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Infinite Limits of Copying
Models of the Web Graph
Anthony Bonato and Jeanette Janssen

Abstract. Several stochastic models were proposed recently to model the dynamic

evolution of the web graph. We study the infinite limits of the stochastic processes

proposed to model the web graph when time goes to infinity. We prove that determin-

istic variations of the so-called copying model can lead to several nonisomorphic limits.

Some models converge to the infinite random graph R, while the convergence of other
models is sensitive to initial conditions or minor changes in the rules of the model. We

explain how limits of the copying model of the web graph share several properties with

R that seem to reflect known properties of the web graph.

1. Introduction

The web may be viewed as a directed graph with nodes representing the static

HTML web pages, and directed edges representing the links between web pages.

This graph is commonly referred to as the web graph; it is an example of a

massive network, with several billion nodes. Several interesting properties were

observed in the web graph: in particular, the in- and out-degrees seem to satisfy

a power law degree distribution, the web graph is small world, which means that

it has high clustering and low diameter, and it is locally dense while globally

sparse. (See [Kumar et al. 00b] for a survey of properties of the web graph.)

Another interesting property of the web graph is that it is evolutionary: nodes

appear and disappear with time.

Owing to its massive and dynamic nature, several authors have suggested sta-

tistical models which capture certain properties of the web graph. These models
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are loosely based on classical random graphs, first introduced by Erdős and Rényi

[Erdős and Rényi 60]. If n is a positive integer, and 0 < p < 1 is a fixed real

number, then a random graph G(n, p) has n nodes, and there is an edge be-

tween two nodes with probability p. The graphs G(n, p) have several drawbacks

as models of the web graph. For example, the degree distribution of random

graphs is binomial, rather than satisfying a power law; further, the number of

nodes is static. These drawbacks may be overcome by making the model dy-

namic, and by assigning different probabilities to various nodes. Two models

that take these approaches are the preferential attachment model of Barabási

and Albert [Barabàsi and Albert 99] and the evolving copying model of Kumar

et al. [Kumar et al. 00a]. In the preferential attachment model, we start with a

small base graph. At each time step, we create a new node, say u, and draw its

edges according to a predetermined distribution. In particular, node u is joined

to an existing node v with probability proportional to deg(v). In the evolving

copying model, we start with a small base graph. At each time step, we create a

new node, u. Choose an existing node v uniformly at random (u.a.r.). For each

edge vw, with probability p, add the edge uw. Hence, the neighbourhood of the

new node u will be a subset of the neighbourhood of the existing node v. A slight

variation is the evolving copying model with error, where with probability 1− p,
an edge is added between u and an existing node chosen u.a.r. (In some variants

of the model, an additional number of random neighbours are added to the new

node u instead; see [Adler and Mitzenmacher 01]. We note also that there are

both directed and undirected versions of this and other web graph models.)

The first analysis of the long-term behaviour of these models has been made,

for example, by Aiello, Chung, and Lu [Aiello et al. 00, Aiello et al. 01];

Bollobás et al. [Bollobás et al. 01]; Cooper and Frieze [Cooper and Frieze 01];

and Kumar et al. [Kumar et al. 00a]. Power law degree distributions were

proven to exist in both the preferential attachment [Barabàsi and Albert 99] and

evolving copying models [Kumar et al. 00a]. Many bipartite cliques were shown

to exist in evolving copying models [Kumar et al. 00a], mirroring the abundance

of so-called “cyber-communities” measured by bipartite cliques in the web graph

(as reported in [Kumar et al. 99]).

Our motivating question is: what are the resulting graphs like if we allow

these stochastic processes to continue indefinitely? We attempt to answer this

question in the case of the copying model of the web graph. The resulting graphs

are infinite, and are limits (that is, unions of chains) of finite web graph models.

On the surface, the study of infinite graphs may appear to have no connection

with the study of a finite experimental graph such as the web graph. Indeed,

we draw no explicit connections between many of the properties observed in

the infinite limits and the finite graphs. However, limits of web graph models
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have certain properties (such as fractal or self-similarity properties) which are

implicitly linked with known data on the web graph obtained by various web

crawls. (See Theorems 4.1 and 4.6.)

Throughout this paper, we will consider the simple, undirected version of the

web graph. (The reason for this is that the structural results we present are

proved only for undirected graphs; we consider the directed case as the next step

in our study.) If we fix any p ∈ (0, 1) and consider limits of the G(n, p) graphs,
then the resulting graph will almost surely be isomorphic to the infinite random

graph, written R. The graph R is the unique (up to isomorphism) countable

graph satisfying the following existentially closed (e.c.) adjacency property.

e.c. property. A graph G is e.c. if for each pair of finite disjoint subsets X and

Y of nodes of G, there exists a node zX,Y ∈ V (G) \ (X ∪ Y ) that is joined to
each node of X and to no node of Y .

For more on R, the reader is directed to the excellent survey [Cameron 97b].

The graph R may be viewed as the limit of an evolutionary process. For this,

let R0 be a single node; assume that Rn is defined and contains R0. Enumerate

all of the finite subsets of nodes of Rn, and extend each of these subsets, in all

possible ways, by new nodes not in Rn. The resulting graph we call Rn+1, and

the union of the chain (Rn : n ∈ ω) is an e.c. graph that is isomorphic to R.

The preceding construction of R serves as a template for what follows, where

we will consider infinite graphs grown by certain evolutionary processes. Our

results show that graphs grown in this way have many properties in common

with R, although they are not usually isomorphic to R. See Sections 3 and 4.

