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Abstract. We present a deterministic model for online social networks (OSNs) based on
transitivity and local knowledge in social interactions. In the iterated local transitivity
(ILT) model, at each time step and for every existing node x, a new node appears that
joins to the closed neighbor set of x. The ILT model provably satisfies a number of
both local and global properties that have been observed in OSNs and other real-world
complex networks, such as a densification power law, decreasing average distance, and
higher clustering than in random graphs with the same average degree. Experimental
studies of social networks demonstrate poor expansion properties as a consequence of
the existence of communities with low numbers of intercommunity edges. Bounds on
the spectral gap for both the adjacency and normalized Laplacian matrices are proved
for graphs arising from the ILT model indicating such bad expansion properties. The
cop and domination numbers are shown to remain the same as those of the graph
from the initial time step G0, and the automorphism group of G0 is a subgroup of the
automorphism group of graphs generated at all later time steps. A randomized version
of the ILT model is presented that exhibits a tunable densification power-law exponent
and maintains several properties of the deterministic model.

1. Introduction

Online social networks (OSNs) such as Facebook, MySpace, Twitter, and Flickr

have become increasingly popular in recent years. In OSNs, nodes represent peo-

ple online, and edges correspond to a friendship relation between them. In these

complex real-world networks with sometimes millions of nodes and edges, new
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nodes and edges dynamically appear over time. Parallel with their popularity

among the general public is an increasing interest among the mathematical and

general scientific community in the properties of online social networks, both in

gathering data and statistics about the networks and in finding models simulat-

ing their evolution. Data about social interactions in online networks are more

readily accessible and measurable than in offline social networks, which suggests

a need for rigorous models capturing their evolutionary properties.

The small-world property of social networks, introduced in [Watts and Stro-

gatz 76], is a central notion in the study of complex networks, with roots in

[Milgram 67] on short paths of friends connecting strangers. The small-world

property posits low average distance (or diameter) and high clustering, and has

been observed in a wide variety of complex networks.

An increasing number of studies have focused on the small-world and other

complex network properties in OSNs. An early study of an online social network

at Stanford University is provided in [Adamic et al. 03], and the authors found

that the network has the small-world property. Correlation between friendship

and geographic location was found in [Liben-Nowell et al. 05] using data from

LiveJournal. The evolution of the online networks Flickr and Yahoo!360 were

studied in [Kumar et al. 06]. The authors found (among other things) that

the average distance between users actually decreases over time, and that these

networks exhibit power-law degree distributions. In [Golder et al. 07], the Face-

book network was analyzed by studying the messaging patterns between friends

with a sample of 4.2 million users. The authors also found a power-law de-

gree distribution and the small-world property. Similar results were found in

[Ahn et al. 07], which studied Cyworld, MySpace, and Orkut, and in [Mislove et

al. 07], which examined data collected from four online social networks: Flickr,

YouTube, LiveJournal, and Orkut. Power laws for both the in- and out-degree

distributions, low diameter, and high clustering coefficient were reported in the

Twitter friendship graph in [Java et al. 07]. In [Krishnamurthy et al. 08], geo-

graphic growth patterns and distinct classes of users were investigated in Twitter.

For further background on complex networks and their models, see the books

[Bonato 08, Caldarelli 07, Chung and Lu 06, Durrett 06].

Recent work [Leskovec et al. 05a] underscores the importance of two additional

properties of complex networks above and beyond more traditionally studied

phenomena such as the small-world property. A graph G with et edges and

nt nodes satisfies a densification power law if there is a constant a ∈ (1, 2)

such that et is proportional to na
t . In particular, the average degree grows to

infinity with the order of the network (in contrast, for instance, to the preferential

attachment model, which generates graphs with constant average degree). In

[Leskovec et al. 05a], densification power laws were reported in several real-
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world networks such as a physics citation graph and the Internet graph at the

level of autonomous systems. Another striking property found in such networks

(and also in online social networks; see [Kumar et al. 06]) is that distances in

the networks (measured by either diameter or average distance) decrease with

time. The usual models such as preferential attachment and copying models have

logarithmically or sublogarithmically growing diameters and average distances

with time. Various models (such as the forest fire [Leskovec et al. 05a] and

Kronecker multiplication [Leskovec et al. 05b] models) have been proposed to

simulate power-law degree distribution, densification power laws, and decreasing

distances.

We present a new model, called iterated local transitivity (ILT), for OSNs and

other complex networks that dynamically simulates many of their properties.

The present article is the full version of the proceedings paper [Bonato et al. 09].

Although modeling has been done extensively for other complex networks such

as the Web graph (see [Bonato 08]), models of OSNs have only recently been

introduced (such as those in [Crandall et al. 08, Kumar et al. 06, Liben-Nowell

et al. 05]). The central idea behind the ILT model is what sociologists call

transitivity: if u is a friend of v, and v is a friend of w, then u is a friend of w

(see, for example, [Frank 80, Scott 00, White et al. 76]). In its simplest form,

transitivity gives rise to the notion of cloning, whereby u is joined to all of the

neighbors of v. In the ILT model, given some initial graph as a starting point,

nodes are repeatedly added over time that clone each node, so that the new nodes

form an independent set. The ILT model not only incorporates transitivity, but

uses only local knowledge in its evolution, in that a new node joins only to

neighbors of an existing node. Local knowledge is an important feature of social

and complex networks, in which nodes have only limited influence on the network

topology. We stress that our approach is mathematical rather than empirical;

indeed, the ILT model (apart from its potential use by computer and social

scientists as a simplified model for OSNs) should be of theoretical interest in its

own right.

Variants of cloning were considered earlier in duplication models for protein–

protein interactions [Bebek et al. 06, Bhan et al. 02, Chung et al. 03, Pastor-

Satorras et al. 03], and in copying models for the Web graph [Bonato and

Janssen 09, Kumar et al. 00]. There are several differences between the du-

plication and copying models and the ILT model. For one, duplication models

are difficult to analyze due to their rich dependence structure. While the ILT

model displays a dependency structure, determinism makes it more amenable

to analysis. The ILT model may be viewed as a simplified snapshot of the du-

plication model, whereby all nodes are cloned in a given time step, rather than

nodes being duplicated one by one over time. Cloning all nodes at each time
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step as in the ILT model leads to densification and high clustering, along with

bad expansion properties (as we describe in Section 1.2).

