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JumpNet: Improving Connectivity
and Robustness in Unstructured
P2P Networks by Randomness
J. Zich, Y. Kohayakawa, V. Rödl, and V. Sunderam

Abstract. We propose a self-organizing algorithm that maintains a high degree of con-
nectivity and robustness in unstructured P2P networks. The algorithm is based on the
“jump” primitive that periodically replaces overlay links at each node. The algorithm
produces and maintains P2P networks that closely approximate sparse random graphs.
Although the sparse random graphs have low degree, they are well connected and
possess low diameter. This makes them good candidates for common P2P networks.
Through a series of simulation experiments, we confirm that the jump algorithm leads
to a network topology with these desirable properties if we start with an ad-hoc net-
work. P2P networks conditioned through jumps also accomplish search and broadcast
operations very effectively as compared to both simulated and real-life systems such as
the Gnutella ultrapeer network.

1. Introduction

Peer-to-peer (P2P) networks and protocols have received considerable atten-
tion in recent years, and many instances of such networks are in widespread
use. By far the most popular are implementations for file sharing; real and
perceived deficiencies in each manifestation have led to a slew of alternatives
that often incorporate architectural extensions. Well-known examples include
Gnutella [Kirk 03], Gnutella2 [Gnutella 09], and Kazaa [Sharman 06].1 In these

1Although other file sharing networks, like eDonkey, Overnet, and DirectConnect, are pos-
sibly more popular [Slyck 08], they cannot be considered peer-to-peer solutions because they
are server based.
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and other networks, file sharing protocols are built almost solely on one com-
munication primitive: search. In popular P2P networks, this primitive is based
on flooding queries, sometimes augmented by heuristics. Substantial work on
more effective search has been undertaken by the research community, primar-
ily on distributed hash tables (DHT) and related algorithms. The best-known
DHT-based networks are Chord [Stoica et al. 01], Pastry [Rowstron and Dr-
uschel 01], Tapestry [Zhao et al. 01], Kademlia [Maymounkov and Mazieres 02],
and Symphony [Bawa et al. 03]. However, such innovations have not been widely
adopted in popular software systems—possibly due to skepticism towards overly
complicated solutions and the fact that DHT-based systems are well suited
only for a limited number of applications [Freedman and Mazieres 03, Gane-
san et al. 03, Harvey et al. 03].

Another problem of the current P2P networks is that for reasons of pragmatics
many of them, if not most, are less than “pure.” For example, it is common for
P2P nodes to be designated as “special” (e.g., ultra-peers or super-nodes). More-
over, P2P servent software often includes hard-coded bootstrap information, or
some other indirect dependence on infrastructural support. Both these mecha-
nisms, which are deviations from the P2P model, are used in popular systems,
including Gnutella [Kirk 03], Gnutella2 [Gnutella 09], and Kazaa [Sharman 06].
While improving usability and performance, such deviations from strict adher-
ence to the definition of P2P (a) dilute some of its advantages (e.g., vulnerability
to localized failures or attacks) and (b) may not be possible in emerging applica-
tion scenarios (e.g., spontaneous crowd collaborations or peer-assisted streaming
multimedia distribution). Moreover, it was observed [Karbhari et al. 03] that the
choice of the bootstapping method in the Gnutella network may significantly in-
fluence the subsequent performance of the peer.

Indeed, recently, there has been a surge of interest in the latter types of
ad-hoc P2P networks. Vehicular ad-hoc networks are one instance [Holfelder
et al. 07]; in certain settings, P2P communications can be used autonomously
(without any associated infrastructure or fixed support) to enable a wide range
of functions such as accident avoidance, alternate route planning in traffic jams,
heuristic fleet scheduling among delivery trucks, and so on. Another exam-
ple is the 2007 use, by the Swedish company TerraNet AB, of a mesh net-
work of mobile phones permitting the routing of calls and data between partic-
ipating handsets, without the need to involve cell towers [TerraNet 08, Draves
et al. 04]. In these and other emerging situations, generating and maintain-
ing a P2P network with “good” properties can be extremely beneficial to its
operation.

In this paper, our main concern is connectivity and robustness of “pure” P2P
networks targeted towards applications where there is little or no landline or in-
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frastructural support. Traditional search-oriented P2P frameworks do not con-
sider any broader meaning of “well connectedness,” and connectivity in DHT-
based architectures is constrained by the requirement of nodes to link to other
according to a prescribed pattern. To enable the deployment of self-organizing
P2P networks, we propose an algorithm that can be used to create and maintain
a well-connected and robust network topology without using any external sup-
port. In particular, the P2P network should be robust and well-connected in
the presence of high dynamicity, i.e., nodes joining and leaving frequently, and
should possess low degree and small diameter. Our algorithm is based on the
so-called jump operation, which periodically replaces overlay links at each node
in a random fashion. We argue that the resulting network topology shares many
properties with random graphs—i.e., “typical” graphs that are randomly gener-
ated. Random graphs have been thoroughly studied in graph theory (see, e.g.,
[Bollobás 01] and [Janson et al. 00]) and exhibit many useful properties: low aver-
age distance, low diameter, resilience to random failures, good connectivity, etc.
The problem of building and maintaining an unstructured P2P network with
provably good topology was tackled, for instance, in [Pandurangan et al. 01];
however, the method presented in that paper supposes the existence of a special
node (a host server).

