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The Average Distance in a
Random Graph with Given
Expected Degrees
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Abstract. Random graph theory is used to examine the “small-world phenomenon”–

any two strangers are connected through a short chain of mutual acquaintances. We

will show that for certain families of random graphs with given expected degrees, the

average distance is almost surely of order logn/ log d̃ where d̃ is the weighted average
of the sum of squares of the expected degrees. Of particular interest are power law

random graphs in which the number of vertices of degree k is proportional to 1/kβ for
some fixed exponent β. For the case of β > 3, we prove that the average distance of the
power law graphs is almost surely of order logn/ log d̃. However, many Internet, social,
and citation networks are power law graphs with exponents in the range 2 < β < 3

for which the power law random graphs have average distance almost surely of order

log logn, but have diameter of order log n (provided having some mild constraints for
the average distance and maximum degree). In particular, these graphs contain a

dense subgraph, that we call the core, having nc/ log logn vertices. Almost all vertices
are within distance log log n of the core although there are vertices at distance logn
from the core.

1. Introduction

In 1967, the psychologist Stanley Milgram [Milgram 67] conducted a series of

experiments which indicated that any two strangers are connected by a chain

of intermediate acquaintances of length at most six. In 1999, Barabási et al.

[Albert et al. 99] observed that in certain portions of the Internet, any two
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web pages are at most 19 clicks away from one another. In this paper, we will

examine average distances in random graph models of large complex graphs. In

turn, the study of realistic large graphs provides new directions and insights for

random graph theory.

Most of the research papers in random graph theory concern the Erdős-Rényi

model Gp, in which each edge is independently chosen with the probability p
for some given p > 0 (see [Erdős and Rényi 59]). In such random graphs, the

degrees (the number of neighbors) of vertices all have the same expected value.

However, many large random-like graphs that arise in various applications have

diverse degree distributions [Aiello et al. 01b, Barabási and Albert 99, Albert

et al. 99, Jeong et al. 00, Kleinberg et al. 99, Lu 01]. It is therefore natural to

consider classes of random graphs with general degree sequences.

We consider a general model G(w) for random graphs with given expected

degree sequence w = (w1, w2, . . . , wn). The edge between vi and vj is chosen

independently with probability pij where pij is proportional to the product wiwj .

The classical random graph G(n, p) can be viewed as a special case of G(w) by

taking w to be (pn, pn, . . . , pn). Our random graph model G(w) is different

from the random graph models with an exact degree sequence as considered

by Molloy and Reed [Molloy and Reed 95, Molloy and Reed 98], and Newman,

Strogatz, and Watts [Newman et al. 00]. Deriving rigorous proofs for random

graphs with exact degree sequences is rather complicated and usually requires

additional “smoothing” conditions because of the dependency among the edges

(see [Molloy and Reed 95]).

Although G(w) is well defined for arbitrary degree distributions, it is of par-

ticular interest to study power law graphs. Many realistic networks such as

the Internet, social, and citation networks have degrees obeying a power law.

Namely, the fraction of vertices with degree k is proportional to 1/kβ for some

constant β > 1. For example, the Internet graphs have powers ranging from 2.1

to 2.45 (see [Albert et al. 99, Faloutsos et al. 99, Broder et al. 00, Kleinberg

et al. 99]). The collaboration graph of Mathematical Reviews has β = 2.97

(see [Grossman et al. 03]). The power law distribution has a long history that

can be traced back to Zipf [Zipf 49], Lotka [Lotka 26] and Pareto [Pareto 1897].

Recently, the impetus for modeling and analyzing large complex networks has

led to renewed interest in power law graphs.

In this paper, we will show that for certain families of random graphs with

given expected degrees, the average distance is almost surely (1+o(1)) logn/ log d̃.