We finish the introduction with some asymptotic notation. Let f and g be

functions whose domain is some fixed subset of �. We write f ∈ O(g) if

lim sup
t→∞

f(t)

g(t)

exists and is finite. We will abuse notation and write f = O(g). We write f =

Ω(g) if g = O(f), and f = Θ(g) if f = O(g) and f = Ω(g). If limt→∞ | f(t)g(t) | = 0,

then f = o(g) (or g = ω(f)). So if f = o(1), then f tends to 0.

1.1. The ILT Model

We now give a precise formulation of the model. The ILT model generates finite,

simple, undirected graphs (Gt : t ≥ 0). Time step t, for t ≥ 1, is defined to be

the transition between Gt−1 and Gt. (Note that a directed graph model will be

considered in the sequel. See also Section 3.) The only parameter of the model is

the initial graph G0, which is any fixed finite connected graph. Assume that for

a fixed t ≥ 0, the graph Gt has been constructed. To form Gt+1, for each node

x ∈ V (Gt), add its clone x′, such that x′ is joined to x and all of its neighbors

at time t. Note that the set of new nodes at time t+1 forms an independent set

of cardinality |V (Gt)|. See Figure 1 for the graphs generated from the 4-cycle

over the time steps t = 1, 2, 3, and 4.

We write degt(x) for the degree of a node at time t, nt for the order of Gt,

and et for the number of its edges. It is straightforward to see that nt = 2tn0.

Given a node x at time t, let x′ be its clone. The elementary but important

recurrences governing the degrees of nodes are given as

degt+1(x) = 2 degt(x) + 1, (1.1)

degt+1(x
′) = degt(x) + 1. (1.2)

1.2. Main Results

We state our main results on the ILT model, with proofs deferred to the next

section. We give rigorous proofs that the ILT model generates graphs satis-

fying a densification power law and in many cases decreasing average distance

(properties shared by the forest fire [Leskovec et al. 05a] and Kronecker multi-

plication [Leskovec et al. 05b] models). A randomized version of the ILT model

is introduced with tunable densification power-law exponent. Properties of the

ILT model not shown in the models of [Leskovec et al. 05a, Leskovec et al. 05b]

exhibit higher clustering than in random graphs with the same average degree,
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Figure 1. The evolution of the ILT model with G0 = C4, for t = 1, 2, 3, 4 (left to
right, top to bottom).

and smaller spectral gaps for both their normalized Laplacian and adjacency

matrices than in random graphs. Further, the cop and domination numbers

are shown to remain the same as those of the initial graph G0, and the au-

tomorphism group of G0 is a subgroup of the automorphism group of graphs

generated at all later times. The ILT model (unlike the models of [Leskovec et

al. 05a, Leskovec et al. 05b]) does not, however, generate graphs with a power-law

degree distribution. The number of nodes in the ILT model grows exponentially

with time (as in the Kronecker multiplication model, but unlike the forest fire

model).

We first demonstrate that the model exhibits a densification power law. Define

the volume of Gt by

vol(Gt) =
∑

x∈V (Gt)

degt(x) = 2et.
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Theorem 1.1. For t > 0, the average degree of Gt equals(
3

2

)t(
vol(G0)

n0
+ 2

)
− 2.

Note that Theorem 1.1 supplies a densification power law with exponent a =
log 3
log 2 ≈ 1.58. We think that the densification power law makes the ILT model

realistic, especially in light of real-world data mined from complex networks (see

[Leskovec et al. 05a]).

We study the average distances and clustering coefficient of the model as time

tends to infinity. Define the Wiener index of Gt as

W (Gt) =
1

2

∑
x,y∈V (Gt)

d(x, y).

The Wiener index may be used to define the average distance of Gt as

L(Gt) =
W (Gt)(

nt

2

) .

We will compute the average distance by deriving first the Wiener index. Define

the ultimate average distance of G0 as

UL(G0) = lim
t→∞L(Gt),

assuming that the limit exists. Note that the ultimate average distance is a new

graph parameter. We provide an exact value for L(Gt) and compute the ultimate

average distance for any initial graph G0.

Theorem 1.2.

(1) For t > 0,

W (Gt) = 4t

(
W (G0) + (e0 + n0)

(
1−

(
3

4

)t
))

.

(2) For t > 0,

L(Gt) =
4t
(
W (G0) + (e0 + n0)

(
1− ( 34)t))

4tn2
0 − 2tn0

.

(3) For all graphs G0,

UL(G0) =
W (G0) + e0 + n0

n2
0

.

Further, UL(G0) ≤ L(G0) if and only if W (G0) ≥ (n0 − 1)(e0 + n0).
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Note that the average distance of Gt is bounded above by diam(G0) + 1 (in

fact, by diam(G0) in all cases except cliques). Further, the condition in (3)

for UL(G0) < L(G0) holds for large cycles and paths. Hence, for many initial

graphs G0, the average distance decreases, a property observed in OSNs and

other complex networks (see [Kumar et al. 06, Leskovec et al. 05a]).

Let Nt(x) be the neighbor set of x at time t, let Gt � Nt(x) be the subgraph

induced by Nt(x) in Gt, and let e(x, t) be the number of edges in Gt � Nt(x).

For a node x ∈ V (Gt) with degree at least 2 define

ct(x) =
e(x, t)(
degt(x)

2

) .
By convention, ct(x) = 0 if the degree of x is at most 1. The clustering coefficient

of Gt is

C(Gt) =

∑
x∈V (Gt)

ct(x)

nt
.

The clustering coefficient of the graph at time t generated by the ILT model is

estimated and shown to tend to 0 more slowly than a G(n, p) random graph with

the same average degree.

Theorem 1.3.

Ω

((
7

8

)t

t−2

)
= C(Gt) = O

((
7

8

)t

t2

)
.

Observe that C(Gt) tends to 0 as t → ∞. If we let nt = n (so t ∼ log2 n),

then this gives that

C(Gt) = nlog2(7/8)+o(1).