In order to validate these claims, besides presenting an analysis of a sim-
plified model, we have performed a number of simulation experiments. The
main network properties that we monitored were average pairwise distance be-
tween nodes and resilience to random failures. We observed that, after the
execution of a few jump operations per node, not only does the average dis-
tance drop but it also has significantly smaller variance. Resilience to failures
was measured via the average component size and the largest component size
after the random removal of a specified number of connections. In order to
show that typical network operations will also benefit from the jump opera-
tions, we have tested the performance of a lookup and a broadcast primitive.
In the case of lookup, we observed a significant increase in hits, and in the
case of broadcast, the total time to reach a target number of nodes also rapidly
decreased.

This paper is organized as follows. In Section 2, we present the formal de-
scription of the jump operation. Section 3 presents a mathematical analysis
of a simplified model that supports the claim that, by repeating jump opera-
tions, the starting graph converges to a random-looking graph in time propor-
tional to the logarithm of the number of nodes in the network. The simula-
tions and experimental results supporting the theoretical claims are described
in Section 4. Finally, in Section 5, we briefly discuss directions for future
work.
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2. The Jump Algorithm

We start with an informal description of our algorithm. We suppose that we
have an overlay network of connected nodes and that each pair of connected
nodes can symmetrically communicate over their connection. Nodes maintain
lists of first and second immediate overlay neighborhoods. Since the network
is dynamic (because nodes join and leave, and because of the nature of the
jump operation), we assume that each node maintains its list of first and second
neighbors or updates the list before each jump. We also suppose that each node
has the ability to drop any of its overlay connections and to establish new overlay
connections based upon the identity of a target node. In what follows, we use
standard graph theoretic terms to model our networks.

The jump operation is performed by each node independently. In general,
the purpose of the jump performed by a node v is to replace as many of its
current neighbors as possible by a subset of its second-order neighbors. Clearly,
the candidates for becoming neighbors of v must be willing to accept the new
connection to v. In fact, an important feature that we require of our network is
that all nodes have bounded degree, and this requirement may prevent a vertex
from accepting such a new connection. Therefore, first v asks the second-order
neighbors that have the lowest degrees whether they are willing to accept a
connection. If all of them are already saturated, v asks a random second-order
neighbor to drop a connection. The connection for removal is chosen such that
no node gets disconnected from the network. The jumping node v can assure
this, because it keeps the list of the first and second neighbors, and therefore
it is able to identify connections that form cycles among them. By eliminating
short cycles we improve the throughput of the network and simultaneously keep
the degrees bounded.

2.1. The Algorithm

The formal description of the jump operation is as follows. Suppose we have a
network G. If H is a subnetwork of G and v is a node in H , then let NH(v) be
the neighborhood of v in H .

1. Collecting phase. Node v collects all its second-order neighbors into a
temporary list L. If |L| < d, node v also appends to L its third-order
neighbors up until |L| = d (if |L| < d even after the third-order neighbors
are added, the algorithms proceeds with this shorter list L). While building
the list L, node v also associates to any v′ ∈ L the following two pieces of
information:
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(a) An arbitrary node, adjacent to v, lying on a shortest path joining v

and v′; we denote this node by first(v′).

(b) Let T be a spanning tree of the subgraph F induced by {v}∪N(v)∪L,
containing all edges incident to v. Then v associates with v′ the subset
of neighbors of v′ that are not adjacent to v′ in T ; formally, we define
this set as C(v′) = NF (v′) \ NT (v′).

2. Jumping phase. Node v repeats the following steps:

(a) Select uniformly at random a node v′ ∈ L.

(b) If deg v′ ≥ d, then do:

i. If C(v′) = ∅, go to step (e).

ii. Select any u ∈ C(v′).

iii. Drop the edge between u and v′.

iv. Remove u from C(v′).

v. If deg v′ ≥ d, go to step (i).

(c) Establish an edge between v and v′.

(d) Drop the edge between v and first(v′).

(e) Remove v′ from L.

(f) If L = ∅ or deg v ≥ d, quit the loop.

For our experiments presented in Section 4, we used a discrete-event simula-
tor and we treated the jump operation as a single event. However, in real-world
scenarios, the algorithm must ensure that no node is disconnected from the
network. Therefore, for instance, all disconnections should be preceded by es-
tablishing new connections. However, we believe that collisions would rarely lead
to a separation of a node if one chooses a proper timing for jumps. To illustrate
this, let us assume that the average degree in the network is d and that Δt is the
time needed to accomplish a single jump. Since the jump operates only in the
first and second neighborhoods, in order to avoid “overlapping jumps,” a node
should not jump more often than once per a time interval of length d2Δt.

Besides the synchronization issue of the jumps themselves mentioned in the
previous paragraph, the jumps must also be synchronized with the other net-
work operations. A more detailed discussion about this issue is presented in
Section 4.6, after we outline some other network primitives.
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2.2. Motivation behind the Algorithm

The motivation of the jump algorithm is derived from the theory of random
walks on graphs. We observed that we can utilize the theory of random walks
from two different perspectives. Both justify our theoretical hypothesis. The
first one is explained in the remaining few paragraphs in this section while the
second one is used for a more rigorous analysis in Section 3. The first approach
considers random walks directly on the given network and gives a fairly intuitive
explanation of why the jumps transform any given starting graph to a random-
looking graph. We show that the jumps can be roughly interpreted as “boosted”
multiple random walks. However it does not provide good bounds on the num-
ber of jumps needed to achieve this “randomness.” The second approach studies
random walks on a “supergraph” of all graphs. At the cost of certain simpli-
fications of the considered model, this allows us to prove that one reaches the
desired state of randomness much faster. Now we discuss the first theoretical
justification.