Here d̃ denotes the second-order average degree defined by d̃ =
�
w2i /
�
wi,

where wi denotes the expected degree of the i-th vertex. Consequently, the av-

erage distance for a power law random graph on n vertices with exponent β > 3

is almost surely (1+ o(1)) logn/ log d̃. When the exponent β satisfies 2 < β < 3,
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the power law graphs have a very different behavior. For example, for β > 3,

d̃ is a function of β and is independent of n, but for 2 < β < 3, d̃ can be as

large as a fixed power of n. We will prove that for a power law graph with

exponent 2 < β < 3, the average distance is almost surely O(log logn) (and not

logn/ log d̃) if the average degree is strictly greater than 1 and the maximum de-

gree is sufficiently large. Also, there is a dense subgraph, that we call the “core,”

of diameter O(log logn) in such a power law random graph such that almost all

vertices are at distance at most O(log log n) from the core, although there are

vertices at distance at least c logn from the core. At the phase transition point

of β = 3, the random power law graph almost surely has average distance of

order logn/ log log n and diameter of order log n.

2. Definitions and Statements of the Main Theorems

In a random graph G ∈ G(w) with a given expected degree sequence w =

(w1, w2, . . . , wn), the probability pij of having an edge between vi and vj is

wiwjρ for ρ =
1

i wi
. We assume that maxi w

2
i <
�

iwi so that the probability

pij = wiwjρ is strictly between 0 and 1. This assumption also ensures that the

degree sequence wi can be realized as the degree sequence of a graph if the wi are

integers [Erdős and Gallai 59]. Our goal is to have as few conditions as possible

on the wi while still being able to derive good estimates for the average distance.

First, we need some definitions for several quantities associated with G and

G(w). In a graph G, the volume of a subset S of vertices in G is defined to be

vol(S) =
�

v∈S deg(v), the sum of degrees of all vertices in S. For a graph G

in G(w), the expected degree of vi is exactly wi and the expected volume of G

is Vol(G) =
�

iwi. By the Chernoff inequality for large deviations [Alon and

Spencer 92], we have

Prob(|vol(S)−Vol(S)| > λ) < e−λ
2/(2Vol(S)+λ/3).

For k ≥ 2, we define the k-th moment of the expected volume by Volk(S) =�
vi∈S w

k
i and we write Volk(G) =

�
iw

k
i . In a graph G, the distance d(u, v)

between two vertices u and v is just the length of a shortest path joining u and v

(if it exists). In a connected graphG, the average distance ofG is the average over

all distances d(u, v) for u and v in G. We consider very sparse graphs that are

often not connected. If G is not connected, we define the average distance to be

the average among all distances d(u, v) for pairs of u and v both belonging to the

same connected component. The diameter of G is the maximum distance d(u, v),

where u and v are in the same connected component. Clearly, the diameter is
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at least as large as the average distance. All our graphs typically have a unique

large connected component, call the giant component, which contains a positive

fraction of edges.

The expected degree sequence w for a graph G on n vertices in G(w) is said

to be strongly sparse if we have the following:

(i) The second order average degree d̃ satisfies 0 < log d̃U logn.

(ii) For some constant c > 0, all but o(n) vertices have expected degree wi

satisfying wi ≥ c. The average expected degree d =
�

iwi/n is strictly

greater than 1, i.e., d > 1 + 6 for some positive value 6 independent of n.

The expected degree sequence w for a graph G on n vertices in G(w) is

said to be admissible if the following condition holds, in addition to the

assumption that w is strongly sparse.

(iii) There is a subset U satisfying:

Vol2(U) = (1 + o(1))Vol2(G)( Vol3(U) log d̃ log log n

d̃ logn
.

The expected degree sequence w for a graph G on n vertices is said to be specially

admissible if (i) is replaced by (i’) and (iii) is replaced by (iii’):

(i’) log d̃ = O(log d).

(iii’) There is a subset U satisfying

Vol3(U) = O(Vol2(G))
d̃

log d̃
, andVol2(U) > dVol2(G)/d̃.

In this paper, we will prove the following:

Theorem 2.1. For a random graph G with admissible expected degree sequence

(w1, . . . , wn), the average distance is almost surely (1 + o(1))
logn

log d̃
.

Corollary 2.2. If np ≥ c > 1 for some constant c, then almost surely the average

distance of G(n, p) is (1 + o(1)) log nlog np , provided
logn
lognp goes to infinity as n→∞.