In contrast, for a random graph G(n, p) with comparable average degree

pn = Θ((3/2)log2 n) = Θ
(
nlog2(3/2)

)
as Gt, the clustering coefficient is p = Θ(nlog2(3/4)), which tends to zero much

faster than C(Gt). (For a discussion of the clustering coefficient of G(n, p), see

[Bonato 08, Chapter 2].)

Social networks often organize into separate clusters in which the number of

intracluster links is significantly greater than that of intercluster links. In partic-

ular, social networks contain communities (characteristic of social organization),

where tightly knit groups correspond to the clusters [Girvan and Newman 02].

As a result, social networks possess bad expansion properties realized by small

gaps between their first and second eigenvalues [Estrada 06]. We find that the
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ILT model has bad expansion properties as indicated by the spectral gap of both

its normalized Laplacian and adjacency matrices.

For regular graphs, the eigenvalues of the adjacency matrix are related to

several important graph properties, such as in the expander mixing lemma. The

normalized Laplacian of a graph, introduced in [Chung 97], relates to important

graph properties even in the case that the underlying graph is not regular (as

is the case in the ILT model). Let A denote the adjacency matrix and D the

diagonal adjacency matrix of a graph G. Then the normalized Laplacian of G is

L = I −D−1/2AD−1/2.

Let 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 ≤ 2 denote the eigenvalues of L. The spectral gap

of the normalized Laplacian is

λ = max{|λ1 − 1|, |λn−1 − 1|}.

It is observed in [Chung et al. 04] that for random power-law graphs with some

parameters (effectively in the case that dmin = c log2 n for some constant c > 0

and all integers n > 0), λ ≤ (1 + o(1)) 4√
d
, where d is the average degree.

For the graphs Gt generated by the ILT model, we observe that the spectra

behave quite differently, and in fact, the spectral gap has a constant order.

The following theorem suggests a significant spectral difference between graphs

generated by the ILT model and random graphs. Define λ(Gt) to be the spectral

gap of the normalized Laplacian of Gt.

Theorem 1.4. For t ≥ 1, λ(Gt) >
1
2 .

Theorem 1.4 represents a drastic departure from the good expansion found

in random graphs, where λ = o(1) [Chung 97, Chung et al. 04, Furedi and

Komlos 81], and from the preferential attachment model [Gkantsidis et al. 03].

If G0 has bad expansion properties, and has λ1 < 1/2 (and thus λ > 1/2),

then in fact, this trend of bad expansion continues, as shown by the following

theorem.

Theorem 1.5. Suppose G0 has at least two nodes, and for t > 0 let λ1(t) be the

second eigenvalue of Gt. Then we have that

λ1(t) < λ1(0).

Note that Theorem 1.5 implies that λ1(1) < λ1(0), and this implies that

the sequence {λ1(t) : t ≥ 0} is strictly decreasing. This follows because Gt is
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constructed from Gt−1 in the same manner as G1 is constructed from G0. If G0

is K1, then there is no second eigenvalue, but G1 is K2. Hence in this case, the

theorem implies that {λ1(t) : t ≥ 1} is strictly decreasing.

Let ρ0(t) ≥ |ρ1(t)| ≥ · · · denote the eigenvalues of the adjacency matrix Gt.

If A is the adjacency matrix of Gt, then the adjacency matrix of Gt+1 is

M =

(
A A+ I

A+ I 0

)
,

where I is the identity matrix of order nt. We note the following recurrence for

the eigenvalues of the adjacency matrix of Gt.

Theorem 1.6. If ρ is an eigenvalue of the adjacency matrix of Gt, then

ρ±√ρ2 + 4(ρ+ 1)2

2

are eigenvalues of the adjacency matrix of Gt+1.

We leave the reader to check that the eigenvectors of Gt can be written in

terms of the eigenvectors of Gt−1. As in the Laplacian case, we show that there

is a small spectral gap of the adjacency matrix.

Theorem 1.7. Let ρ0(t) ≥ |ρ1(t)| ≥ · · · ≥ |ρn(t)| denote the eigenvalues of the

adjacency matrix of Gt. Then

ρ0(t)

|ρ1(t)| = Θ(1).

That is, ρ1(t) ≥ c|ρ0(t)| for some constant c > 0. Theorem 1.7 is in contrast

to the fact that in G(n, p) random graphs, |ρ1| = o(ρ0) (see [Chung 97]).

In a graph G, a set S of nodes is a dominating set if every node not in S has

a neighbor in S. The domination number of G, written γ(G), is the minimum

cardinality of a dominating set in G. We use S to represent a dominating set

in G where each node not in S is joined to some node of S. A graph parameter

bounded below by the domination number is the so-called cop (or search) number

of a graph. In the game cops and robbers, there are two players, a set of s cops

(or searchers) C, where s > 0 is a fixed integer, and the robber R. The cops

begin the game by occupying a set of s nodes of a simple, undirected, and finite

graphG. While the game may be played on a disconnected graph, without loss of

generality, assume thatG is connected (since the game is played independently on

each component and the number of cops required is the sum over all components).
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The cops and robber move in rounds indexed by nonnegative integers. Each

round consists of a cop’s move followed by a robber’s move. More than one cop

is allowed to occupy a node, and the players may pass, that is, remain on their

current nodes. A move in a given round for a cop or the robber consists of a

pass or moving to an adjacent node; each cop may move or pass in a round.

The players know each other’s current locations; that is, the game is played with

perfect information. The cops win and the game ends if at least one of the cops

can eventually occupy the same node as the robber; otherwise, R wins. Since

placing a cop on each node guarantees that the cops win, we may define the cop

number, written c(G), as the minimum cardinality of the set of cops needed to

win on G. While this node pursuit game played with one cop was introduced in

[Nowakowski and Winkler 83, Quilliot 78], the cop number was first introduced

in [Aigner and Fromme 84]. For a survey of results on cops and robbers, see

[Hahn 07].

We prove that the domination and cop numbers of Gt depend only on the

initial graph G0. Theorem 1.8 shows that even as the graph becomes large as t

progresses, the same number of nodes as that needed at time 0 to dominate the

graph will be needed at time t.

Theorem 1.8. For all t ≥ 0, γ(Gt) = γ(G0) and c(Gt) = c(G0).