Given a graph G and a vertex v in G, the random walk on G started at v is
a sequence of vertices of G corresponding to a path of a walker who starts at v

and, at every time step, randomly chooses, among the neighbors of the currently
visited vertex, the next vertex to visit.2 Given vertices v and u, we let Pt(v, u)
be the probability that a random walk started at v will be at u at time t.

In the context of Markov chains, a random walk on a non-bipartite and con-
nected graph is ergodic, i.e., there exists a stationary distribution of probability
to which the random walk (starting at any vertex) converges. The stationary dis-
tribution is π(u) = du/ volG, where volG is the sum of the degrees dv (v ∈ V (G))
of G. This is a classical result, previously proven (for instance, in [Lovász 96]
or [Chung 97]). Therefore, for a random walk starting at v and u ∈ V (G), we
have

lim
t→∞ Pt(v, u) = π(u) =

du

volG
· (2.1)

In particular, when the graph is regular (all the vertices have the same degree),
every node u is, asymptotically as t → ∞, equally likely to be visited at time t.

This result can be used to obtain a random graph by sending d random walkers
from each node v, stopping them after some time, and connecting v to the
nodes at which they have stopped. Therefore, if G is regular, formula (2.1)
guarantees that these d new nodes are chosen essentially uniformly, provided
that t is sufficiently large. We thus essentially obtain a random graph from the
so-called d-out model [Bollobás 01].

2For technical reasons, the walker may also stay at the currently visited vertex with some
fixed, positive probability.
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In general, many advanced techniques are known for estimating the speed of
convergence of (2.1) [Diaconis and Saloff-Coste 96, Chung 97, Aldous and Fill 02],
but they require additional information about the given graph. Since, in fact, we
target any starting network topology (it may be a wireless network, local area
network, etc.), we cannot directly apply any of these techniques. However, it is
known that, for an arbitrary regular graph G on n nodes, one needs to let t be of
order n3 in order to at least hit every node of the graph [Feige 95]. Since n can
be of the order of thousands or more and the network may constantly change,
this prevents this approach from being of practical use.

To obtain a randomly behaving graph more quickly, we let all nodes cooperate
in such a way that several nodes participate on the construction of a “boosted-
up” random walk. One may describe the “boost-up” mechanism in the following
simplified way: suppose we let a random walker start at each node of the network
at time t = 0, and suppose that our walkers take their steps in a synchronized
fashion (one step per unit of time). At time t = 2, most of the walkers will have
moved two steps away from their starting point (some returned to their starting
point). Suppose that we add to our graph the edges joining the starting point
of the walkers to their current location. Note that such an edge is “worth two
edges” (such an edge replaces a walk of length two). If we iterate this process,
when a walker takes a (single) step along a “new edge,” she will actually be
taking several steps in the original graph. The cascading effect that this process
gives is what the jumps exploit.

3. Jump Algorithm Analysis

In this section we present two mathematical analyses of the jump algorithm,
and we show that jumps lead to a network topology with good characteristics—
i.e., low average distance, low diameter, resilience to random failures, and good
connectivity. In the introduction we noted that a graph generated randomly
will have almost surely the desired properties. Suppose that our starting graph
before jumps is G0 and has r edges, and let G be any graph with r edges. In
this section we show that the probability of turning G0 into G by a sequence
of jumps is approximately the same for any such G if the number of jumps is
reasonably large. This will mean that jumps will generate the uniform probability
distribution on the space of all graphs with r edges, and since almost all of them
carry the required properties, the process will likely end up with a good network
topology.

Therefore, the crucial question is, “how many jumps are needed to achieve this?”
The first result states that O(log n) jumps per node is enough. In this result,
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we are content with achieving a distribution that is statistically close to the uni-
form distribution. The second result gives O

(
(log n)2

)
jumps per node, but the

deviation from the uniform distribution is controlled pointwise (and hence the
most likely and the least likely graphs have about the same probability).

In order to make the analyses feasible, we simplify the jump operation. One
of the consequences of this simplification is that the graph before and after
each jump has the same number of edges; let this be r and let d be the average
degree, i.e., d = 2r/n. A simplified jump is defined as follows: during a simplified
jump operation, an edge and a non-edge are selected, and the edge is deleted
and the non-edge becomes an edge. Notice that the normal jump corresponds
to several simplified jumps (typically d). Moreover, if several jumps occur at
about the same time in different locations of the graph, then several new edges
are introduced and several edges are dropped independently. Therefore, we can
view this group of jumps as a sequence of simplified jumps. The key simplifying
assumption that we shall make from now on is that, in our simplified jumps, the
edge and the non-edge are chosen uniformly at random.

The analyses are based on identifying our problem with a random walk on
r-sets (sets having r elements), known as the Bernoulli-Laplace diffusion model
[Diaconis and Saloff-Coste 96, Diaconis and Shahshahani 87]. Under this identi-
fication we view our graphs as sets chosen from the set of all possible

(
n
2

)
edges.

The process of swapping edges and non-edges in the simplified jump operation
corresponds exactly to the evolution of the r-sets in the Bernoulli-Laplace diffu-
sion model. In the rest of Section 3 we keep the notation m =

(
n
2

)
and r = dn/2.