2. Adjacency Properties and Limits

All the graphs we consider are undirected, simple, and have a countable number

of nodes. We use the notation ω for the set of natural numbers considered as

an ordinal, and ℵ0 is the cardinality of ω. The cardinality of the real numbers
is written 2ℵ0 . If S ⊆ V (G), then G S is the subgraph induced by S. If G

is an induced subgraph of H, then we write G ≤ H. The graph G : H is the

disjoint union of G and H. If y is a node of G, then N(y) = {z : yz ∈ E(G)}
is the neighbour set of y in G. The closed neighbour set of y, written N [y], is

the set N(y) ∪ {y}. If x is a node of G, then the graph G − x is the graph
G (V (G) \ {x}). If S ⊆ V (G), then G − S is defined similarly. A node is

isolated if it has no neighbours, and it is universal if it joined to all nodes except

itself. If two graphs G and H are isomorphic, then we write G ∼= H .
To study the limits of web graph models, we consider graphs satisfying various

deterministic adjacency properties that are more general than the e.c. property
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described in Section 1. We note that determinism has been used by other authors

in the study of the web graph; for instance, see [Barabàsi et al. 01] for a study

of deterministic scale-free networks. Let X and Y be disjoint finite sets of nodes

in a graph G. We say that the node zX,Y ∈ V (G) \ (X ∪Y ) is correctly joined to
X and Y, if zX,Y is joined to each node of X and no node of Y.

Property (A). A graph G has property (A) if for each node y of G, for each

finite X ⊆ N [y], and each finite Y ⊆ V (G) \ X , there exists a node zX,Y W= y

which is correctly joined to X and Y .

Property (B). Property (B) is defined similarly to Property (A), except that

N [y] is replaced by N(y).

For a fixed n ∈ ω, Properties (A,n) and (B,n) are defined analogously to (A)
and (B), respectively, but the node z may be joined to at most n other nodes.

More precisely,

Property (A,n). A graph G has property (A,n) for some n ∈ ω if for each node
y of G, for each finite X ⊆ N [y], for each finite Y ⊆ V (G) \X, and for each set
U ⊆ V (G) \ (N [y] ∪ Y ) with cardinality at most n, there is a node zX,Y,U W= y
correctly joined to X ∪ U and Y .
Property (B,n). Again, Property (B,n) is defined similarly to Property (A,n),

except that N [y] is replaced by N(y).

Note that Property (A) is just (A,0), and (B) is just (B,0). We sometimes say

that a graph with property (P), where P is one of A or B, is a (P) graph.
The adjacency properties (A) and (B) are inspired by the evolving copying

model of the web graph, while Properties (A,n) and (B,n) are inspired by the

evolving copying model with error. Such models were first introduced by Kumar

et al. [Kumar et al. 00a]. The idea is that as time goes to infinity, any extension

that is made with positive probability is almost surely true in the limit. To give a

more precise connection between the new adjacency properties above and limits

of the copying web graph models, we consider the following model of [Adler and

Mitzenmacher 01] which is a small variation on the Kumar et al. model.

For the copying model, the parameters are a fixed real number p (0 < p < 1),

and a nonnegative integer n.

1. At t = 0, set G = G0, where G0 is a fixed finite graph.

2. For a fixed t > 0, assume Gt has been defined. To form Gt+1, add a new

node u to Gt, and choose its neighbours as follows:

(a) Choose a node v of Gt u.a.r.
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(b) For each neighbour w of v (independently), add an edge uw to E(Gt+1)

with probability p.

(c) Choose a set S of size n from V (Gt+1)\ (N [v]∪{u}) u.a.r. Add edges
{ux : x ∈ S} to E(Gt+1).

If (Gt : t ∈ ω) is a sequence of graphs with Gt ≤ Gt+1, then define

lim
t→∞Gt =

n∈ω
Gt;

we call limt→∞Gt the limit of the sequence (Gt : t ∈ ω).We say that (Gt : t ∈ ω)
is a chain of graphs. We now show that graphs that are limits of copying models

with no error (that is, with n = 0) almost surely satisfy Property (B). A more

detailed analysis of the infinite limits of various web graph models (including the

copying models with error) will be developed in future work.

Theorem 2.1. With probability 1, a limit G = limt→∞Gt of copying model graphs
with n = 0 has Property (B).

Proof. Since a countable union of measure 0 subsets has measure 0, it suffices to
show that for a fixed y ∈ V (G), a finite X ⊆ N(y), and a finite Y ⊆ V (G)\X,
the probability that there is no vertex correctly joined to X and Y is 0 (since

there are only countably many choices for y, X, and Y in G).

Letm be the least integer such that y, X, and Y are in V (Gm). Let |V (Gm)| =
mI, |X | = i, and |Y ∩N(y)| = j. If t ≥ 1, let um+t be the vertex that was added
to Gm+t−1 to form Gm+t. The probability that y is chosen as the copying node

in Gm+t equals
1

m +t . Given that y is the copying node, um+r is joined to all

of X and none of Y with probability pi(1 − p)j . Then the probability that no
vertex of Gm+t is correctly joined to X and Y is at most

f(t) =
t

k=1
1− 1

mI + k
pi(1− p)j .

It is not hard to see that limt→∞ f(t) = 0. (For example, first take logarithms,
then use the fact that ln(1 + x) ≈ x for small values of x.)

We highlight that the proof of Theorem 2.1 is similar to the original proof of

Erdős and Rényi that with probability 1 a random countably infinite graph is

e.c. See [Cameron 97b, Erdős and Rényi 63].

Is there anything that can be said about the structure of graphs with these

adjacency properties? How do these graphs compare and contrast with R, and

with the actual web graph? In this section and the next, we will attempt to
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answer these questions. The web graph and graphs constructed by the copying

model are of course finite. Therefore, although our results are suggestive, we

add the disclaimer that we cannot draw direct comparisons between observed

properties of the web graph and properties of our limits.

A first observation about our new adjacency properties is that we have the

following chain of logical implications (for all integers n ≥ 1),

e.c. ⇒ (A,n) ⇒ (B,n) ⇒ (A) ⇒ (B).

