−

1 ∩ γ−
2 = ∅ and γ+

1 ∩ γ+
2 = ∅.

(ii) Both σ−
1 and σ−

2 are finite, and v1(σ−
1 ) < v2(σ−

2 ).
(iii) If both σ+

1 and σ+
2 are finite and if κ1(σ+

1 ) = κ2(σ+
2 ) := κ0 ∈ {0, 1}, then we

have v1(σ+
1 ) < v2(σ+

2 ) when κ0 = 1, v1(σ+
1 ) > v2(σ+

2 ) when κ0 = 0.

Proof. (i) We only prove γ−
1 ∩ γ−

2 = ∅, since the other statement can be
treated similarly. Since v′

i(s) < 0 on (σ−
i , 0) for i = 1, 2, we can view κ1 and κ2 as

functions of v. If p2 < p1, then κ1(v) < κ2(v) in a right neighborhood of p1. This
also holds for the case p2 = p1 := p, since

dv1

dκ1
= 0 =

dv2

dκ2
,

d2v1

dκ2
1

= − 1
p − ω1

> − 1
p − ω2

=
d2v2

dκ2
2

> 0 at (p, 1).

Suppose that γ−
1 ∩ γ−

2 
= ∅. Then there exists some q > p1 satisfying κ1 < κ2 on
(p1, q) and κ1(q) = κ2(q) := k > 1. This contradicts

dκ1

dv
(q) =

qk − ω1

k(1 − k)
<

qk − ω2

k(1 − k)
=

dκ2

dv
(q).

Therefore, γ−
1 ∩ γ−

2 = ∅.
(ii) By the phase plane analysis, it is clear that σ−

1 and σ−
2 are finite. More-

over, the statement (i) implies v1(σ−
1 ) ≤ v2(σ−

2 ). Suppose that v1(σ−
1 ) = v2(σ−

2 ) :=
q. Then we have q > ω2, κ1 < κ2 on (p1, q) and κ1(q−) = κ2(q−) = 1. These
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contradict

dv1

dκ1
= 0 =

dv2

dκ2
, 0 >

d2v1

dκ2
1

= − 1
q − ω1

> − 1
q − ω2

=
d2v2

dκ2
2

at (q, 1). (2.5)

Thus we have v1(σ−
1 ) < v2(σ−

2 ).
(iii) By (i), v1(σ+

1 ) ≤ v2(σ+
2 ), if κ0 = 1; and v1(σ+

1 ) ≥ v2(σ+
2 ), if κ0 = 0.

Suppose that v1(σ+
1 ) = v2(σ+

2 ) := q. Then we have q > ω2, if κ0 = 1, κ1 > κ2 on
(p1, q), and κ1(q−) = κ2(q−) = κ0. These also contradict (2.5) or

dv1

dκ1
= 0 =

dv2

dκ2
,

d2v1

dκ2
1

= − 1
ω1

< − 1
ω2

=
d2v2

dκ2
2

< 0 at (q, 0).

Thus the lemma is proved. �

3. Rotating Spirals with Positive Curvature

In this section, we shall study the behavior of the solution of (2.1)–(2.2) with
the initial value (0, 1) in order to show the existence of type I solutions for suf-
ficiently small ω. Let (vω(s), κω(s)) be the solution of (Pω) with b = 1 and let
(rω(s), θω(s)) be the corresponding solution of (2.3)–(2.4) with the initial value
(ω, π) throughout the remainder of this section. Set

A1 = {ω > 0 | κ′
ω(s) reaches zero before κω(s) does}, (3.1)

A2 = {ω > 0 | κω(s) reaches zero before κ′
ω(s) does}. (3.2)

Note that A1 and A2 are open sets with A1∩A2 = ∅. Moreover, Lemma 2.5 implies
that A1 and A2 are connected. Since the set {(v −ω)2 + (κ− 1)2 ≥ 1} is positively
invariant, it is easy to see that [1,+∞) ⊂ A2.