3.1. Total Variation Distance

Diaconis and Shahshahani studied the speed of convergence of our random walk
in terms of the variation distance [Diaconis and Shahshahani 87]. Let Pk(R, S) be
the probability of going from an r-set R ⊂ [m] = {1, . . . , m} to an r-set S ⊂ [m]
in k steps. Let π be the uniform probability distribution on

(
[m]
r

)
. The variation

distance between Pk(R, · ) and π is defined as

ΔVD(k, R) = max
E⊆([m]

r )
|Pk(R, E) − π(E)|.

A standard argument shows that the variation distance is just half of the l1
distance, i.e.,

ΔVD(k, R) =
1
2

∑
S∈([m]

r )
|Pk(R, S) − π(S)|, (3.1)

where the maximum and the sum are taken over all r-sets. In the context of our
setup, the main theorem of Diaconis and Shahshahani states the following.
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Theorem 3.1. [Diaconis and Shahshahani 87] There is an absolute constant a such
that

if k ≥ dn

2
(log n + c), then ΔVD(k, R) ≤ ae−c, (3.2)

where R is any starting r-set.

Suppose now that we execute a total of k simplified jumps, starting from an
arbitrary graph. How large does k have to be so that we are close to the uniform
distribution? Let us see what a direct application of Theorem 3.1 gives. The
main problem is that the variation distance in (3.1) is a sum, and thus it does not
allow any direct control over each particular summand. It could happen that one
of the summands is significantly larger than the others, which would mean that
one particular r-set is substantially more likely to be reached than the others.
For our purposes, this is, of course, undesirable. In order to avoid this problem,
one has at least to choose c such that the right-hand side of (3.1) is smaller
than 1/

(
m
r

)
(the probability of an element in the uniform space). Using (3.2),

we obtain c of order r log m. In our model of simplified jumps, this would mean
that we need k = Ω(n2 log n) simplified jumps in total, yielding the bound of
Ω(n log n) simplified jumps per node.

The result below, which follows from Theorem 3.1, tells us that if we give up
on a small proportion of the space, then we can guarantee small relative error
after O(d log n) simplified jumps per node.

Proposition 3.2. After a total of k = Ω(dn log n) simplified jumps, we have

Pk(R, S)
π(S)

= 1 + o(1) (3.3)

for (1 − o(1))
(

m
r

)
r-sets S.

The following technical lemma is enough to prove Proposition 3.2.

Lemma 3.3. Let l ≥ 1 and d be real constants, k = d ln logn, j0 = l log n
log log n , and

j ≤ j0. Then, for large enough n, the probability that, after k steps, the random
walk is at a set that intersects R on j elements is pj =

(
r
j

)(
m−r
r−j

) /(
m
r

)
, up to an

additive error of at most O(1/nl). Moreover, nlpj → ∞ as n → ∞, and hence
this additive error is negligible in comparison with pj.

Let us briefly sketch how to obtain Proposition 3.2 from Lemma 3.3.

Proof of Proposition 3.2 (Sketch). First notice that there are exactly
(
r
j

)(
m−r
r−j

)
r-sets that

share j elements with a given r-set. Since our random walk does not distinguish
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among the r-sets that have the same intersection size (with the given r-set R),
we desire to prove that the probability of hitting a set with j common elements
with R is close to

(
r
j

)(
m−r
r−j

)
/
(
m
r

)
, with a reasonably small relative error. This is

exactly the claim in Lemma 3.3. However, this cannot be proven for all possible
values of j and thus the upper bound j0 for j is introduced. Note that j0 → ∞
as n → ∞, but the expected size of the intersection of a random r-set with R is
r2/m = Θ(d2/2), which is a constant for our setup. Since the majority of r-sets
intersect R in a number of elements that is close to the expectation, we obtain
Proposition 3.2.

Now we proceed to the proof of Lemma 3.3. Let us recall that the main
purpose of the proof is to show that the deviation from the uniform distribution
after k steps is small for j in the range given in the statement.

Proof of Lemma 3.3. First, we group the terms in the sum of the variation distance
in (3.1) according to the size of the intersection with the starting set R. In that
way, (3.1) becomes

ΔVD(k, R) =
1
2

r∑
j=0

∑
S∈([m]

r )
|S∩R|=j

|Pk(R, S) − π(S)|

=
1
2

r∑
j=0

∣∣∣∣P̃k(j) −
(

r

j

)(
m − r

r − j

)/(
m

r

)∣∣∣∣ ,
where P̃k(j) is the probability of being at a set that has intersection of size j with
R after k steps. We first show that, for j ≤ j0 = l log n

log log n , the hypergeometric
term pj =

(
r
j

)(
m−r
r−j

) /(
m
r

)
is asymptotically larger than 1/nl, that is,

pjn
l → ∞ as n → ∞. (3.4)

To prove (3.4), we observe that

pj =
(

r

j

)(
m − r

r − j

)/(
m

r

)
>

(
r

j

)(
p − j

m

)j (
q − r − j

m

)r−j
def.= E1,

where p = r/m and q = 1−p. The right-hand side E1 can be further rewritten as

E1 =
(

r

j

)(
r − j

m − 2r + j

)j (
1 +

−2r + j

m

)r

≥
(

r

j

)(
r − j

m − 2r + j

)j (
1 − 2r

m

)r
def.= E2.

(3.5)
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Since in our setup r/m = Θ(1/r), the last term in (3.5) is bounded from below by
a constant, say B. In the next step we also replace r and m by the corresponding
expressions in terms of n and d:

E2 ≥ B

(dn
2

j

)( dn
2 − j(

n
2

)− dn + j

)j

≥ B

(
dn

2j

)j
(

d
2 − j

n
n−1

2 − d + j
n

)j

≥ B

(
dn

2j

)j (
d

n

)j (
1 − 2j

dn

)j

≥ B

(
d2

2j

)j (
1 − 2j2

dn

)
def.= E3.