In Theorem 1.8, we prove that the cop number remains the same for Gt.

This implies that no matter how large the graph Gt becomes, the robber can

be captured by the same number of cops used at time 0. In terms of OSNs,

Theorem 1.8 suggests that users in the network can easily spread and track

information (such as gossip) no matter how large the graph becomes.

An automorphism of a graph G is an isomorphism from G to itself; the set

of all automorphisms forms a group under the operation of composition, writ-

ten Aut(G). We say that an automorphism ft ∈ Aut(Gt) extends to ft+1 ∈
Aut(Gt+1) if

ft+1 � V (Gt) = ft;

that is, the restriction of the map ft+1 to V (Gt) equals ft. We show that

symmetries from t = 0 are preserved at time t. This provides further evidence

that the ILT model retains a memory of the initial graph from time 0.

Theorem 1.9. For all t ≥ 0, Aut(G0) embeds in Aut(Gt).

As shown in Theorem 1.1, the ILT model has a fixed densification exponent

equal to log 3/ log 2. We consider a randomized version of the model that allows
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for this exponent to become tunable. To motivate the model, in OSNs some new

users are friends outside of the OSN. Such users immediately seek each other out

as they join the OSN and become friends there. The stochastic model ILT(p) is

defined as follows. Define H0 to be K1. A sequence (Ht : t ∈ �) of graphs is

generated such that for all t, Ht is an induced subgraph of Ht+1. At time t+ 1,

first clone all the nodes of Ht as in the deterministic ILT model. Let n be the

number of new nodes that are added at time t+1. (Note that n is a function of

t and is not a new parameter.) To form Ht+1, add edges independently between

the new nodes with probability p = p(n). Hence, the new nodes form a random

graph G(n, p).

Several properties of the ILT model are inherited by the ILT(p) model. For

example, as we are adding edges to the graphs generated by the ILT model,

the average distance may only decrease, and the clustering coefficient may only

increase. The following theorem proves that ILT(p) generates graphs following

a densification power law with exponent log(3 + δ)/ log 2, where 0 ≤ δ ≤ 1. For

T a positive integer representing time, we say that an event holds asymptotically

almost surely (a.a.s.) if the probability that it holds tends to 1 as T tends to

infinity.

Theorem 1.10. Let 0 ≤ δ ≤ 1, and define

p(n) =
δn

log(3+δ)
log 2

n2
. (1.3)

Then a.a.s.,

vol(HT ) = (1 + o(1))(3 + δ)T .

Hence, by choosing an appropriate p, the densification power-law exponent

in graphs generated by the ILT(p) model may achieve any value in the interval

[log 3/ log 2, 2]. We also prove that for the normalized Laplacian, the ILT(p)

model maintains a large spectral gap.

Theorem 1.11. Asymptotically almost surely,

λ(HT ) = Ω(1).

2. Proofs of Results

This section is devoted to the proofs of the theorems outlined in Section 1.
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2.1. Proof of Theorem 1.1

We now consider the number of edges and average degree of Gt, and prove the

following densification power law for the ILT model. Define the volume of Gt by

vol(Gt) =
∑

x∈V (Gt)

degt(x) = 2et.

The proof of Theorem 1.1 follows directly from the following lemma, since the

average degree of Gt is vol(Gt)/nt.

Lemma 2.1. For t > 0,

vol(Gt) = 3tvol(G0) + 2n0(3
t − 2t).

In particular,

et = 3t(e0 + n0)− nt.

Proof. By (1.1) and (1.2) we have that

vol(Gt+1) =
∑

x∈V (Gt)

degt+1(x) +
∑

x′∈V (Gt+1)\V (Gt)

degt+1(x
′)

=
∑

x∈V (Gt)

(2 degt(x) + 1) +
∑

x∈V (Gt)

(degt(x) + 1)

= 3vol(Gt) + nt+1. (2.1)

Hence by (2.1) for t > 0,

vol(Gt) = 3vol(Gt−1) + nt = 3tvol(G0) + n0

t−1∑
i=0

3i2t−i

= 3tvol(G0) + 2n0(3
t − 2t),

where the third equality follows by summing a geometric series.

2.2. Proof of Theorem 1.2

In computing distances in the ILT model, the following lemma is helpful.

Lemma 2.2. Let x and y be nodes in Gt with t > 0. Then

dt+1(x
′, y) = dt+1(x, y

′) = dt+1(x, y) = dt(x, y)



Bonato et al.: Models of Online Social Networks 297

and

dt+1(x
′, y′) =

{
dt(x, y) if xy /∈ E(Gt),

dt(x, y) + 1 = 2 if xy ∈ E(Gt).

Proof. We prove that dt+1(x, y) = dt(x, y). The proofs of the other equalities

are analogous and so are omitted. Since in the ILT model we do not delete

any edges, the distance cannot increase after a “cloning” step occurs. Hence,

dt+1(x, y) ≤ dt(x, y). Now suppose for a contradiction that there is a path P ′

connecting x and y in Gt+1 with length k < dt(x, y). Hence, P ′ contains nodes
not in Gt. Choose such a P ′ with the least number of nodes, say s > 0, not in

Gt. Let z
′ be a node of P ′ not in Gt, and let the neighbors of z′ in P ′ be u and

v. Then z ∈ V (Gt) is joined to u and v. Form the path Q′ by replacing z′ by
z. But then Q′ has length k and has s − 1 nodes not in Gt, which supplies a

contradiction.

We now turn to the proof of Theorem 1.2. We prove only item (1), noting that

items (2) and (3) follow from (1) by computation. We derive a recurrence for

W (Gt) as follows. To compute W (Gt+1), there are five cases to consider: dis-

tances within Gt, and distances of the forms dt+1(x, y
′), dt+1(x

′, y), dt+1(x, x
′),

and dt+1(x
′, y′). The first three cases contribute 3W (Gt) by Lemma 2.2. The

fourth case contributes nt. The final case contributes W (Gt) + et (the term et
comes from the fact that each edge xy contributes dt(x, y) + 1).

Thus

W (Gt+1) = 4W (Gt) + et + nt = 4W (Gt) + 3t(e0 + n0).