We shall claim that (0, ω0) ⊂ A1 for some positive constant ω0.

Lemma 3.1. The set A1 contains (0, ω0) for some small positive constant ω0.
Moreover, the trajectory of (2.1)–(2.2) with the initial value (0, 1) goes around (ω, 1)
as many times as we want, if ω is small enough.

Proof. Let ω ∈ (0, 1/2). Since r′ω(s) ≤ ωrω(s), we have rω(s) ≤ 1/2 for
s ∈ [0, s0], where s0 := − ln(2ω)/ω. This means that κω(s) > 0 for all s ∈ [0, s0].
From this and (2.4) it follows that

θ′ω(s) ≥ 1 − ω/2 − rω(s) ≥ (1 − ω)/2

on [0, s0]. Integrating this inequality from 0 to s0, we obtain

θω(s0) − θω(0) ≥ 1
2
(1 − ω)s0 =

1
2

(
1
ω
− 1

)
ln

1
2ω

. (3.3)

This implies that θω(s0) − θω(0) ≥ π for all ω ∈ (0, ω0), where ω0 is the unique
positive constant satisfying ω < 1/2 and(

1
ω
− 1

)
ln

1
2ω

= 2π.
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Hence the trajectory must intersect {vκ = ω, κ > 0}. Since the right-hand side
of (3.3) tends to +∞ as ω → 0, there exists a trajectory of (2.1)–(2.2) with the
initial value (0, 1) which goes around (ω, 1) as many times as we want, if ω is small
enough. The lemma is proved. �

Let ω∗ = sup A1 and ω∗ = inf A2. Then 0 < ω∗ ≤ ω∗ < 1 and ω∗, ω∗ 
∈ A1∪A2.
Moreover, for any ω ∈ [ω∗, ω∗], the solution (vω(s), κω(s)) satisfies that v′ > 0 and
κ′ < 0 for all s ≥ 0.

We shall claim that ω∗ = ω∗. Suppose ω∗ < ω∗. Set (v1(s), κ1(s)) =
(vω∗(s), κω∗(s)) and (v2(s), κ2(s)) = (vω∗(s), κω∗(s)). Since v′

i(s) > 0 for s > 0
for i = 1, 2, we can view κ1 and κ2 as functions of v. It follows from Lemma 2.5
that κ1 > κ2 on (0,+∞). Since κi → 0 as s → +∞ for i = 1, 2, we can choose
sufficiently large v0 such that 0 < κ2 < κ1 < 1/2 for all v ≥ v0. Then

d(κ1 − κ2)
dv

= v

(
1

1 − κ1
− 1

1 − κ2

)
+

(
ω∗

κ2(1 − κ2)
− ω∗

κ1(1 − κ1)

)
> 0, (3.4)

for v ≥ v0. Integrating this inequality from v0 to +∞, we obtain

(κ1 − κ2)(+∞) − (κ1 − κ2)(v0) > 0,

contradicting κ1(v0) > κ2(v0). Hence we conclude that ω∗ = ω∗. Hereafter we
write ω̄ = ω∗(= ω∗).

Lemma 3.2. For any fixed ω > 0, the problem (Pω) has at most one type I
solution up to translation.

Proof. We assume that (v1, κ1) and (v2, κ2) are type I solutions of (Pω) whose
trajectories do not coincide. Then we can view κ1 and κ2 as functions of v on
(0,+∞). Without loss of generality, we may assume 1/2 > κ1 > κ2 on (v0,+∞)
for some v0 > 0. Then, letting ω∗ = ω∗ = ω in (3.4), we obtain (κ1 − κ2)′(v) > 0
for sufficiently large v. This leads to a contradiction in the same way as above and
the proof is completed. �

Theorem 1. There is a type I solution of (Pω) if and only if ω ∈ (0, ω̄].

Proof. In the proof of this theorem, we let the solution (r(s;ω, b), θ(s;ω, b))
of (2.3)–(2.4) correspond to the solution (v(s;ω, b), κ(s;ω, b)) of (Pω).