Finally, we show that for j ≤ j0 = l log n
log log n the quantity E3 is asymptotically

larger than 1/nl. Since we have j ≤ j0, the last expression in E3 is of the form
1 − o(1). Hence, in order to prove our claim, we need to verify that

B

(
d2

2j

)j

(1 − o(1)) 
 1
nl

.

Since B and d are constants, this is equivalent to showing that nl 
 jj , which
is the same as showing that

l log n − l
log n

log log n
(log l + log log n − log log log n) → ∞.

Clearly, this is the same as

l
log n

log log n
(log log log n − log l) → ∞,

which is true, and hence (3.4) is proved.
It now remains to show that, after k = dln logn steps, the probability that the

random walk is at a set that intersects R on j elements is pj , up to an additive
error of at most O(1/nl). Clearly, it suffices to check that ΔVD(k, R) = O(1/nl).
However, for such a value of k, we have c = (2l − 1) log n in (3.2). We obtain
from (3.2) and the fact that l ≥ 1 that

ΔVD(k, R) ≤ ae−c =
a

n2l−1
= O

(
1
nl

)
.

This completes the proof of Lemma 3.3.

We conclude this section with an illustrative numerical example. From the
proof of Theorem 3.1 [Diaconis and Shahshahani 87], it can be deduced that for
n ≥ 1000 the constant a in (3.2) is essentially 2 (more precisely, it is not greater
than 2 + 0.5× 10−9). We consider the setup n = 1000 and d = 5. Table 1 shows



�

�

“imvol5” — 2009/11/4 — 9:39 — page 238 — #12
�

�

�

�

�

�

238 Internet Mathematics

j % of graphs j % of graphs

5 0.921 13 10.947
6 1.933 14 9.780
7 3.474 15 8.149
8 5.457 16 6.360
9 7.614 17 4.668
10 9.554 18 3.233
11 10.890 19 2.120
12 11.369 20 1.319

Table 1. Number of average degree-5 graphs (n = 1000) grouped by number of
intersecting edges with the starting graph, j.

the number of graphs with r = dn/2 = 2500 edges grouped according to j, the
number of common edges with the starting graph R. Thus, approximately 98%
of the graphs have from 5 to 20 common edges with R. Setting c = log n

in (3.2) yields k ≥ 1000× 33, while the error in (3.2) is ae−c .= 0.002. Therefore,
according to Table 1, we can conclude that, for instance, the graphs with 12
common edges, which form 11.369% of all graphs with 2500 edges, are reached
after 33 jumps per node with probability (11.369± 0.2)%.

3.2. Relative Pointwise Distance

Another bound can be obtained directly from a paper by Diaconis and Saloff-
Coste in which they derive a general upper bound for the relative pointwise
distance involving the log-Sobolev constant and the spectral gap [Diaconis and
Saloff-Coste 96]. The relative pointwise distance after the kth step of the walk
is defined as

ΔRPD(k) = max
R,S∈X

∣∣∣∣Pk(R, S)
π(S)

− 1
∣∣∣∣ ·

Let λ� be the spectral gap of this random walk, i.e.,

λ� = min {1 − βmax, βmin + 1},
where βmin and βmax are the smallest and the largest eigenvalues of the transi-
tion matrix P , respectively, i.e., the matrix of dimension

(
m
r

)× (mr ) with entries
P1(R, S) for all pairs of r-sets (R, S). The eigenvalues of P for Bernoulli-Laplace
diffusion can be explicitly computed—it is well known (see, for instance, [Diaco-
nis and Shahshahani 87]) that

λ� =
m

r(m − r)
· (3.6)

The definition of the log-Sobolev constant is easier to introduce in the more
general setup of an arbitrary graph. Let G be a graph, let dx be the degree of
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a vertex x, let P1(x, y) = 1/dx be the probability of going from x to y (in one
step), and let π(x) = dx/ volG be the stationary distribution of the random walk
on G. Then, the log-Sobolev constant α of G is defined as

α = inf
f

E(f)
L(f)

,

where the infimum is taken over all functions f : V (G) → R with L(f) �= 0, and

E(f) =
∑

P1(x,y)>0

(f(x) − f(y))2, L(f) =
∑

x∈V (G)

f(x)2π(x) log
f(x)2 volG

||f ||22
,

with

||f ||2 =

⎛⎝ ∑
y∈V (G)

f(y)2π(y)

⎞⎠1/2

.

In general, it is hard to find bounds for log-Sobolev constants, even for special
graphs. According to the next result, lower bounds are more important for
estimating the mixing rate of random walks.

Theorem 3.4. [Diaconis and Saloff-Coste 96] Let P be the transition matrix of
a random walk on a graph H with the stationary probability π. Let π� =
minx∈V (H) π(x). Then if c > 0 and

k ≥ 1
4α

log log
1
π�

+
c

λ�
+ 1, (3.7)

then
ΔRPD(k) ≤ (1 + 2e2) e−c. (3.8)

Diaconis and Saloff-Coste also obtained a lower bound for the log-Sobolev
constant of the random walk on r-sets [Diaconis and Saloff-Coste 96].