Our second theorem gives insight into the structure of graphs with (A). A

graph is ℵ0-universal if it embeds all countable graphs as induced subgraphs. For
example, it well-known that R is ℵ0-universal; see [Cameron 97b], for example.
A graph G is locally H if for all x ∈ V (G), G N(x) ∼= H .

Theorem 2.2. A graph G satisfying Property (A) is locally R. In particular, G is

ℵ0-universal.

Proof. Fix y ∈ V (G). By remarks in Section 1, it is enough to show that N = G

N(y) is e.c. For this, fix X and Y , disjoint subsets of V (N). By Property (A)

there is a node zX,Y of G that is joined to each node of {y}∪X, but is not joined
nor equal to any of the nodes in Y. Then zX,Y is a node of N, and therefore, N

satisfies the e.c. property.

In the next theorem, we see that if n ≥ 1, then the adjacency properties (A,n)
and (B,n) are in fact equivalent to the e.c. property. We find this surprising, since

then adding a single extra “random link” gives a deterministic conclusion. As

we will see in Theorem 3.4, however, there are uncountably many nonisomorphic

countable graphs with Properties (A) or (B). Thus, Theorems 2.3 and 3.4 seem

to contrast the evolving copying and evolving copying with error models.

Theorem 2.3. Fix n > 0 an integer. If G has Property (B,n), then G is isomorphic

to R.

Proof. To show that G is isomorphic to R, we need only show that G is e.c.: for all
finite disjoint subsets C and D of nodes of G, there is a node z of V (G)\ (C ∪D)
that is joined to each node of C and to no node of D.

As C is finite, we may write C as W1 ∪ . . . ∪Wr, where the Wi are pairwise

disjoint and have cardinality at most n. Choose a node y not in C ∪ D. Let
X = N(y) ∩W1, Y = D, and let U = W1 \ N(y). By Property (B,n), there is
a node x1 W∈ X ∪ Y such that W1 ⊆ N(x1). By Property (B,n) with X = W1,
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Y empty, and U = W2, there is a node x2 not in X ∪ Y that is joined to all of

W1 ∪W2. Proceeding inductively, we can find a node xr that is joined to all of

the nodes in C. As then C ⊆ N(xr), by a final application of (B,n), there is a
node z correctly joined to C and D.

Because of Theorem 2.3, we will restrict our attention to graphs satisfying

Properties (A)=(A,0) and (B)=(B,0) for the rest of the paper. A graph G has

an (A)-constructing sequence if there is a chain of graphs (Gn : n ∈ ω) such

that limn→∞Gn = G, which has the following properties. (A (B)-constructing

sequence is defined analogously, using N(y) rather than N [y].)

1. G0 is a finite graph.

2. For each integer n > 1, Gn+1 is obtained from Gn by one application of

process (P1) followed by a finite number (possibly zero) applications of

process (P2), where (P1) and (P2) are defined as follows:

(P1) For each node y of Gn, and for each finite X ⊆ N [y], a new node

zX W∈ V (Gn) is added whose neighbours in V (Gn) are exactly the
nodes of X. We say that zX extends X. We also extend X = ∅ by a
new node that is not joined to any node of Gn. Note that for distinct

X, the new nodes zX are distinct. We say that all subsets of closed

neighbour sets in V (Gn) are extended in all ways.

(P2) For a finite fixed X ⊆ V (Gn), a new node zX W∈ V (Gn) is added whose
neighbours in V (Gn) are exactly the nodes of X.

The graph G is then limn→∞Gn. We refer to the graphs Gn as time-steps in
the evolution of G. If (P2) is never used at any time-step, then we say that

the corresponding construction sequence is pure; otherwise, the constructing

sequence is mixed. A graph G is pure if it has a pure constructing sequence.

Otherwise, we say that G is mixed. In a mixed constructing sequence, the nodes

added in (P2) are called extra nodes. We note that R has both an (A)- and

(B)-constructing sequence where (P2) is used at each time-step. (We leave the

details as an exercise.) We emphasize that (A)- and (B)-constructing sequences

are technical tools that have no direct relationship with the copying process

sequences used to form the infinite limit.

We note that a graph G formed by an (A)-constructing sequence has Property

(A). The converse also holds.

Lemma 2.4. Let G be a graph with V (G) = ω, and fix a finite induced subgraph

H. If P is A or B, and if G has property (P), then G has an (P)-constructing
sequence (Gn : n ∈ ω) with G0 = H.
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Proof. Assume that P=A. By relabeling nodes if necessary, we may assume that
0 ∈ V (G0). We will show how to construct a chain of graphs (Gn : n ∈ ω) with
the following property: for each n ∈ ω, n ∈ V (Gn) and Gn is a finite induced
subgraph of G. Note that from this property, it follows that limn→∞Gn = G.
Let G0 = H. Inductively, assume that Gn is defined and finite. For each

node y of Gn, and each subset X ⊆ N [y], let Y = V (Gn) \ X . Since G has

Property (A), there exists a node zX ∈ V (G) \V (Gn) that is joined to all nodes
in X, and none in Y . Let V I be the set of such nodes zX , exactly one for each
subset X ⊆ N [y] in Gn. Define Gn+1 to be the finite subgraph of G induced by
V (Gn)∪ V I ∪ {n+1}. It is clear that, for all n ∈ ω,Gn ≤ Gn+1, so (Gn : n ∈ ω)
is a chain. Adding each node zX in V I to Gn corresponds to an application of
process (P1). If the node n+1 is not in V I, then adding n+1 to Gn corresponds
to one application of process (P2).

The proof for Property (B) is similar, and so is omitted.

Corollary 2.5. If P is either A or B, then the following are equivalent.