First, we assume that ω > ω̄. Then we have v′ω(s) > 0, κ′
ω(s) < 0 for all

s ∈ (0, s1) and κω(s1) = 0 for some s1 > 0. From this and Lemma 2.3 it follows
that any trajectory starting from (0, b) with b > 0 must intersect the v-axis. Hence
(v(s;ω, b), κ(s;ω, b)) is of type II for b > 0. Since (v(s;ω, b), κ(s;ω, b)) is also of
type II for b ≤ 0, there is no type I solution for ω > ω̄.

Next, given a fixed ω < ω̄, we consider the set

A := {b ∈ (0, 1] | κb(s) reaches zero before κ′
b(s) does}.

By the definition of ω̄, 1 
∈ A. Note that ω̄ < 1. On the other hand, b ∈ A for
b ≤ 1 − √

1 − ω2, since r(0;ω, b)2 = (1 − b)2 + ω2 ≥ 1 and r(s;ω, b) is increasing.
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Therefore the supremum b0 of A exists. Moreover, it is easy to see that the solution
(v(s;ω, b0), κ(s;ω, b0)) starting from the point (0, b0) is of type I with v′(s;ω, b0) > 0
and κ′(s;ω, b0) < 0 for all s > 0. Hence we have at least one type I solution of (Pω)
for ω ∈ (0, ω̄). The theorem is proved. �

Next we want to count exactly the number of type I solutions of (Pω) for each
given rotation frequency ω. For any ω > 0, we set

Rω(t) =
1
ω

rω

(
t

ω

)
, ϑω(t) = θω

(
t

ω

)
.

Then (R(t), ϑ(t)) = (Rω(t), ϑω(t)) satisfies the system

dR

dt
= R sin2 ϑ, (3.5)

dϑ

dt
=

1
ω

+ sin ϑ cos ϑ + R sin ϑ, (3.6)

with the initial condition (R(0), ϑ(0)) = (1, π).
Note that if (v, κ) is of type I, then (R,ϑ) → (+∞, 2mπ) as t → +∞ for some

m ∈ N; and if (v, κ) is of type II, then (R,ϑ) → (+∞, (2m − 1)π) as t → +∞ for
some m ∈ N.

Also, note that if ϑ(t0) = mπ for some t0 ≥ 0 and m ∈ N, then we can view
R as a function of ϑ for sufficiently small |ϑ − mπ|. Moreover, we have

dR

dϑ

∣∣∣∣
ϑ=mπ

=
d2R

dϑ2

∣∣∣∣
ϑ=mπ

= 0 and
d3R

dϑ3

∣∣∣∣
ϑ=mπ

= 2ωR(t0) > 0. (3.7)

Hence we can also view ϑ as a function of R near R(t0). On the other hand, for
ϑ 
= mπ, from (3.5) it follows that we can view ϑ as a function of R and that ϑ(R)
satisfies the following equation

dϑ

dR
=

(1/ω) + sin ϑ cos ϑ + R sin ϑ

R sin2 ϑ
when ϑ 
= mπ for any m ∈ N. (3.8)

Therefore, we can view ϑ as a function of R for all R ∈ [1,∞).

Lemma 3.3. Let (Ri(t), ϑi(t)) = (Rωi(t), ϑωi(t)) for i = 1, 2.
(1) If ω1 < ω2, then ϑ1(R) > ϑ2(R) for all R > 1.
(2) If limt→+∞(R1(t), ϑ1(t)) = limt→∞(R2(t), ϑ2(t)) = (+∞, 2mπ) for some

m ∈ N, then ω1 = ω2.