The proof of Corollary 2.2 follows by taking wi = np and U to be the set of

all vertices. It is easy to verify in this case that w is admissible, so Theorem 2.1

applies.
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Theorem 2.3. For a random graph G with a specially admissible degree sequence

(w1, . . . , wn), the diameter is almost surely Θ(logn/ log d̃).

Corollary 2.4. If np = c > 1 for some constant c, then almost surely the diameter
of G(n, p) is Θ(log n).

Theorem 2.5. For a power law random graph with exponent β > 3 and average degree
d strictly greater than 1, almost surely the average distance is (1+ o(1)) log n

log d̃
and

the diameter is Θ(log n).

Theorem 2.6. Suppose a power law random graph with exponent β has average

degree d strictly greater than 1 and maximum degree m satisfying logm (
logn/ log logn. If 2 < β < 3, almost surely the diameter is Θ(logn) and the

average distance is at most (2 + o(1)) log log n
log(1/(β−2)) .

For the case of β = 3, the power law random graph has diameter almost surely

Θ(log n) and has average distance Θ(log n/ log logn).

3. Neighborhood Expansion and Connected Components

Here, we state several useful facts concerning the distances and neighborhood

expansions in G(w). These facts are not only useful for the proofs of the main

theorems but also are of interest on their own right. The proofs can be found in

[Chung and Lu 01, Chung and Lu 03]

Lemma 3.1. In a random graph G in G(w) with a given expected degree sequence

w = (w1, . . . , wn), for any fixed pairs of vertices (u, v), the distance d(u, v) be-

tween u and v is greater than
!
log Vol(G)−c

log d̃

�
with probability at least 1− wuwv

d̃(d̃−1)e
−c.

Lemma 3.2. In a random graph G ∈ G(w), for any two subsets S and T of vertices,
we have

Vol(Γ(S) ∩ T ) ≥ (1− 26)Vol(S)Vol2(T )
Vol(G)

with probability at least 1 − e−c where Γ(S) = {v : v ∼ u ∈ S and v W∈ S},
provided Vol(S) satisfies

2cVol3(T )Vol(G)

62Vol22(T )
≤ Vol(S) ≤ 6Vol2(T )Vol(G)

Vol3(T )
(3.1)
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Lemma 3.3. For any two disjoint subsets S and T with Vol(S)Vol(T ) > cVol(G),
we have

Pr(d(S, T ) > 1) < e−c

where d(S, T ) denotes the distance between S and T .

Lemma 3.4. Suppose that G is a random graph on n vertices so that for a fixed

value c, G has o(n) vertices of degree less than c, and has average degree d strictly

greater than 1. Then for any fixed vertex v in the giant component, if τ = o(
√
n),

then there is an index i0 ≤ c0τ so that with probability at least 1 − c1τ
3/2

ec2τ
, we

have

Vol(Γi0(v)) ≥ τ

where the ci are constants depending only on c and d, while Γi(S) = Γ(Γi−1(S))
for i > 1 and Γ1(S) = Γ(S).

We remark that in the proofs of Theorem 2.1 and Theorem 2.3, we will take τ

to be of order log n
log d̃

. The statement of Lemma 3.4 is, in fact, stronger than what

we will actually need.

Another useful tool is the following result in [Chung and Lu 03] on the expected

sizes of connected components in random graphs with given expected degree

sequences.

Lemma 3.5. Suppose that G is a random graph in G(w) with given expected degree

sequence w. If the expected average degree d is strictly greater than 1, then the

following holds:

(1) Almost surely G has a unique giant component. Furthermore, the volume of

the giant component is at least (1− 2√
de
+o(1))Vol(G) if d ≥ 4

e
= 1.4715 . . .,

and is at least (1− 1+log d
d

+ o(1))Vol(G) if d < 2.

(2) The second largest component almost surely has size O( lognlog d ).