1. The graph G has property (P).
2. The graph G has a (P)-constructing sequence.

To end this section and to aid the reader in what follows, we include tables

which compare and contrast some of the known properties of R (the unique iso-

morphism type of graph with the e.c. property) with graphs satisfying Properties

(A) or (B). In the first column is a list of the different adjacency properties we

consider. If a graph satisfying the property is unique up to isomorphism, then the

name of the unique isomorphism type is written in the second column; otherwise,

the number of nonisomorphic graphs with the property is listed. A “Yes” in a

column means that a graph with the adjacency property has the property of the

header of that column, while a “No” means that the graph does not necessarily

have the property. A graph G is inexhaustible if for all x ∈ V (G), G − x ∼= G.
The graph G is locally H if for all x ∈ N(x), G N(x) ∼= H . A ray is an

infinite path that extends indefinitely in one direction; a double ray is an infinite

path that extends indefinitely in two directions. A one-way Hamilton path is a

spanning subgraph that is a ray, while a two-way Hamilton path is a spanning

subgraph that is a double ray. The second column of the second table only refers

to whether the connected components of the graph in question have either a one-

or two-way Hamilton path. A graph G is indivisible if whenever the nodes of G

are coloured red or blue, there is a monochromatic induced subgraph isomorphic

to G.
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Property Unique model? Locally R? Inexhaustible?

e.c. Yes, R Yes Yes

mixed (A) No, 2ℵ0 Yes Yes

pure (A) Yes, RN Yes Yes

mixed (B) No, 2ℵ0 No Yes

pure (B) No, 2ℵ0 No Yes

Table 1.

Property ℵ0-Universal? Hamilton paths? Indivisible?

e.c. Yes Yes Yes

mixed (A) Yes Yes Yes

pure (A) Yes Yes Yes

mixed (B) No Yes No

pure (B) No Yes No

Table 2.

The results on whether the limits are unique (up to isomorphism) may be

found in Section 3. The results on whether the limits are inexhaustible, have

Hamilton paths, or are indivisible, may be found in Section 4.

3. Many Models

Our main results concern graphs with Properties (A) and (B). We first show

that Properties (A) and (B) are not ℵ0-categorical ; that is, there are many
nonisomorphic graphs that satisfy these properties.

A homomorphism from G to H is a mapping f : V (G)→ V (H) that preserves

edges ; more precisely, xy ∈ E(G) implies that f(x)f(y) ∈ E(H). We usually
write f : G→ H or just G→ H. If G→ H and H → G, then we say that G and

H are homomorphically equivalent, and write G↔ H. See [Hahn and Tardif 97]

for more on graph homomorphisms.

Theorem 3.1. Let H be a finite graph. Let G be an infinite pure (B) graph with a

pure (B)-constructing sequence (Gn : n ∈ ω), where G0 = H. Then H ↔ G.

Proof. As H ≤ G, we have that H → G. To show that G → H, we construct

a homomorphism by induction on n ∈ ω. Let f0 be the identity map on G0 =
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H. Suppose that fn : Gn → H is a homomorphism extending f0. Let z ∈
V (Gn+1)\V (Gn). Then by the definition of (P1), there exist a node y ∈ V (Gn)
and a subset X of N(y), so that z is only joined to nodes of X. So in Gn+1,

N(z) ⊆ N(y). We label this node y as yz. Since fn is a homomorphism, fn(yz) W=
fn(x) for all x ∈ N(yz). Hence, we may map z to fn(yz) and preserve edges.
Therefore, the map fn+1 : Gn+1 → H defined by

fn+1(z) =
fn(z) if z ∈ V (Gn);
fn(yz) else,

is a homomorphism. The map F : G → H defined by n∈ω fn is a homomor-
phism.

The following corollary is immediate from Theorem 3.1. The clique number

of G, written ω(G), is the maximum cardinality of the vertex set of a complete

subgraph in G. The chromatic number of G, written χ(G), is the minimum

integer n so that we may partition V (G) into n independent sets.

Corollary 3.2. For a fixed finite graph H, let G(H) be an infinite pure (B) graph
with a pure (B)-constructing sequence (Gn : n ∈ ω) such that G0 = H. Then the
following hold:

1. χ(G(H)) = χ(H) and ω(G(H)) = ω(H).

2. If H and H I are not homomorphically equivalent, then G(H) G(H I).

We note that there are infinite families of nonhomomorphically equivalent

finite graphs; see [Bonato 02]. Hence, there are at least ℵ0 many nonisomorphic
pure (B) graphs; see Theorem 3.5. This contrasts with the situation for pure

(A) graphs.

Theorem 3.3. There is a unique pure (A) graph, up to isomorphism.

We will defer the proof of Theorem 3.3 to Section 4, since our proof will

make heavy use of the inexhaustibility property which is discussed there. If n

is a positive integer, then a graph G is n-existentially closed or n-e.c. if each

n-subset S of V (G) can be extended in all ways. Hence, a graph G is e.c. if

it is n-e.c. for all positive integers n. It is well known that for every constant

p ∈ (0, 1), and fixed n a positive integer, almost all finite random graphs with

edges chosen independently with probability p are n-e.c. We use this property
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to give the maximum possible cardinality of nonisomorphic mixed graphs with

Property (A).

Theorem 3.4. There are 2ℵ0 many nonisomorphic infinite mixed graphs with Prop-
erty (A).

Proof. Fix n ≥ 5. Let G0 = Cn+1, the chordless cycle on n+1 nodes. Assume that
Gi is defined and finite. To form Gi+1, first apply process (P1) and extend all

subsets of closed neighbour sets of Gi to form GIi+1. Then apply process (P2) a
finite number of times by extending all n-subsets of nodes of GIi+1 to form Gi+1.