Proof. (1) By (3.6) we have ϑ1(R) > ϑ2(R) for R > 1 with R− 1 sufficiently
small. Furthermore, from (3.8) it follows that ϑ1(R) > ϑ2(R) for all R with ϑi(R) ∈
(π, 2π), i = 1, 2. Using this argument, we can show that ϑ1(R) > ϑ2(R) for
all R ∈ (0, R0) where R0 satisfies ϑ1(R0) = ϑ2(∞). If R0 = ∞, we are done.
Otherwise, from (3.7) it follows that ϑ1(R) > ϑ2(∞) for all R > R0. Hence
ϑ1(R) > ϑ2(R) for all R > 1. This completes the proof.
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(2) For contradiction, we assume that ω1 < ω2. Note that ϑi(t) < 2mπ,
i = 1, 2, for all t ≥ 0 by Lemma 2.4. Since we can view ϑi as a function of R,
i = 1, 2, we have ϑ2(R) < ϑ1(R) < 2mπ for all R > 1 and limR→+∞ ϑ1(R) =
limR→+∞ ϑ2(R) = 2mπ. On the other hand, d2ϑi/dt2 = R sin3 ϑi < 0 whenever
dϑi/dt = 0 for i = 1, 2 and R is sufficiently large. Therefore, dϑi/dt > 0, i = 1, 2,
for all t > t0 for some t0 > 0. Thus we have

dϑ1

dR
=

(1/ω1) + sin ϑ1 cos ϑ1 + R sin ϑ1

R sin2 ϑ1

>
(1/ω2) + sin ϑ2 cos ϑ2 + R sin ϑ2

R sin2 ϑ2

=
dϑ2

dR

for all sufficiently large R. This contradicts the fact that limR→+∞(ϑ1(R) −
ϑ2(R)) = 0. The proof is completed. �

The next corollary follows from the above lemma.

Corollary 3.4. Suppose 0 < ω1 < ω2. Let (vi, κi) = (vωi , κωi) and (ri, θi) =
(rωi , θωi) for i = 1, 2. If there exist positive constants s1 and s2 satisfying θ1(s1) =
θ2(s2) = (2m + 1)π for some m ∈ N, then v2(s2) < v1(s1) < 0.

Proof. Let (Ri, ϑi) = (Rωi , ϑωi) and set ti = ωisi for i = 1, 2. From the fact
Ri(0) = 1 and (3.5), it follows that Ri(t) > 1 for all t > 0. By the assumption
ϑω1(t1) = ϑω2(t2) and the part (1) of Lemma 3.3, we can conclude that 1 < R1(t1) <

R2(t2). Recall that vi = ωi + ri cos θi, i = 1, 2. Hence we have

v2(s2) − v1(s1) = (ω2 + r2(s2) cos θ2(s2)) − (ω1 + r1(s1) cos θ1(s1))

= (ω2 − r2(s2)) − (ω1 − r1(s1))

= ω2(1 − R2(t2)) − ω1(1 − R1(t1))

< ω2(1 − R2(t2)) − ω2(1 − R1(t1))

= ω2(R1(t1) − R2(t2)) < 0.

Combining this with the fact that ri is increasing (i = 1, 2), we obtain v2(s2) <

v1(s1) < 0. The proof is completed. �

Theorem 2. There exists a sequence of positive numbers

ω̄ = ω0 > ω1 > ω2 > · · · > ωm > · · · > 0

with ωm → 0 as m → ∞ such that (Pω) has exactly 2m type I solutions, if ω ∈
(ωm, ωm−1); and (Pω) has exactly 2m + 1 type I solutions, if ω = ωm.

Proof. First, we note that (vω̄, κω̄) is the only type I solution of (Pω̄) by
Lemma 3.2.

By the definition of ω̄ and the continuous dependence of (Pω) in ω, for any
ω ∈ (0, ω̄) sufficiently close to ω̄, there exists s0 > 0 such that the trajectory of
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(vω(s), κω(s)) intersects {vκ − ω = 0, κ > 0} at s = s0 and that rω(s0) > 1,
θω(s0) ∈ (π, 2π). Hence, using Lemma 2.3 and noting that rω is increasing, we
have κω(s1) = 0, θω(s1) ∈ (3π, 4π) for some s1 > s0 and (vω(s), κω(s)) → (−∞, 0)
as s → +∞ (see Figure 4).