Proof of Theorem 2.1. Suppose G is a random graph with an admissible expected

degree sequence. From Lemma 3.5, we know that with high probability the

giant component has volume at least Θ(Vol(G)). From Lemma 3.5, the sizes

of all small components are O(log n). Thus, the average distance is primarily

determined by pairs of vertices in the giant component.

From the admissibility condition (i), d̃ ≤ n6 implies that only o(n) vertices

can have expected degrees greater than n6. Hence, we can apply Lemma 3.1 (by

choosing c = 36 log n, for any fixed 6 > 0) so that with probability 1− o(1), the
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distance d(u, v) between u and v satisfies d(u, v) ≥ (1 − 36 − o(1))logn/log d̃.
Here, we use the fact that log Vol(G) = log d̃+ logn = (1 + o(1)) logn. Because

the choice of 6 is arbitrary, we conclude the average distance of G is almost surely

at least (1 + o(1))log n/log d̃.

Next, we wish to establish the lower bound (1+ o(1))
log Vol(G)

log d̃
for the average

distance between two vertices u and v in the giant component.

For any vertex u in the giant component, we use Lemma 3.4 to see that for

i0 ≤ C6 log nlog d̃
, the i0-boundary Γi0(v)of v satisfies

Vol(Γi0(v)) ≥ 6
log n

log d̃

with probability 1− o(1).
Next, we use Lemma 3.2 to deduce that Vol(Γi(u)) will grow roughly by a

factor of (1− 26)d̃ as long as Vol(Γi(u)) is no more than
0
cVol(G) (by choosing

c = 2 log log n). The failure probability is at most e−c at each step. Hence, for
i1 ≤ log(c Vol(G))

2 log(1−26)d̃ more steps, we have Vol(Γi0+i1(v)) ≥
0
cVol(G) with probabil-

ity at least 1 − i1e−c = 1 − o(1). Here, i0 + i1 = (1 + o(1)) logn2 log d̃
. Similarly, for

the vertex v, there are integers iI0 and i
I
1 satisfying i

I
0 + i

I
1 = (1 + o(1))

log n

2 log d̃
so

that Vol(ΓiI0+iI1(v)) ≥
0
cVol(G) holds with probability at least 1− o(1).

By Lemma 3.3, with probability 1 − o(1) there is a path connecting u and v
with length i0+ i1+1+ i

I
0+i

I
1 = (1+o(1))

logn

log d̃
. Hence, almost surely the average

distance of a random graph with an admissible degree sequence is (1+o(1)) logn
log d̃

.

The proof of Theorem 2.3 is similar to that of Theorem 2.1 except that the

special admissibility condition allows us to deduce the desired bounds with prob-

ability 1 − o(n−2). Thus, almost surely every pair of vertices in the giant com-
ponents have mutual distance O(log n/ log d̃).

4. Random Power Law Graphs

For random graphs with given expected degree sequences satisfying a power law

distribution with exponent β, we may assume that the expected degrees are

wi = ci−
1

β−1 for i satisfying i0 ≤ i < n + i0, as illustrated in Figures 1 and 2.

Here, c depends on the average degree and i0 depends on the maximum degree

m, namely, c = β−2
β−1dn

1
β−1 , i0 = n(

d(β−2)
m(β−1) )

β−1.
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Figure 1. Power law degree distribution. Figure 2. Log-scale of Figure 1.

The power law graphs with exponent β > 3 are quite different from those with

exponent β < 3 as evidenced by the value of d̃ (assuming m( d).

d̃ =


(1 + o(1))d

(β−2)2
(β−1)(β−3) if β > 3.

(1 + o(1))12d ln
2m
d

if β = 3.

(1 + o(1))dβ−2 (β−2)
β−1m3−β

(β−1)β−2(3−β) if 2 < β < 3.

For the range of β > 3, it can be shown that the power law graphs are both

admissible and specially admissible. (One of the key ideas is to choose “U” in

condition (iii) or (iii’) to be a set Uy = {v : deg(v) ≤ y} for an appropriate y
independent of the maximum degree m. For example, choose y to be n1/4 for

β > 4, to be 4 for β = 4 and to be logn/(log d log log n) for 3 < β < 4). Theorem

2.5 then follows from Theorems 2.1 and 2.3.