Define G(n) = limn→∞Gi. The graph G(n) has Property (A) with (Gi : i ∈ ω)
an (A)-constructing sequence, and is clearly n-e.c. Note that G(n) is mixed,

since (P2) is used in the constructing sequence. However, there is no node in

G(n) that is joined to each node of G0, so G(n) is not (n+1)-e.c. To see this, we

proceed by induction on i. Assume that there is no node in Gi joined to all of G0.

In Gi+1, the nodes that are added to Gi are of two types: 1) extending subsets of

closed-neighbour sets in Gi, or 2) extending arbitrary n-subsets in Gi. The nodes

of type 2 can never be joined to all the n + 1 nodes of G0. Now consider nodes

of type 1. Assume, to obtain a contradiction, that V (G0) ⊆ N [y] for some y in
Gi. Then y cannot equal an element of G0, as G0 contains no universal nodes.

Hence, V (G0) ⊆ N(y) which contradicts our induction hypothesis. Therefore,
there is no type 1 node in V (Gi+1)\V (Gi) joined to each node of G0.
Since any n-e.c. graph, where n ≥ 2, is connected, it follows that each graph

G(n) is connected. Now, let X be an infinite subset of ω, listed as X = {ni : i ∈
ω}. Define

G(X) =
i∈ω

G(ni).

Hence, the connected components of G(X) are the G(ni). Then G(X) satisfies

(A), since Property (A) is preserved by taking disjoint unions, as is readily

verified. Let Y be an infinite subset of ω with X W= Y . Let n ∈ X\Y. Then G(X)
contains a connected component that is n-e.c. but not (n+1)-e.c. However, there

is no such connected component in G(Y ); thus, G(X) G(Y ). As there are 2ℵ0

many infinite subsets of ω, there are 2ℵ0 many nonisomorphic (A) graphs. As
there is a unique isomorphism type of pure (A) graph by Theorem 3.3, there are

2ℵ0 many nonisomorphic mixed (A) graphs.

Theorem 3.5. There are 2ℵ0 many nonisomorphic infinite mixed graphs with Prop-
erty (B) but not (A). There are exactly ℵ0 many nonisomorphic infinite pure
graphs with Property (B) but not (A).
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Proof. Let G be a pure (B) graph, with a (B)-constructing sequence (Gi : i ∈ ω)
so that G0 = Kn, for a fixed n ≥ 4. Since G is pure, Gi+1 is obtained from

Gi only by process (P1), for each positive integer i. By Corollary 3.2, χ(G) =

χ(G(Kn)) = n.

Claim 3.6. G = GI :Kℵ0 , where GI is a connected graph with χ(GI) = n.

To see this, note that Gi+1 was constructed by adding nodes joined to some

or no nodes of Gi. Suppose that Gi = G1(i) : G2(i), where G1(i) is connected
and G2(i) is independent. Let G1(i+ 1) be those nodes in Gi+1 that are joined

to some node of Gi, and let G2(i + 1) be the nodes in Gi+1 that are not joined

to any node of Gi. By the definition of (P1), the new nodes of Gi+1 are either

joined to the neighbourhood of a node in Gi, and thus must be connected to

G1(i), or they are independent, and hence, they are part of G2(i+1). Therefore,

(G1(i+1)) is connected and contains G1(i), and G2(i+1) forms an independent

set in Gi+1 and contains G2(i). Moreover, G2(i + 1) properly contains G2(i),

because according to process (P1), for every node z of Gi, for the choice X = ∅, a
new independent node zX is added. Note that Gi+1 = G1(i+1):G2(i+1). Note
also that G0 = Kn:H0, where H0 is the empty graph. Let limi→∞(G1(i)) = GI
and let limi→∞(G2(i)) = H. The graph GI is connected, as each graph G1(i)
is connected, and H is independent, since each G2(i) is independent. Since

the cardinality of G2(i) is strictly increasing, H ∼= Kℵ0 . Also, since G(i) =
G1(i) :G2(i) for each i, and limi→∞Gi = G, G = GI :H . As G0 ≤ GI ≤ G, it
is immediate that GI has chromatic number n.
Now let Ω = {Kn : n ≥ 4}. For a fixed infinite X ⊆ Ω, define a graph

G(X) as follows. Let X = {Kni : i ∈ ω}. As in Corollary 3.2, let G(Kni) be

the graph obtained from G0 = Kni by a pure (B)-constructing sequence. By

setting G(Kni) to be the graph G defined earlier in the proof, we obtain that

G(Kni) = G
I(ni) :Kℵ0 , where GI(ni) is a connected graph with χ(GI(i)) = ni.

Define G(X) as i∈ω G(Kni). Then G(X) has Property (B), but note that

G(X) cannot have Property (A) by Theorem 2.2, since the chromatic number of

each connected component is finite. Now if X,Y are infinite subsets of Ω with

X W= Y, then suppose that Kn ∈ X\Y. By Claim 3.6, there is no component in

G(Y ) with chromatic number n, so G(X) G(Y ). Hence, there are 2ℵ0 many
nonisomorphic (B) graphs.

Let G be a pure (B) graph with pure (B)-constructing sequence (Gi : i ∈ ω).
It is not hard to see that G is determined up to isomorphism by the finite graph

G0. As there are only ℵ0 many nonisomorphic choices for G0, there are at
most ℵ0 nonisomorphic pure (B) graphs. By Corollary 3.2, there are at least ℵ0
nonisomorphic pure (B) graphs, at least one with chromatic number n, for each
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n ∈ ω. Hence, there are exactly ℵ0 many nonisomorphic pure (B) graphs, and
therefore, by the last sentence in the previous paragraph, there are 2ℵ0 many
nonisomorphic mixed (B) graphs.