Theorem 3.5. [Diaconis and Saloff-Coste 96] The log-Sobolev constant of the Bernoulli-
Laplace random walk satisfies

α ≥ m

3r(m − r) log m
. (3.9)

Now we apply the previous two theorems in order to obtain a bound on the
relative pointwise distance on our random walk. Formula (2.1) gives the general
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formula for the stationary distibution of a random walk on a graph. Since the
graph G is regular with degree r(m − r), we have

π� = π(G) =
1(
m
r

) , for any G ∈ V (G). (3.10)

Now we are ready to estimate the number of steps given by (3.9) just in terms
of m and r. For this, we substitute (3.9), (3.6), and (3.10) into the right-hand
side of (3.7), which yields

1
4α

log log
1
π�

+
c

λ�
+ 1 ≤ 3r log m

4

(
m − r

m

)
log log

(
m

r

)
+ cr

m − r

m
+ 1

≤ 3r log m

4
log log

(
m

r

)
+ cr + 1

≤ 3r log m

4
log(r log m) + cr + 1

=
3
4

r log m log r +
3
4

r log m log log m + cr + 1, (3.11)

where we have used the fact that (m − r)/m ≤ 1 and
(
m
r

) ≤ mr. Using m ≤
n2 and r = dn/2, the right-hand side of (3.11) can be further bounded from
above by

3r(log n)2 +
3
2
r log n log(2 log n) + cr + 1 ≤ 3r(log n)2 + 3r log n log log n + cr + 1

=
dn

2
(
3(log n)2 + o((log n)2) + c

)
.

Therefore, if we choose k ≥ 2dn
(
(log n)2 + c/4

)
, then k will satisfy (3.7) and

the relative pointwise error will be at most (1 + 2e2) e−c, according to (3.8).
This means that 2d

(
(log n)2 + c/4) simplified jumps per node ensure that every

average degree-d graph is reached equally likely up to that relative error. We
may thus obtain (3.3) for every r-set S with O(d(log n)2) simplified jumps per
node.

4. Experimental Results

In order to validate our claims we performed a number of discrete-event simula-
tion experiments on an overlay network OΔ of maximum degree Δ = 5, which
was built on top of an underlying network U with 1000 nodes. The network
U was obtained using the following algorithm. First, we generated a random
tree on 100 nodes. To this tree 10 edges were randomly added to form a few
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cycles. Finally, 900 pendant edges were added to the resulting graph at loca-
tions selected randomly from the original 100 nodes, where the choices are made
independently and uniformly. This underlying network U is representative of
typical, fixed wireline computer networks. Nodes enter the overlay network OΔ

in random order. When a node v wishes to join (or “wakes up”), it browses
its first, second, and possibly third neighborhoods in the underlying network U
(closely resembling the well-known expanding ring multicast method, with time
to live (TTL) = 3). It looks for nodes that are already part of OΔ but are not
yet saturated (i.e., their degrees in OΔ are strictly less than Δ). Among these
nodes, v selects as many as possible, but not more than Δ, and connects to them.
In that process, the closer nodes have preference.

In our experiments, this procedure typically resulted in an overlay network OΔ

that was almost Δ-regular. Since the experiments with jumps were performed
on the overlay network with Δ = 5, the parameter d in the jump algorithm was
also set to 5. Note that the jump algorithm will therefore retain the average
degree.

4.1. Average Distance

The results of the simulations concerning average distance are summarized in
Figure 1. The distance between a pair of nodes is defined as the length of
the shortest path between them. In Figure 1(a), we show a chart that illus-
trates how the average distance in OΔ decreases as more jumps are performed.
The horizontal axis denotes the number of jumps per node. For comparison,
the chart also includes the expected average distance in the random graph with
the same average degree. It is clearly visible that the average distance of our
graph approaches the expected average distance of the random graph.
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Figure 1. Measuring the average distance before and after the jumps: (a) the
average distance versus jumps and (b) histogram of distances.
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Figure 1(b) shows the histograms of distances before and after ten jumps per
node. Again, for comparison, the histogram for the random graph is presented.
The random graph histogram is so similar to the histogram after jumps that
they are barely distinguishable.

From these results we observed that for our experimental setup (degree 5
and 1000 nodes) approximately after ten jumps per node, the average distance
stabilizes very near the expected value for the random graph. Because of this
similarity, one may expect that the graph after jumps shares other properties
of the random graph. Therefore, all other subsequent experiments compare
the measured parameters before and after ten jumps per node. Note that this
assumption is also supported (at least in order of magnitude) by the result in
Section 3, which claims that after 33 jumps per node we are close to having a
genuine random graph (see the last paragraph of Section 3.1).

4.2. Resilience to Failures

In the following set of experiments we observed whether the jumps lead to better
connectivity by measuring the number and the sizes of the components after
removing a certain portion of connections.

The steps of the experiments were as follows. First, after the overlay network
OΔ is formed, the prescribed number of edges is randomly removed. In addition,
we remember the removed edges for a later step. Next, we find the largest
component. This captures the situation without jumps. After that, we return
the removed edges to achieve the same configuration as in the beginning. Finally,
each node performs jumps (ten per node), and we remove randomly the same
number of edges as before and count the components. Note that the jumps
change the network in a random fashion. This implies that it is not possible to
remove exactly the same edges as before. In order to obtain statistically sound
results, we repeat the experiment 10,000 times and take the average.
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Figure 2. Simulation of random failures, showing resilience to failures.
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The results are presented in Figure 2. The horizontal axis shows the percent-
age of removed edges: we removed 5%, 10%, 15%, . . . , 95%. The edges were
not gradually removed by 5%; instead, each time we started from OΔ. The de-
creasing curves represent the largest component sizes, while the increasing ones
show the number of components.