Hence

W (Gt) = 4tW (G0) +

t−1∑
i=0

4i
(
3t−1−i

)
(e0 + n0)

= 4tW (G0) + 4t(e0 + n0)

(
1−

(
3

4

)t
)
.

Diameters are constant in the ILT model. We record this as a strong indication

of the (ultra) small-world property in the model.

Lemma 2.3. For all graphs G0 different from a clique,

diam(Gt) = diam(G0),

and diam(Gt) = diam(G0) + 1 = 2 when G0 is a clique.

Proof. This follows directly from Lemma 2.2.
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2.3. Proof of Theorem 1.3

We introduce the following dependency structure that will help us classify the

degrees of nodes. Given a node x ∈ V (G0) we define its descendant tree at time

t, written T (x, t), to be a rooted binary tree with root x whose leaves are all of

the nodes at time t. To define the (k+1)th row of T (x, t), let y be a node in the

kth row (y corresponds to a node in Gk). Then y has exactly two descendants

on row k + 1: y itself and y′. In this way, we may identify the nodes of Gt

with a length-t binary sequence corresponding to the descendants of x, using the

convention that a clone is labeled 1. We refer to such a sequence as the binary

sequence for x at time t. We need the following technical lemma.

Lemma 2.4. Let S(x, k, t) be the nodes of T (x, t) with exactly k zeros in their binary

sequence at time t. Then for all y ∈ S(x, k, t),

2k(deg0(x) + 1) + t− k − 1 ≤ degt(y) ≤ 2k(deg0(x) + t− k + 1)− 1.

Proof. The degree degt(y) is minimized when y is identified with the binary

sequence beginning with k zeros: (0, . . . , 0, 1, 1, . . . , 1). In this case,

degt(y) = 2(2(· · · (2(2 deg0(x) + 1) + 1) · · · ) + 1) + 1 + (t− k)

= 2k(deg0(x) + 1) + t− k − 1.

The degree degt(y) is maximized by the binary sequence ending with k zeros:

(1, 1, . . . , 1, 0, . . . , 0). Then

degt(y) = 2(2(· · · (2(deg0(x) + t− k) + 1) · · · ) + 1) + 1

= 2k(deg0(x) + t− k + 1)− 1.

It can be shown (using Lemma 2.4) that the number of nodes of degree at

least j at time t, denoted by N(≥j), satisfies

t∑
i=log2 j

(
t

i

)
≤ N(≥j) ≤

t∑
i=max{log2 j−log2 t−O(1),0}

(
t

i

)
.

Indeed, when a vertex is identified with the binary sequence with i ≥ log2 k zeros,

then the degree is at least k. We have
(
t
i

)
such sequences. On the other hand, if

the binary sequence has i ≤ log2 k − log2 t−O(1) zeros, then the corresponding

vertex has degree smaller than k. In particular, N(≥j) = Θ(nt) for j ≤ √nt,

and therefore, the degree distribution of Gt does not follow a power law. Since(
t
j

)
nodes have degree around 2j, the degree distribution has “binomial-type”
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Figure 2. A log-log plot of the degree distribution for G25 with G0 = K1.

behavior. As an example of the degree distribution of a graph generated by the

ILT model, see Figure 2.

We now prove the following lemma. Recall that e(x, t) is the number of edges

in Gt � Nt(x).

Lemma 2.5. For all x ∈ V (Gt) with k zeros in their binary sequence, we have that

Ω(3k) = e(x, t) = O(3kt2).

We note that the constants hidden in the Ω(·) and O(·) notations (both in the

statement of the lemma and in the proof below) do not depend on k or on t.

Proof of Lemma 2.5. For x ∈ V (Gt) we have that

e(x, t+ 1) = e(x, t) + degt(x) +

degt(x)∑
i=1

(1 + degGt�Nt(x)(x))

= 3e(x, t) + 2 degt(x).

For x′, we have that

e(x′, t+ 1) = e(x, t) + degt(x).

Since there are k zeros and e(x, 2) is always positive for all initial graphs G0,

e(x, t) ≥ 3k−2e(x, 2) = Ω(3k), and the lower bound follows.

For the upper bound, a general binary sequence corresponding to x is of the

form

(1, . . . , 1, 0, 1, . . . , 1, 0, 1, . . . , 1, 0, 1, . . . , 1, 0, 1, . . . , 1)
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with the 0’s in positions ik (1 ≤ i ≤ k). Consider a path in the descendant tree

from the root of the tree to node x. By Lemma 2.4, the node on the path in the

ith row (i < ij) has (at time i) degree O(2j−1t).

Hence the number of edges we estimate is O(t2) until the (i1 − 1)th row,

increases to 3O(t2) +O(21t) in the next row, and increases to 3O(t2) +O(21t2)

in the (i2 − 1)th row. By induction, we have that

e(x, t) = 3(· · · (3(3O(t2) +O(21t2)) +O(22t2)) · · · ) +O(2kt2)

= O(t2)3k
k∑

i=0

(
2

3

)j

= O(3kt2).

We now prove our result on clustering coefficients.

Proof of Theorem 1.3.. For x ∈ V (Gt) with k zeros in its binary sequence, by Lem-

mas 2.4 and 2.5 we have that

ct(x) = Ω

(
3k

(2kt)
2

)
= Ω

((
3

4

)k

t−2

)

and

ct(x) = O

(
3kt2

(2k)
2

)
= O

((
3

4

)k

t2

)
.

Hence, since we have n0

(
t
k

)
nodes with k zeros in its binary sequence,

C(Gt) =

∑t
k=0 n0

(
t
k

)
Ω
((

3
4

)k
t−2
)

n02t
= Ω

(
t−2

(
1 + 3

4

)t
2t

)
= Ω

((
7

8

)t

t−2

)
.

In a similar fashion, it follows that

C(Gt) =

∑t
k=0 n0

(
t
k

)
O
((

3
4

)k
t2
)

n02t
= O

((
7

8

)t

t2

)
.

2.4. Proofs of Theorems 1.4, 1.5, 1.6, and 1.7

We present proofs of the spectral properties of the ILT model. For ease of

notation, let λ(t) = λ(Gt).