Fig. 4. The trajectory of (vω̄, κω̄) (solid curve) and the

semi-trajectory of (vω, κω) with ω ∈ (0, ω̄) sufficiently

close to ω̄ (dashed curve).

Define B1 to be the set of all positive numbers ω ∈ (0, ω̄) such that κω(s1) = 0
and θω(s1) ∈ (3π, 4π) for some s1 > 0. It follows from Lemma 2.5, Lemma 2.3
and Corollary 3.4 that if ω̂ ∈ B1, then ω ∈ B1 for all ω ∈ [ω̂, ω̄). Moreover, by
Lemma 3.1 and the above discussion, the set B1 is nonempty and bounded from
below. Therefore, ω1 := inf B1 exists. Furthermore, from part (2) of Lemma 3.3 it
follows that ω1 is the unique among all positive numbers ω such that θω(s) → 4π

as s → +∞.
By an inductive argument, we can find a sequence of positive numbers

ω̄ = ω0 > ω1 > ω2 > · · · > ωm > · · · > 0

such that

(1) If ω ∈ (ωm, ωm−1), then κω(s0) = 0 and θω(s0) ∈ ((2m + 1)π, 2(m + 1)π) for
some s0 > 0. Moreover, the trajectory of (vω, κω) hits the line {v = 0, κ > 0}
exactly 2m or 2m + 1 times and (vω(s), κω(s)) → (−∞, 0) as s → +∞.

(2) If ω = ωm, then θωm(s) → 2(m + 1)π as s → +∞. Moreover, the trajec-
tory of (vωm , κωm) hits the line {v = 0, κ > 0} exactly 2m + 1 times and
(vωm(s), κωm(s)) → (+∞, 0) as s → +∞.
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Now, we turn to the problem (Pω) for a fixed ω ∈ [ωm, ωm−1). Firstly, we
suppose that ω ∈ (ωm, ωm−1). Let (0, κi) (i = 1, . . . , 2m) be the ith intersection
point of the trajectory of (vω, κω) with the line {v = 0, κ > 0} such that

κ2m−1 > · · · > κ1 > 1 = κ0 > κ2 > · · · > κ2m−2 > κ2m.

Here we define κ2m = 0 in the case where the trajectory of (vω, κω) intersects
{v = 0, κ > 0} exactly 2m times. Consider the set

{α ∈ (κ2m, κ2m−2) | κ(s;ω, α) reaches zero before κ′(s;ω, α) does}.
Then by the same argument as in the proof of Theorem 1, we see that the supremum
α0 of this set has the property that (v(s;ω, α0), κ(s;ω, α0)) is of type I. Furthermore,
the trajectory {(v(s;ω, α0), κ(s;ω, α0)) | s ∈ R} intersects the line {v = 0, κ > 0}
at exactly 2m points. Therefore, from Lemma 3.2 it follows that we have exactly
2m distinct solutions of (Pω) such that they are all of type I and they share the
same trajectory {(v(s;ω, α0), κ(s;ω, α0)) | s ∈ R}.

For the case ω = ωm, it follows that the trajectory {(vωm(s), κωm(s)) | s ∈ R}
intersects the line {v = 0, κ > 0} at exactly 2m + 1 points. Therefore, from
Lemma 3.2 it follows that we have exactly 2m+1 distinct solutions of (Pω) such that
they are all of type I and they share the same trajectory {(vωm(s), κωm(s)) | s ∈ R}.

Finally, we remark that ωm → 0 as m → ∞ by Lemmas 2.4 and 3.1. �

4. Classification of Rotating Spirals

Recall the problem (Pω):

dv

ds
= κ(1 − κ),

dκ

ds
= vκ − ω,

v(0) = 0, κ(0) = b.