The experiment clearly demonstrates the better resilience of the network af-
ter the jumps, which, for example, even after the deletion of 50% of the edges
maintained the largest component of size 700. The removal of the same number
of edges from the original OΔ led to a disconnected graph whose largest com-
ponent had size 200. Although the jumps kept the largest component big, they
did not succeeded in decreasing the number of components, but the difference is
not significant.

4.3. Searching

One of the most popular network operations in today’s real-world P2P net-
works is searching. Therefore, we implemented a simple searching primitive and
compared its performance in the network OΔ before and after jumps. Our im-
plementation closely resembles the original Gnutella search, which is based on
the flooding paradigm. The node initiating a search contacts its neighbors with
the search query, they in turn contact their neighbors, and this process continues
until it reaches a prescribed number of hops (or TTL hits zero). In order to avoid
looping, duplicate search queries are dropped.

The experiment depended on two parameters: k, called proliferation, and
TTL. After OΔ is formed, 100 random subsets of nodes, each of size k were
generated. The nodes of the ith subset were assigned the same object—in our
case the integer i ∈ {1, . . . , 100}. Since the sets were not necessarily disjoint,
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Figure 3. Simulation of a search primitive based on flooding: (a) dependence on
proliferation (with TTL = 3) and (b) dependence on TTL (with k = 5).
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one node could have been assigned several different integers. After this initial
procedure, each node tried to find all 100 objects with a prescribed TTL. We
measured the hitrate—the ratio of searches when a node locates at least one
occurrence of an object to the total number of attempts. Finally, each node
jumped ten times and the search and measurements were repeated.

Figure 3 summarizes the results of this experiment. Figure 3(a) shows the
dependance of the hitrate on the proliferation. The parameter TTL was set to 3.
Figure 3(b) shows the dependance of the hitrate on TTL. The proliferation k

was set to 5, i.e., 0.5% of nodes contained the object. Both results demonstrate
a visible improvement in the network after the jumps. From the first figure it
follows that if an object is contained by 20 nodes (i.e., 2% of nodes), the hitrate
of searches increases by jumps from 40% to 70%. The second figure demonstrates
that the diameter of the graph after the jumps shrinks to nearly 5, which is also
close to the expected diameter of the random graph with the same parameters.

4.4. Broadcasting

To measure the throughput of a network modified by jumps, we designed and
developed a simple broadcast primitive called numcast. The technical details
of numcast resemble the search primitive presented in Section 4.3; however, the
goals of numcast and search differ. The purpose of numcast is to deliver a copy
of a given message to a given number of nodes. The number of messages is called
the quota.

If a node v initiates a numcast, it distributes the quota evenly among its
neighbors. The neighbors continue recursively. If a node receives the request
to forward a certain quota of messages, it distributes them evenly between all
its neighbors, except the one that sent the request. To avoid looping, each
node remembers for each message the first node that requested to forward that
message. This node is called the parent node with respect to the given message m

and node v and is denoted by p(v, m). In this way each node fulfills only requests
issued by its parent and refuses requests from other nodes. If a node w �= p(v, m)
is refused by v, it uses the remaining neighbors or eventually routes the quota
back to its own parent. This process builds virtually a tree (corresponding to one
message); therefore, it is guaranteed that all copies are eventually delivered (if
there are enough nodes). The root of this tree is the node initiating the numcast,
and the length of a path traveled by a copy of the message from the root is called
its number of hops.

We were mainly interested in the speed in which the message spreads. We
measured this by recording the number of delivered copies of one message in
each hop (from the node that originally disseminated the message). The result
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Figure 4. Simulation of a broadcast primitive (to 500 nodes).

of this measurement is depicted in Figure 4. The horizontal axis is the number
of hops, while the vertical is the number of newly delivered copies. In order to
exclude possible deviations, each node in the experiment initiated ten numcasts.
The figure shows that the messages spread significantly fast and that it took
ten hops to deliver the “slowest” message. Although the results in Section 4.3
demonstrated that the diameter of the graph decreases close to five after jumps,
the then hops needed to complete the numcast is caused by returning and redis-
tributing the messages.

4.5. Simulations on Gnutella

By an analysis of the modern Gnutella protocol, we realized that the network
of Gnutella ultrapeers may already be random enough. We were led to this
conclusion, because the Gnutella nodes used during the bootstrap procedure a
large cache of nodes built in the previous live period. From this list, which may
contain several thousands of nodes, a node typically selects a random subset of
20 to 30 nodes and connects to them.

In order to perform experiments on the Gnutella ultrapeer network, we devel-
oped a network crawler. We used the crawler several times with the following
results. The crawler always reached about 100,000 nodes in about 20 minutes,
and, in addition, as it approached this number of nodes it really stopped. This
led us to believe that we reached most of the Gnutella ultrapeers.

We compared the average distance in the collected Gnutella ultrapeer graph
with that of the graph obtained from it by 100 jumps per a node. The parameter
d in the jump algorithm was set equal to the average degree in the Gnutella
ultrapeer graph, which was 20. The comparison of the histograms of degrees
and distances before and after the jumps are presented in Figure 5. It is clearly
visible that the histogram of the degrees shrunk after the jumps, which is a
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Figure 5. Results of jumps performed on a snapshot of 100,000 Gnutella ultra-
peers (solid lines: original network; dashed lines: after jumps): (a) degrees and
(b) distances.

consequence of the nature of the jumps algorithm. While the average degree
stayed the same, the average distance slighly increased (from 4.1794 to 4.207).