Proof of Theorem 1.4. We use the expander mixing lemma for the normalized Lapla-

cian (see [Chung 97]). For sets of nodes X and Y we use the notation vol(X) for

the volume of the subgraph induced by X , and e(X,Y ) for the number of edges

with one end in each of X and Y .
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Lemma 2.6. For all sets X ⊆ G,∣∣∣∣e(X,X)− (vol(X))2

vol(G)

∣∣∣∣ ≤ λ
vol(X)vol(X̄)

vol(G)
.

We observe that Gt contains an independent set (that is, a set of nodes with

no edges) with volume vol(Gt−1)+nt−1. Let X denote this set, that is, the new

nodes added at time t. Then by (2.1) it follows that

vol(X̄) = vol(Gt)− vol(X) = 2vol(Gt−1) + nt−1.

Since X is independent, Lemma 2.6 implies that

λ(t) ≥ vol(X)

vol(X̄)
=

vol(Gt−1) + nt−1

2vol(Gt−1) + nt−1
>

1

2
.

Proof of Theorem 1.5. Before we proceed with the proof of Theorem 1.5, we begin

by stating some notation and a lemma. For a given node u ∈ V (Gt), we let

ũ ∈ V (G0) denote the node in G0 of which u is a descendant. Given uv ∈ E(G0),

we define

Auv(t) = {xy ∈ E(Gt) : x̃ = u, ỹ = v},
and for v ∈ E(G0), we set

Av(t) = {xy ∈ E(Gt) : x̃ = ỹ = v}.
We use the following lemma, for which the proof of items (1) and (2) follow

from Lemma 2.1. The final item contains a standard form of the Raleigh quotient

characterization of the second eigenvalue; see [Chung 97].

Lemma 2.7. (1) For uv ∈ E(G0),

|Auv(t)| = 3t.

(2) For v ∈ V (G0),

|Av(t)| = 3t − 2t.

(3) Define

d̄ =

∑
v∈V (Gt)

f(v) degt(v)

vol(Gt)
.

Then

λ1(t) = inf
f :V (Gt)→�,

f �=0

∑
uv∈E(Gt)

(f(u)− f(v))2

∑
v
f2(v) degt(v) − d̄2vol(Gt)

. (2.2)
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Note that in item (3), d̄ is a function of f . Now let g : V (G0) → � be the

harmonic eigenvector for λ1(0), so that∑
v∈V (G0)

g(v) deg0(v) = 0

and

λ1(0) =

∑
uv∈E(G0)

(g(u)− g(v))2

∑
v∈V (G0)

g2(v) deg0(v)
.

Furthermore, we choose g scaled so that
∑

v∈V (G0)
g2(v) deg0(v) = 1. This is

the standard version of the Raleigh quotient for the normalized Laplacian from

[Chung 97], so such a g exists as long as G0 has at least two eigenvalues, which it

does by our assumption that G0 � K1. Our strategy in proving the theorem is

to show that lifting g to G1 provides an effective bound on the second eigenvalue

of G1 using the form of the Raleigh quotient given in (2.2).

Define f : Gt → � by f(x) = g(x̃). Then note that∑
xy∈E(Gt)

(f(x)− f(y))2 =
∑

xy∈E(Gt),
x̃=ỹ

(f(x)− f(y))2 +
∑

xy∈E(Gt)
x̃�=ỹ

(f(x)− f(y))2

=
∑

uv∈E(G0)

∑
xy∈Auv

(g(u)− g(v))2

= 3t
∑

uv∈E(G0)

(g(u)− g(v))2.

By Lemma 2.7(1) and (2) it follows that∑
x∈V (Gt)

f2(x) degt(x) =
∑

x∈V (Gt)

∑
xy∈E(Gt)

f2(x)

=
∑

u∈V (G0)

∑
xy∈E(Gt),

x̃=u

g2(u)

=
∑

u∈V (G0)

g2(u)

⎛
⎝ ∑

vu∈E(G0)

∑
xy∈Auv

1 + 2|Au|
⎞
⎠

= 3t
∑

u∈V (G0)

g2(u) deg0(u) + 2(3t − 2t)
∑

u∈V (G0)

g2(u)

= 3t + 2(3t − 2t)
∑
u∈G0

g2(u).



Bonato et al.: Models of Online Social Networks 303

By Lemma 2.1 and proceeding as above, noting that
∑

v∈V (G0)
g(v) deg0(v) = 0,

we have that

d̄2vol(Gt) =

( ∑
x∈V (Gt)

f(x) degt(x)

)2

vol(Gt)

=

(
2(3t − 2t)

∑
u∈V (G0)

g(u)

)2

vol(Gt)

=

4 · 32t
(
1− ( 23)t)2

( ∑
u∈V (G0)

g(u)

)2

3t
(
vol(G0) + 2n0

(
1− ( 23)t))

≤
4 · 3t

(
1− ( 23)t)2 ∑

u∈V (G0)

g2(u)

D̄ + 2
(
1− ( 23)t) ,

where D̄ is the average degree of G0, and the last inequality follows from the

Cauchy–Schwarz inequality.

By (2.2) we have that

λ1(t) ≤

∑
xy∈E(Gt)

(f(x)− f(y))2

∑
x∈V (Gt)

f2(x) degt(x) + d̄2vol(Gt)

≤
3t

∑
uv∈E(G0)

(g(u)− g(v))2

3t + 2 · 3t
(
1− ( 23)t)(∑u∈V (G0)

g2(u)
)
−

4·3t
(
1−( 2

3 )
t
)2 ∑

u∈V (G0)

g2(u)

D̄+2
(
1−( 2

3 )
t
)

=
λ1(0)

1 + 2
(
1− ( 23)t)

( ∑
u∈V (G0)

g2(u)

)(
1− 2

(
1−( 2

3 )
t
)

D̄+2
(
1−( 2

3 )
t
)
)

< λ1(0),

where the strict inequality follows from the fact that D̄ ≥ 1, since G0 is connected

and G0 � K1.

Proof of Theorem 1.6. We denote vectors using boldface. We first assume that ρ �= −1.
Hence, ρ+, ρ− �= 0. Let u be an eigenvector of A = A(Gt) such that Au = ρu.
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Let β = (ρ+1)
ρ , and let

v =

(
u
βu

)
.