By Lemma 2.1, for each ω > 0, there exist κ∗ = κ∗(ω) > 1 and s∗ = s∗(ω) > 0
such that the solution (v, κ) of (Pω) with b = κ∗ satisfies (v, κ) ∈ {v < 0, κ > 0}
on (0, s∗) and (v(s∗), κ(s∗)) = (0, 0).

We introduce the following types of spiral solutions.

Definition 2.

(A) (v, κ) stays in the region {v < 0, κ < 0} on (0,∞) and (v(s), κ(s)) → (−∞, 0)
as s → +∞.

(B) There exist s1 > 0 and s2 > 0 such that (v, κ) stays in the region {v > 0, κ >

0} on (0, s1), {v > 0, κ < 0} on (s1, s2), {v < 0, κ < 0} on (s2,∞), and
(v(s), κ(s)) → (−∞, 0) as s → +∞.

(C) There exist s1 > 0, s2 > 0 and s3 > 0 such that (v, κ) stays in the region
{v < 0, κ > 0} on (0, s1), {v > 0, κ > 0} on (s1, s2), {v > 0, κ < 0} on
(s2, s3), {v < 0, κ < 0} on (s3,∞), and (v(s), κ(s)) → (−∞, 0) as s → +∞.
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(D) There exists s1 > 0 such that (v, κ) stays in the region {v < 0, κ > 0} on
(0, s1), {v < 0, κ < 0} on (s1,∞), and (v(s), κ(s)) → (−∞, 0) as s → +∞.

4.1. The case for ω > ω̄

Theorem 3. Given ω > ω̄. Let κ∗ = κ∗(ω) < 0 be such that the solution of
(Pω) with b = 1 intersects {v = 0, κ < 0} at (0, κ∗). Then the following statements
hold.
(1) If b ≤ 0, then (v, κ) is of type (A).
(2) If b ∈ (0, 1], then (v, κ) is of type (B).
(3) If b ∈ (1, κ∗), then (v, κ) is of type (C).
(4) If b ≥ κ∗, then (v, κ) is of type (D).
(5) For each b ∈ (1, κ∗), there exist unique b̃ ∈ (0, 1) and b̂ ∈ (κ∗, 0) such that the

solution (v, κ) of (Pω) passes through (0, b̃) and (0, b̂).

Proof. Using the argument of Theorem 1, for any b ∈ (0, 1] there exists s1 > 0
such that v′ > 0 and κ′ < 0 on [0, s1), and κ(s1) = 0. Moreover κ∗ is well-defined.
Thus (v, κ) is of type (B) for any b ∈ (0, 1]. The remaining statements immediately
follow from the phase plane analysis. �

4.2. The case for ω ∈ (0, ω̄]
4.2.1. The case for ω = ωm

Given ω = ωm. Then by Theorem 2 there exists a sequence of positive numbers

bm > · · · > b1 > 1 > a1 > · · · > am

such that (Pω) has exactly 2m + 1 type I solutions with the initial values (0, bi),
(0, ai), i = 1, . . . ,m, and (0, 1), respectively, if m ≥ 1. Hereafter we set a0 = b0 = 1.

Theorem 4. Given ω = ωm. Then the following statements hold.
(1) If b ≤ 0, then (v, κ) is of type (A).
(2) If b ∈ (0, am), then (v, κ) is of type (B).
(3) If b ∈ (bm, κ∗), then (v, κ) is of type (C).
(4) If b ≥ κ∗, then (v, κ) is of type (D).
(5) For each b ∈ (bm, κ∗), there exists a unique b̃ ∈ (0, am) and b̂ ∈ (−∞, 0) such

that the solution (v, κ) of (Pω) passes through (0, b̃) and (0, b̂).

Proof. The theorem follows from the definition of ωm and the phase plane
analysis. �

For m ≥ 1, if we continue backward the trajectory with initial value (0, b)
for any b > bm, then we can obtain the solution of (Pω) with b ∈ (am, bm) \
{am−1, . . . , 1, . . . , bm−1}. In other words, any solution of (Pω) with b ∈ (am, bm) \
{am−1, . . . , 1, . . . , bm−1} shall reach (0, b̂) at some s > 0 for some b̂ > bm.