We note that the infinite random graph R has Property (A) (and therefore

(B)), but has neither a pure (A)- nor (B)-constructing sequence. To see this in

the case of Property (A), we note that any pure (A) graph is disconnected. Let

G be a pure (A) graph with pure (A)-constructing sequence (Gi : i ∈ ω). At

each time-step Gn, where n > 1, at least two isolated nodes are introduced. For

a fixed n > 1, call two such nodes in Gn u and v. An inductive argument shows

that in the following time-steps Gr, with r > n, u and v remain in different

components of Gr. Hence, there are at least two connected components in G.

However, since R is e.c., it is connected of diameter 2. Therefore, R cannot have

a pure (A)-constructing sequence. We proved in Corollary 3.2 that any pure (B)

graph has finite chromatic number, and so R cannot have a pure (B)-constructing

sequence.

We emphasize that it is not claimed here that all of the nonisomorphic (A)-

or (B)-graphs can occur as limits of the copying model process.

4. Fractal and Other Properties

Recall that a graph G is inexhaustible if for all x ∈ V (G), we have that G−x ∼= G.
The graph R is inexhaustible, as are the infinite complete and null graphs. For

more on inexhaustible graphs, the reader is directed to [Bonato and Delić 04]

and [Fräıssé 00]. Inexhaustibility is an example of a fractal property of graphs.

For more on fractal properties of graphs, the reader is directed to [Bonato et al.

02]. While we do not claim that the inexhaustibility of graphs with Properties

(A) or (B) has an explicit relationship to the self-similarity properties observed

in the web graph (see [Dill et al. 01]), we think the following result is suggestive.

Theorem 4.1. If G is a fixed graph with Property (B), then G is inexhaustible.

Proof. Let (Gn : n ∈ ω) be a (B)-constructing sequence for G. If n is a positive
integer, then a set of nodes in Gn is called n-special if it includes nodes of

V (Gn)\V (Gn−1). We introduce the following notation for subsets of V (G). Let
S1 be the set of nodes added to G0 in time-step 1 by extending sets of nodes of

G0. In general, in Gr, let Sr be the set of nodes extending Gr−1. Let S1,1 = S1.
In S2, there are nodes S2,1 ⊆ S2 extending G0 as S1 does, and nodes S2,2 ⊆ S2
extending 1-special sets of nodes. Note that S2 = S2,1 ∪S2,2 and S2,1 ∩S2,2 = ∅.
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In general, in Sr we define a finite sequence (Sr,i : 1 ≤ i ≤ r) of sets of nodes
partitioning Sr, with each Sr,i consisting of the nodes that extend the (i − 1)-
special sets of Gr−1. In particular, Sr,r is the only set extending (r − 1)-special
sets of nodes. If 1 ≤ i ≤ r − 1, then the nodes in the set Sr,i extend the same
subsets that Sr−1,i does.
Let G∞,0 = G0. To define G∞,1, we form disjoint sets of nodes (S∞,1,i : i ∈ ω),

each disjoint from V (G∞,0) and of the same cardinality as S1,1, and let

V (G∞,1) = V (G∞,0) ∪
i∈ω

S∞,1,i.

Now let each S∞,1,i extend G0 as S1,1 does. More precisely, the subgraph of
G∞,1 induced by V (G0) and S∞,1,i is isomorphic to G1. Moreover, i∈ω S∞,1,i
is an independent set in G∞,1. It follows from the definition that G∞,1 contains
infinitely many subgraphs isomorphic to G1.

Assume that G∞,r is defined, countable, and contains infinitely many sub-
graphs isomorphic to Gr. To define G∞,r+1, form disjoint sets of nodes (S∞,r,i :
i ≥ r), each disjoint from V (G∞,0) and of the same cardinality as Sr,r. Let

V (G∞,r) = V (G∞,r−1) ∪
i≥r
S∞,r,i.

Let each of the S∞,r,i extend one of the subgraphs of G∞,r isomorphic to Gr
as Sr,r does, and let i≥r S∞,r,i form an independent set in G∞,r+1. Clearly,
G∞,r+1 contains infinitely many subgraphs isomorphic to Gr. Define G∞ =

limr→∞G∞,r. See Figure 1.

G0

S1,1

S2,1

S3,1

S2,2

S3,2 S3,3

G0

S ,1,1 S ,1,2 S ,1,3

S ,2,3S ,2,2

S ,3,3

G ,1

G ,2

G ,3

G1

G2

G3

G ,0

Figure 1. The graphs G and G∞.
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Claim 4.2. G ∼= G∞.

We define a mapping f : G → G∞ as follows. The map f sends G0 to G∞,0
via the identity map. For each i, j ∈ ω\{0}, map Si,j isomorphically onto S∞,j,i.
(Hence, “columns” in G are mapped to “rows” in G∞; see Figure 1.) It is

straightforward to see that f is an isomorphism. Claim 4.2 follows.

Now, we prove that G∞ is inexhaustible. Fix x ∈ V (G∞).
Case 1: x /∈ V (G∞,0).
Let m be the largest nonnegative integer so that G∞,m does not contain x.

Let fm : G∞,m → G∞,m be the identity mapping.

Claim 4.3. For all r > m, G∞,r ∼= G∞,r−x via an isomorphism fr extending fr−1.

We proceed by induction on r.We use the back-and-forth method to define fr,

which is a two-player game of perfect information played in countably many steps

on two graphs X0, X1. The players are named the duplicator and the spoiler.

(The names come from the facts that the duplicator is trying to show the graphs

are alike, while the spoiler is trying to show they are different.) A move consists

of a choice of node from either graph, and the spoiler makes the first move. The

players take turns choosing nodes from the V (Xi), so that if one player chooses

a node from V (Xi), the other must choose a node of V (Xi+1) (the indices are

mod 2). The game begins in our case with a fixed isomorphism f between two

induced subgraphs Y0 and Y1 of X0 and X1, respectively. Players cannot choose

previously chosen nodes, or nodes in a Yi. After n rounds, this gives rise to a list

of nodes Y0 ∪ {ai : 1 ≤ i ≤ n} from X0 and Y1 ∪ {bi : 1 ≤ i ≤ n} from X1. The

duplicator wins if for every n ≥ 1, the subgraph induced by Y0 ∪{ai : 1 ≤ i ≤ n}
is isomorphic to the subgraph induced by Y1∪{bi : 1 ≤ i ≤ n} via an isomorphism
extending f mapping ai to bi, for every 1 ≤ i ≤ n. Otherwise, the spoiler wins.
From this it follows that the duplicator has a winning strategy if and only if X0
and X1 are isomorphic via an isomorphism extending f . See [Cameron 97a] for

more on the back-and-forth method.