Then we have that

Mv =

(
A A+ I

A+ I 0

)(
u
βu

)
=

(
ρu+ (ρ+ 1)βu

(ρ+ 1)u

)
.

Now βρ = ρ+ 1, and so (ρ+ 1)u = βρu. The condition

ρ = ρ+ β(ρ+ 1) = ρ+
(ρ+ 1)2

ρ

is equivalent to ρ solving

x− ρ− (ρ+ 1)2

x
= 0.

Hence Mv = ρv, as desired.

Now let ρ = −1. In this case, ρ− = −1. Let

v =

(
u
0

)
,

where 0 is the appropriately sized zero vector. Thus,

Mv =

(
A A+ I

A+ I 0

)(
u
0

)
=

( −u
0

)
.

Hence Mv = ρ−v, as desired. In the case that ρ+ = 0 and ρ = −1, let

v =

(
0
u

)
,

and so Mv = ρ+v.

Proof of Theorem 1.7. Without loss of generality, we assume that G0 is not the trivial

graphK1; otherwise, G1 is K2, and we may start from there. Thus, in particular,

we can assume ρ0(0) ≥ 1.

We first observe that by Theorem 1.6,

ρ0(t) ≥
(
1 +
√
5

2

)t

ρ0(0).
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By Theorem 1.6 and by taking a branch of descendants from the largest eigen-

value, it follows that

|ρ1(t)| ≥ 2(
√
5− 1)

(1 +
√
5)2

(
1 +
√
5

2

)t

ρ0(0).

Hence, to prove the theorem, it suffices to show that

ρ0(t) ≤ c

(
1 +
√
5

2

)t

ρ0(0).

Observe that, again by Theorem 1.6 and taking the largest branch of descendants

from the largest eigenvalues,

ρ0(t) = ρ0(0)

t−1∏
i=0

⎛
⎝1 +

√
5 + 8

ρ0(i)
+ 4

ρ2
0(i)

2

⎞
⎠ ≤ ρ0(0)

t−1∏
i=0

⎛
⎝1 +

√
5 + 6

ρ0(i)

2

⎞
⎠ .

Thus,

2tρ0(t)

(1 +
√
5)t
≤ ρ0(0)

t−1∏
i=0

1 +
√
5 + 6

ρ0(i)

1 +
√
5

≤ ρ0(0)

t−1∏
i=0

(
1 +

√
5

1 +
√
5

6

5ρ0(i)

)

≤ ρ0(0) exp

(
6
√
5

5(1 +
√
5)

t−1∑
i=0

ρ0(i)
−1

)

≤ ρ0(0) exp

(
6
√
5

5(1 +
√
5)ρ0(0)

∞∑
i=0

(
2

1 +
√
5

)−i
)

= ρ0(0)c.

In all, we have proved that for constants c and d,

c

(
1 +
√
5

2

)t

ρ0(0) ≥ ρ0(t) ≥ |ρ1(t)| ≥ d

(
1 +
√
5

2

)t

ρ0(t).

2.5. Proofs of Theorems 1.8 and 1.9

We give the proofs for the results on the cop number, domination number, and

automorphism group of the ILT model.
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Proof of Theorem 1.8. We prove that for t ≥ 0, γ(Gt+1) = γ(Gt). It then follows that

γ(Gt) = γ(G0). When a dominating node x ∈ V (Gt) is cloned, its clone x′ will
be dominated by x. The clone y′ of a nondominating node y ∈ V (Gt) will be

joined to a dominating node, since y is joined to one. Hence, a dominating set in

Gt is a dominating set in Gt+1, and so γ(Gt+1) ≤ γ(Gt). If S′ is a dominating

set in Gt+1, then form S by replacing (if necessary) nodes x′ ∈ S′ by nodes x.

Since S dominates Gt, it follows that γ(Gt) ≤ γ(Gt+1).

We next show that c(Gt+1) = c(Gt). Let c = c(Gt). Assume that c cops play

in Gt+1, so that whenever R is on x′ ∈ V (Gt+1) \V (Gt), the cops C play as if R
were on x ∈ V (Gt). Either C captures R on x′, or using their winning strategy

in Gt, the cops move to x with R on x′. The cops then win in the next round.

Hence,

c(Gt+1) ≤ c(Gt).

If b = c(Gt+1) < c, then we prove that c(Gt) ≤ b, which is a contradiction.

Suppose that R and C play in Gt. At the same time this game is played, let the

set of b cops C′ play with their winning strategy in Gt+1, under the assumption

that R remains in Gt. Each time a cop in C′ moves to a cloned node x′, move

the corresponding cop in C to x. Since x and x′ are joined and share the exact

same neighbors in Gt+1, C may win in Gt with b < c cops.

Proof of Theorem 1.9. We first prove the following lemma.

Lemma 2.8. Each f0 ∈ Aut(G0), extends to ft ∈ Aut(Gt).

Proof. Given f0 ∈ Aut(G0), we prove by induction on t ≥ 0 that f0 extends to

ft ∈ Aut(Gt). The base case is immediate. Assuming that ft is defined, let

ft+1(x) =

{
ft(x) if x ∈ V (Gt),

(ft(y))
′ where x = y′ .

Let x, y be distinct nodes of V (Gt). It is straightforward to see that ft+1 is a

bijection. We show that xy ∈ E(Gt+1) if and only if ft+1(x)ft+1(y) ∈ E(Gt+1).

This will prove that ft+1 ∈ Aut(Gt), since ft+1 extends ft.

The case for x, y ∈ V (Gt) is immediate, since ft ∈ Aut(Gt). Next, we consider

the case for x ∈ V (Gt) and y′ ∈ V (Gt+1). Now xy′ ∈ E(Gt+1) if and only if

ft+1(x)ft+1(y
′) = ft(x)(ft(y))

′ ∈ E(Gt+1).

Note that x′y′ /∈ E(Gt+1) for all x
′, y′ ∈ V (Gt+1)\V (Gt). But ft+1(x

′)ft+1(y
′) /∈

E(Gt+1) by definition of Gt+1.
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We now prove that for all t ≥ 0, Aut(Gt) is isomorphic to a subgroup of

Aut(Gt+1). The proof of Theorem 1.9 then follows from this fact by induction

on t. Define

φ : Aut(Gt)→ Aut(Gt+1)

by

φ(f)(x) =

{
f(x) if x ∈ V (Gt),

(f(y))′ if x = y′ ∈ V (Gt+1) \ V (Gt).