More precisely, let γ be the (whole) trajectory of the solution of (Pω) which
passes through (0, κ∗). Then γ intersects {v = 0, am < κ < bm} at (0, ci), (0, c′i),
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i = 0, 1, . . . ,m − 1, with ci ∈ (ai+1, ai) and c′i ∈ (bi, bi+1). Hence we have

bm > c′m−1 > · · · > b1 > c′0 > b0 = 1 = a0 > c0 > a1 > · · · > cm−1 > am.

Moreover, for each i = 1, . . . ,m, if b ∈ (c′i−1, bi), then the trajectory of (v, κ) goes
around (ω, 1) counterclockwise exactly m− i + 1 times and hits the positive v-axis
firstly at (0, b̃) for some b̃ ∈ (ai, ci−1) and lastly at (0, b̂) for some b̂ ∈ (κ∗,∞); while
if b ∈ (bi−1, c

′
i−1), then the trajectory goes around (ω, 1) counterclockwise m− i+1

times and hits the positive v-axis first at (0, b̃) for some b̃ ∈ (ci−1, ai−1) and last at
(0, b̂) for some b̂ ∈ (0, am).

Indeed, for any b ∈ (c′0, b1) the trajectory of the solution of (Pω) passes through
a unique point (0, b̃i) with b̃i ∈ (ai, ci−1) and a unique point (0, b̂i) with b̂i ∈
(c′i, bi+1) for each i = 1, . . . ,m, where c′m := κ∗ and bm+1 := ∞. Similarly, for any
b ∈ (b0, c

′
0) the trajectory of the solution of (Pω) passes through a unique point

(0, b̃i) with b̃i ∈ (ci−1, ai−1) for each i = 1, . . . ,m + 1 and a unique point (0, b̂i)
with b̂i ∈ (bi, c

′
i) for each i = 1, . . . ,m, where cm := 0 and c′m := κ∗. Moreover, this

correspondence is one-to-one and onto.

4.2.2. The case for ω ∈ (ωm, ωm−1)
Given ω ∈ (ωm, ωm−1). Then by Theorem 2 there exists a sequence of positive

numbers

bm > · · · > b1 > 1 > a1 > · · · > am

such that (Pω) has exactly 2m type I solutions with initial values (0, bi) and (0, ai)
for i = 1, . . . ,m, respectively.

Theorem 5. Given ω ∈ (ωm, ωm−1). Then the following statements hold.
(1) If b ≤ 0, then (v, κ) is of type (A).
(2) If b ∈ (0, am), then (v, κ) is of type (B).
(3) If b ∈ (bm, κ∗), then (v, κ) is of type (C).
(4) If b ≥ κ∗, then (v, κ) is of type (D).
(5) For each b ∈ (bm, κ∗), there exists a unique b̃ ∈ (0, am) and b̂ ∈ (−∞, 0) such

that the solution (v, κ) of (Pω) passes through (0, b̃) and (0, b̂).

Proof. Again, the theorem follows from the definition of ωm and the phase
plane analysis. �

Similar to the case for ω = ωm, we can easily described the solutions of (Pω)
for b ∈ (am, bm). This can be done by dividing it into two cases depending on
whether (0, 1) lies on the (backward) trajectory γ for the solution of (Pω) with
initial value (0, κ∗). Since this can be easily seen by the phase plane analysis, we
omit the details.

5. Geometric Explanations

We study the existence of steadily rotating spiral waves from the kinematic
model equation. This is equivalent to find a planar curve such that its tip rotates
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along a circle with a constant angular frequency ω > 0. We restrict ourselves to
the case when the tip is rotating along a circle in the counterclockwise direction.
Without loss of generality we take the normal velocity u = 1 − κ. Since the
tangential velocity G(t) at the tip is identically equal to zero, the normal vector at
the tip is perpendicular to the position vector of the tip by taking the center of the
core circle to be the origin. But, the tangent vector is pointed inward to the center
if κ(0) > 1; and is pointed outward to the center if κ(0) < 1. Also, we recall that
the radius of core circle is given by ρ = |1 − κ(0)|/ω.