We let

X0 = G∞,r, X1 = G∞,r − x, f = fr−1, Y0 = G∞,r−1, Y1 = G∞,r−1 − x.

Going forward, suppose that the spoiler chooses y in G∞,r, where y is not in
G∞,r−1. We will assume that y is a node added at time-step Gr by process (P1)
(the argument for process (P2) is similar and so is omitted). Then y extends some

set A in N(z), for some A and z in G∞,r−1. Let AI = fr−1(A), and zI = fr−1(z)
in G∞,r−1 − x. Hence, there is a yI in G∞,r extending AI as y extends A. If
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yI W= x, then the duplicator chooses this node. If yI = x, then the duplicator

may choose any of the infinitely many nodes in G∞,r − x that also extends AI
as yI does. Going back is similar. Since any two nodes in V (G∞,r)\V (G∞,r−1)
are nonjoined, Claim 4.3 follows.

The map r∈ω fr : G∞ → G∞ − x is an isomorphism.
Case 2: x ∈ V (G∞,0).
Given the finite graph G∞,0, define the infinite graph GI∞,0 as follows. For

each node y of G∞,0, add infinitely many new pairwise nonjoined nodes yi with
the property that yi has the same neighbours in G∞,0 as y does. (We think of the
yi as nodes extending N(y). Hence, G

I
∞,0 ≤ G∞,1 in G∞.) It is straightforward

to see that GI∞,0 is inexhaustible. (See Figure 2 for a depiction of the graph C I4.)

Figure 2. The graph C I4.

Define a new graph GI∞ that is constructed as G∞ was, but beginning with

GI∞,0, rather than G∞,0.

Claim 4.4. GI∞ ∼= G∞.

To prove Claim 4.4, we first prove that GI∞,1 and G∞,1 are isomorphic by
extending the identity mapping g0 between G∞,0 ≤ GI∞,1 and G∞,0 ≤ G∞,1.
Suppose that the spoiler chooses a node yI in V (GI∞,1) \ V (G∞,0). Consider the
case when yI was added by process (P1). (The argument for the case when yI is
added by process (P2) is similar, and so is omitted.) The duplicator can respond
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with a node y ∈ V (G∞,1) joined to A ⊆ V (G∞,0). Going back is similar. Since no
two nodes in V (G∞,1)\V (G∞,0) or in V (GI∞,1)\V (G∞,0) are joined, as we noted
in Case 1, the duplicator can win. Using similar arguments, we obtain, for each

r ∈ ω, isomorphisms gr : GI∞,r → G∞,r so that if r ≥ 1, then gr GI∞,r−1 = gr−1.
The map

r∈ω
gr : G

I
∞ → G∞

is an isomorphism.

To finish Case 2, it is therefore sufficient to show that GI∞ is inexhaustible.

Choose y ∈ V (GI∞). If y ∈ V (GI∞,0), since GI∞,0 is inexhaustible, there is an
isomorphism g0 : G

I
∞,0 → GI∞,0 − y. As in Case 1, extend g0 to isomorphisms

gr : G
I
∞,r → GI∞,r − y, for all r ≥ 0, by the back-and-forth method. The map

r∈ω
gr : G

I∞ → GI∞ − x

is an isomorphism. If y /∈ V (GI∞,0), then proceed as in Case 1.
Recall that a graph that has an (A)-constructing sequence is pure if at each

time-step, process (P1) is used; it is mixed otherwise. One may ask whether

there are many nonisomorphic pure (A) graphs. Using Theorem 4.1, we prove

that the answer is negative, and thereby prove Theorem 3.3 of Section 3 above.

This is in stark contrast to the situation for mixed (A) graphs, as proved in

Theorem 3.4. If G0 is a finite graph, we use the notation ↑ G0 for the unique (up
to isomorphism) graph that results by applying the (P1) process for Property

(A) recursively to G0. It follows that every pure (A) graph is of the form ↑ G0
for some finite graph G0. It is not hard to see that ↑ (G :H) ∼=↑ G: ↑ H.
Proof of Theorem 3.3. It is enough to show that if G0 and H0 are finite graphs, then
↑ G0 ∼=↑ H0. For this let (Gi : i ∈ ω) and (Hi : i ∈ ω) be (A)-constructing

sequences for G =↑ G0 and H =↑ H0, respectively. As H is ℵ0-universal by
Theorem 2.2, G ≤ H . In particular, there is some n ∈ ω so that G0 ≤ Hn. Delete
from H all the finitely many nodes in S = V (Hn) \ V (G0). At time-step n+ 1,
we are left with a copy of G1 extending G0 (as it is extended in G), and finitely

many isolated nodes, say m of them (that were either joined to no node of Hn in

H , or were joined only to nodes that we deleted). Hence, Hn+1−S ∼= G1 :Km.

Since G1 extends G0, we have that H − S ∼=↑ (G0 :Km) ∼=↑ G0: ↑ Km.