Note that φ(f)(x) is injective, since f �= g implies that φ(f) �= φ(g) by the

definition of φ.

We prove that for all x ∈ V (Gt+1) and f, g ∈ Aut(Gt),

φ(fg)(x) = φ(f)φ(g)(x).

If x ∈ V (Gt), then

φ(fg)(x) = fg(x) = φ(f)φ(g)(x).

If x /∈ V (Gt), then say x = y′, with y ∈ V (Gt). We then have that

φ(fg)(x) = (fg(y))′ = (φ(f)φ(g)(y))′ = φ(f)(g(y))′ = φ(f)φ(g)(x).

2.6. Proofs of Theorems 1.10 and 1.11

We give the proofs for the results on the randomized ILT model, ILT(p). Without

loss of generality, we assume that 0 < p < 1.

Proof of Theorem 1.10. By the definition of the ILT(p) model, we obtain the following

conditional expectation:

�(vol(Ht+1) | vol(Ht)) = 3vol(Ht) + nt+1 + nt(nt − 1)p(nt).

At the beginning of the process, we cannot control the random variable vol(Ht);

it may be far from its expectation. However, if t is large enough, a number of

additional edges added in a random process may be controlled, and vol(Ht)

eventually approaches its expected value. Let

t0(T ) =
4 log logT

log(3 + δ)
(2.3)

be the time from which we can control the process (note that t0(T ) tends to

infinity with T ). Now suppose that

vol(Ht0) = (3 + δ)t0(1 +A(t0)).
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The function A(t0) measures how far vol(Gt0) is from its expectation; we do not

give an explicit formula for this, but the bounds −1 ≤ A(t0) ≤ ( 4
3+δ )

t0 apply

(deterministically; note that −1 corresponds to the empty graph, while ( 4
3+δ )

t0

corresponds to a complete graph). We first demonstrate that for any t (where

t0(T ) ≤ t ≤ T ), with probability at least (1 − T−2)t,

vol(Ht) = (1 + o(1))(3 + δ)t

(
1 +

(
3

3 + δ

)t−t0

A(t0)

)
. (2.4)

We prove (2.4) by induction on t. The base case, t = t0, trivially holds. For the

inductive step, assume that (2.4) holds for t0 = t0(T ) ≤ t < T (with probability

at least (1−T−2)t). We want to show that (2.4) holds for t+1 (with probability

at least (1−T−2)t+1). Using (2.3) and (1.3), we have that the expected number

of random edges added at time t+1 (that is, edges added between new nodes) is

�X = 2t(2t − 1)p(2t) = (1− (1/2)t)δ(3 + δ)t

≥ (1 + o(1))δ(3 + δ)t0 ≥ (1 + o(1))δ log4 T.

Using the Chernoff bound

�(|X −�X | ≥ ε�X) ≤ 2 exp(−ε2�X/3)

with ε = 1/ logT , we derive that the number of random edges is not concentrated

with probability at most

2 exp

(
−ε2�X

3

)
≤ 2 exp

(
−δ log2 T

4

)
≤ T−2.

Thus, with probability at least (1− T−2)t+1, we have that

vol(Ht+1) = 3vol(Ht) + 2t+1 + (1 +O(log−1 T ))δ(3 + δ)t

= (1 + o(1))(3 + δ)t

(
3 + 3

(
3

3 + δ

)t−t0

A(t0) + δ

)

= (1 + o(1))(3 + δ)t+1

(
1 +

(
3

3 + δ

)t+1−t0

A(t0)

)
.

By the bounds on A(t0) it follows that(
3

3 + δ

)T−t0

A(t0) = exp (−Ω(T ) +O(t0)) = o(1).

Therefore, the assertion holds with probability at least

(1 + T−2)T = exp((1 + o(1))T−1) = 1 + o(1).
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Proof of Theorem 1.11. Let
X = V (HT ) \ V (HT−1)

and

X̄ = V (HT ) \X = V (HT−1).

By computation it follows that a.a.s.,

vol(X) = (1 + o(1))(1 + δ)(3 + δ)T−1,

vol(X̄) = (1 + o(1))2(3 + δ)T−1,

vol(HT ) = (1 + o(1))(3 + δ)(3 + δ)T−1,

and

e(X,X) = (1 + o(1))(3 + δ)T−1.

Thus, by Lemma 2.6 we have that a.a.s.,

λ(T ) ≥ (1 + o(1))
|3 + δ − (1 + δ)2|

2(1 + δ)

= (1 + o(1))
2 − δ − δ2

2(1 + δ)
= Ω(1).

3. Conclusion and Further Work

We have introduced the ILT model for OSNs and other complex networks,

whereby the network is cloned at each time step. We have proved that the

ILT model generates graphs with a densification power law, in many cases de-

creasing average distance (and in all cases, the average distance and diameter are

bounded above by constants independent of time), with higher clustering than

random graphs with the same average degree, and with smaller spectral gaps for

both their normalized Laplacian and adjacency matrices than in random graphs.

The cop and domination numbers were shown to remain the same as those for

the graph from the initial time step G0, and the automorphism group of G0 is a

subgroup of the automorphism group of graphs generated at all later times. A

randomized version of the ILT model was introduced with tunable densification

power-law exponent.

As we noted after the statement of Lemma 2.4, the ILT model does not gen-

erate graphs with a power-law degree distribution, and neither does the ILT(p)

model. An interesting problem is to design and analyze a randomized version

of the ILT model satisfying the properties displayed in the ILT model as well as

generating power-law graphs. Such a randomized ILT model should with high
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probability generate power-law graphs with topological and spectral properties

similar to those of graphs from the deterministic ILT model.

Certain OSNs such as Twitter are directed networks, in which users may

either be friends with other users (represented by undirected edges), or follow

them (represented by a directed edge pointing to the follower). Hence, a more

accurate model for such networks would be directed, and we will consider a

directed version of the ILT model in the sequel.
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