We consider both constant-sign and sign-changing solutions by studying a sys-
tem of two first order equations (Pω). We choose the sign of curvature to be positive
if the curve is right-winding or equivalently winding in the clockwise direction. It is
shown that the curvature function can change sign at most once. Moreover, spirals
with positive curvature can exist if and only if ω ∈ (0, ω̄] for some positive ω̄. This
fact was proved already in [2] and [3]. Here we provide an alternative proof.

In general, there is no restriction on ω, if we do not restrict ourselves to spirals
with positive curvature. In fact, there is a continuum of spirals for any given angular
frequency ω > 0 as shown in §4.

We give some geometrical explanations of some solutions which we obtained in
this paper as follows. Define κ∗ := −∞ for ω ∈ (0, ω̄] and am = bm = 1 for ω ≥ ω̄.

(i) There is a unique circle (core) such that the tip tangent is pointed inward and
the curve is first right-winding and then left-winding, if κ(0) > κ∗.

Fig. 5. (left) The semi-trajectory of the solution of (Pω) with κ(0) > κ∗ for ω = 0.250,

which corresponds to Case (i) in Section 5. (middle) The corresponding spiral

and the core. (right) The magnification of the near core region.

(ii) There are three circles (they may be coincide) with the center at the origin
such that the tip tangent is pointed inward, the curve is perpendicular to these
circles at the intersection points with the tangents at the second and the third
circle being pointed outward, and the curvature changes sign between the
second and the third circles, if κ(0) ∈ (bm, κ∗). In fact, let s1 > 0 and s2 > s1

be such that the curve intersects with the second circle and the third one at
s1 and s2, respectively. Then κ(s1) ∈ (0, am) and κ(s2) ∈ (κ∗, 0). This gives
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another two spirals with tip curvatures in (0, am) and (κ∗, 0), respectively,
since the system is autonomous.

(iii) There is a unique circle (core) such that the tip tangent is pointed outward
and the curve is left-winding (with negative curvature), if κ(0) < κ∗ (in the
case when ω > ω̄).

(iv) The spiral with κ(0) = 0 is a part of the one with κ(0) = κ∗; and the spiral
with κ(0) = κ∗ (in the case when ω > ω̄) is a part of the one with κ(0) = 1.

(v) There are two circles (may be coincide) such that the tip tangent is pointed in-
ward, the curve is perpendicular to these two circles at the intersection points
with the tangent at the intersection point of the curve and the second circle
being pointed outward, and the curvature of the curve is positive everywhere,
if κ(0) = bm (in the case when ω ∈ (0, ω̄]). In fact, the curvature at the
intersection point of the curve and the second circle is am. This also gives

Fig. 6. (left) The semi-trajectory of the solution of (Pω) with κ(0) ∈ (bm, κ∗) for

ω = 0.250, which corresponds to Case (ii) in Section 5. (middle) The

corresponding spiral and the cores. (right) The magnification of the near core

region.

Fig. 7. (left) The semi-trajectory of the solution of (Pω) with κ(0) = bm for ω = 0.250,

which corresponds to Case (v) in Section 5. (middle) The corresponding spiral

and the cores. (right) The magnification of the near core region.
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another spiral with tip curvature being equal to am such that the curvature
of the curve is positive everywhere.

All the curves described as above have no self-intersections (see Figures 5, 6
and 7). For ω ∈ (0, ω̄], we are not sure whether the corresponding curves to the
solutions of (Pω) with b ∈ (am, bm) have self-intersections. We suspect that the
curve has self-intersection(s) for any solution (v, κ) such that v has more than two
zeros with κ ≥ 0. But, this interesting question is still left for open.
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