At each time-step r in the construction of G (r > 0), nodes with no edges to

Gr−1 are added to Gr. These nodes give rise to connected components of G of

the form ↑ K1. Hence, G contains infinitely many connected components of the

form ↑ K1. It follows that G is isomorphic to the graph J , which consists of the

disjoint union of ↑ G0 and infinitely many disjoint copies of ↑ K1.
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As H is inexhaustible by Theorem 4.1, it follows that H − S ∼= H . But then

H ∼= H − S ∼=↑ (G0 :Km) ∼=↑ G0: ↑ Km
∼= J ∼= G,

since ↑ Kℵ0: ↑ Km
∼=↑ Kℵ0 .

The unique isomorphism type of Theorem 3.3 we name RN , since it is locally

isomorphic to R. We do not know much about RN . The infinite random graph

R is indivisible; recall that a graph G is indivisible whenever the nodes of G are

coloured red or blue, there is a monochromatic induced subgraph isomorphic to

G. For more on indivisible graphs, see [El-Zahar and Sauer 89, Fräıssé 00]. A

graph without this property is divisible. A graph G so that R ≤ G is necessarily
indivisible, since R is itself indivisible. Therefore, by Theorem 2.2, a graph with

Property (A), such as RN , is indivisible. It is not hard to see that a graph with

at least one edge and with finite chromatic number is divisible, so by the proof

of Theorem 3.4 for (B), there are examples of graphs with Property (B) that are

divisible.

To remind the reader of terminology defined earlier, a ray is an infinite path

that extends indefinitely in one direction; a double ray is an infinite path that

extends indefinitely in two directions. A one-way Hamilton path is a spanning

subgraph that is a ray, while a two-way Hamilton path is a spanning subgraph

that is a double ray. The graph R contains one- and two-way Hamilton paths.

Theorem 4.5. If G has Property (B), then the connected components of G have one-
and two-way Hamilton paths. In particular, G has a 1-factor.

While Theorem 4.5 is not suggestive of properties of the finite graphs resulting

from the copying model, it does parallel the known fact that R has one- and two-

way Hamilton paths; see [Cameron 97b].

Proof of Theorem 4.5. Let GI be a fixed connected component of G. We prove that
GI has a one-way Hamilton path; the existence of a two-way Hamilton path is
similar. Without loss of generality, let V (GI) = ω.

Define P0 to be the subgraph induced by {0}. Assume that there is a path P (n)
in GI containing the nodes {0, . . . , n}, and that the nodes of P (n) are x1, . . . , xs.
If the node n+ 1 equals some xi, then let P (n+ 1) = P (n). Otherwise, assume

that n+1 is not a node in P (n). As GI is connected, the node n+1 is connected
by a path Q to some node xi of P (n). Let Q be the path y1y2 · · · yt−1yt, where
y1 = n + 1 and yt = xi. As xi+1 and yt−1 are in N(xi), by Property (B) there
is a node z1 in G, and hence, in G

I, that is joined to both xi+1 and yt−1, and is
not a node of P (n) nor Q.
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x1 x2

xs-1xi xi+1

xs

y1

y2

yt-1

yt =

z1

zs-izs-i-1

n+1 =

P(n)
Q

P(n+1)

Figure 3. A Hamilton path containing {0, . . . , n+ 1}.

Proceeding inductively, we obtain a path of nodes z1z2 · · · zs−i in GI so that
zj+1 is joined to both zj and xi+j+1. Then the path P (n) followed by the path

zs−i · · · z2z1 is a path P (n+ 1) containing {0, . . . , n+ 1}. The desired Hamilton
path of GI is limn→∞ P (n). See Figure 3.

The infinite random graph R contains every countable bipartite graph as an

induced subgraph, so there are many such bipartite cores in graphs with the e.c.

property, or with Property (A) by Theorem 2.2. The following theorem proves

a similar result for graphs with Property (B). The infinite bipartite graph with

each vertex class infinite is written Kℵ0,ℵ0 .

Theorem 4.6. If G is a graph with Property (B) so that G0 has at least one edge,

then Kℵ0,ℵ0 ≤ G. In particular, there are infinitely many node-disjoint bipartite
cores in a graph satisfying Property (B).

Proof. Let S1 be some edge of G (by the fact that G0 has edges, we know that

G also has edges). Assume that Sn ≤ G is isomorphic to Kn,n with S1 ≤ Sn.
Suppose that Sn has nodes A ∪B, with A = {xi : 1 ≤ i ≤ n}, B = {yi : 1 ≤ i ≤
n} consisting of independent sets. By Property (B), there is a node xn+1 not in
A∪B that is joined to each node of B. Since A∪ {xn+1} ⊆ N(y1), by (B), there
is a node yn+1 not in A∪B ∪ {xn+1} that is joined to each node of A∪ {xn+1}.
Then the graph Sn+1 consisting of Sn along with xn+1 and yn+1 is a bipartite

clique strictly containing Sn. The graph H = n≥1 Sn ≤ G is isomorphic to

Kℵ0,ℵ0 .



212 Internet Mathematics

Acknowledgments

The authors wish to thank the anonymous referees for numerous excellent suggestions.

The authors would like to thank Dejan Delić and Peter Cameron for useful discus-
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Springer Verlag, 1997.

[Cooper and Frieze 01] C. Cooper and A. Frieze. “On a General Model of Web

Graphs.” In Proceedings of ESA, pp. 500—511, Heidelberg: Springer-Verlag, 2001.



Bonato and Janssen: Infinite Limits of Copying Models of the Web Graph 213

[Dill et al. 01] S. Dill, R. Kumar, K. McCurley, P. Raghavan, S. Rajagopalan, D.

Sivakumar, and A. Tomkins. “Self-Similarity in the Web.” In Proceedings of In-

ternational Conference on Very Large Data Bases, pp. 69—78, New York: ACM

Press, 2001.

[El-Zahar and Sauer 89] M. El-Zahar and N. Sauer. “The Indivisibility of the Homo-

geneous Kn-Free Graphs.” J. Combin. Theory Ser. B 47:2 (1989), 162—170.
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