During the initial analysis of the Gnutella ultrapeers network, we noticed 20
nodes that had degree higher than 100 (there were even two nodes with degree
over 2000). In order to rule out the possibility that these nodes might have been
responsible for the low average distance, we removed them before the experiment.

Although the execution of jumps on the Gnutella ultrapeer network may seem
useless, it shows two important results. First, according to the results, the
Gnutella ultrapeer network appears to be already random enough; at least, it
attains an average distance similar to that of a random graph with the same pa-
rameters. Second, it shows that one may obtain a topology similar to the current
Gnutella ultrapeer network just by using jumps, without using the preliminary
cache of nodes. This becomes even more important when one realizes that the
very first boostrapping procedure of a Gnutella node is completely based only
on advertised web servers containing known lists of running nodes. According to
the results presented in the previous paragraph, we believe that the jumps would
be able to build a Gnutella-like topology while avoiding the current bootstrap
procedure and replacing it by the expanding ring multicast.

4.6. Synchronizing Jumps with Other Operations

The original version of the jump algorithm described in Section 2 may not be
suitable for all applications. For instance, in the case of numcast or the search
operation described in Sections 4.4 and 4.3, respectively, it is necessary to collect
the appropriate results back along the same paths. If a node, starting the search
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primitive, performed a jump immediately after the search, he would not be able
to receive any response. Moreover, even a node serving at some time as a broker
for others may not simply drop its connections via ajump.

Therefore, it is necessary for these cases to implement a mechanism into the
jump algorithm that will prevent such collisions. At best, the mechanism should
be application independent (it should work for numcast, search, and possibly
for new and yet-nonexistent operations) and transparent (so that the applica-
tions should not be responsible for providing extra logic for synchronization with
jumps).

We propose the following mechanism. The main issue of the synchronization
is that the jump may simply drop a connection that is currently indispensable
or important for some reason. Usually such connection is needed because an
incoming message is awaited along it. Hence, each application should be respon-
sible for flagging chosen connections as “important” for some time interval. If
a connection is flagged as important, it cannot be removed during the jumps.
Since it is not permissible to lock connections indefinitely, after the given time
interval, the connection looses the flag and can be removed during the jumps.
Moreover, the application should also be able to remove the flag as soon as it
knows that the connection is not needed. For that, it is necessary to keep a list
of bookings for each connection instead of just by a single flag. Each booking
should contain two parameters: the unique identifier (returned to the application
at the time of booking) and the expiration time.

Marking the edges may seem to be an extra burden for the applications, but
we believe that in most cases it could be built flawlessly into the application
logic so that the users do not have to worry about it. Let us discuss, for in-
stance, the search primitive. If a node is about to forward a search request,
it knows the TTL of the request. Based on TTL and the average degree in
the network, the node can estimate (or slightly overestimate) the time needed
to forward the request and receive responses. It should then flag all of the
edges that it uses to forward the search request and set the expiration time to
that computed value. If the given time interval of some edge elapses before all
the responses are collected and the node decides to jump, all remaining unde-
livered responses are lost. In the case of search, it does not constitute a big
loss, because the desired information could have been localized on many other
nodes.

We conclude this section with a formal description of the proposed modifica-
tion. In fact, the only change in the jump algorithm description presented in
Section 2 is related to the first phase. The choice of the node first(v′) in step
1(a) should be restricted to connections that are not flagged, and in step 1(b)
the spanning T should be made only from non-flagged edges.
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5. Conclusion and Future Work

Network formation and maintenance is very important in P2P applications. Net-
works that possess high connectivity, low degree, and small diameter are much
more efficient and robust. In this paper, we offer a low-cost scheme that attains
and maintains these properties in P2P network, with little external support. Our
approach, based on the jump algorithm, rapidly confers these attributes on ar-
bitrary graphs, leading to significant improvements in the efficiency of common
P2P network operations such as searching and broadcasting. We note that this
algorithm may even be useful in networks like Gnutella, by obviating the need
for preliminary node lists.

The jump algorithm may be enhanced in some ways. One current limitation is
that the continual topology changes caused by jumps might disrupt other ongoing
operations. One should explore the idea of temporarily locking connections to
preclude such disruptions. The applicability of the jump algorithm on highly
dynamic networks, with a high rate of joins and leaves, should be investigated
in detail.

In a more theoretical direction, we mention the problem of investigating the
mixing rate of the actual jump algorithm: we have argued that the network
topology achieved by jumps shares essential characteristics with classical random
graphs on the basis of a simplified model and on simulation results. Analyzing
the actual jump dynamics theoretically seems to us to be quite a challenging
task.
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through a Temático-ProNEx project (Proc. FAPESP 2003/09925-5) and supported by
CNPq (Proc. 308509/2007-2, 485671/2007-7, and 486124/2007-0). Part of this work
was done while this author was visiting Emory University, on leave from the University
of São Paulo. The third author was supported by NSF grant DMS 0300529.

References

[Aldous and Fill 02] D. Aldous and J. Fill. Reversible Markov Chains and Random
Walks on Graphs. Manuscript, 2002. Available at http://www.stat.berkeley.edu/
∼aldous/RWG/book.html.

[Bawa et al. 03] M. Bawa, G. S. Manku, and P. Raghavan. “Symphony: Distributed
Hashing in a Small World.” Paper presented at the Fourth USENIX Symposium
on Internet Technologies and Systems (USITS ’03), Seattle, WA, March 26-28,
2003.
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