4.1. The Range 2 < β < 3

Power law graphs with exponent 2 < β < 3 have very interesting structures that

can be roughly described as an “octopus” with a dense subgraph having small

diameter as the core. We define Sk to be the set of vertices with expected degree

at least k. (We note that the set Sk can be well approximated by the set of

vertices with degree at least k.)

Here we outline the main ideas for the proof of Theorem 2.6.

Proof of Theorem 2.6. We define the core of a power law graph with exponent β to
be the set St of vertices of degree at least t = n

1/ log log n.

Claim 4.1. The diameter of the core is almost surely O(log logn). This follows from
the fact that the core contains an Erdős-Renyi graph G(nI, p) with nI = cnt1−β
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and p = t2/Vol(G). From [Erdős and Rényi 59], this subgraph is almost surely

connected. Using a result in [Chung and Lu 01], the diameter of this subgraph

is, at most, log nI
log pnI = (1 + o(1))

logn
(3−β) log t = O(log log n).

Claim 4.2. Almost all vertices with degree at least logn are almost surely within
distance O(log logn) from the core. To see this, we start with a vertex u0 with

degree k0 ≥ logC n for some constant C = 1.1
(β−2)(3−β) . By applying Lemma

3.3, with probability at least 1 − n−3, u0 is a neighbor of some u1 with degree
k1 ≥ (k0/ logC n)1/(β−2)s . We then repeat this process to find a path with vertices
u0, u1, . . . , us, and the degree ks of us satisfies ks ≥ (k0/ log

C n)1/(β−2)
s

with

probability 1 − n−2. By choosing s to satisfy log ks ≥ log n/ log logn, we are

done.

Claim 4.3. For each vertex v in the giant component, with probability 1− o(1), v is
within distance O(log logn) from a vertex of degree at least logC n. This follows

from Lemma 4 ( choosing τ = c log log logn and the neighborhood expansion

factor cI log log logn).

Claim 4.4. For each vertex v in the giant component, with probability 1− o(n−2), v
is within distance O(log n) from a vertex of degree at least O(logn). Thus with

probability 1− o(1), the diameter is O(logn).

The proofs of Claims 4.3 and 4.4 will be given in Section 5.

Combining Claims 4.1—4.3, we have derived an upper bound O(log logn) for

the average distance. (By a similar but more careful analysis [Lu 02], this upper

bound can be further improved to c log log n for c = 2
log(1/(β−2)) .) From Claim

4.4, we have an upper bound O(log n) for the diameter.

Next, we will establish a lower bound of order log n. We note that the minimum

expected degree in a power law random graph with exponent 2 < β < 3 as

described in Section 4 is (1+o(1))
d(β−2)
β−1 . We consider all vertices with expected

degree less than the average degree d. By a straightforward computation, there

are about (β−2
β−1 )

β−1n such vertices. For a vertex u and a subset T of vertices,
the probability that u has only one neighbor which has expected degree less than

d and is not adjacent to any vertex in T is at least

3
wv<d

wuwvρ
�
j W=v
(1− wuwjρ)

≈ wuvol(Sd)ρe
−wu

≈ (1− (β − 2
β − 1)

β−2)wue−wu .
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Note that this probability is bounded away from 0, (say, it is greater than c for

some constant c). Then, with probability at least n−1/100, we have an induced
path of length at least logn

100 log c in G. Starting from any vertex u, we search for a

path as an induced subgraph of length at least log n
100 log c in G. If we fail to find such

a path, we simply repeat the process by choosing another vertex as the starting

point. Since Sd has at least (
β−2
β−1 )

β−1n vertices, then with high probability, we
can find such a path. Hence, the diameter is almost surely Θ(log n).

For the case of β = 3, the power law random graph almost surely has diameter

of order log n, but the average distance is Θ(logn/ log d̃) = Θ(log n/ log log n).

The proof will be given in Section 5.

5. The Proofs

This section contains proofs for Lemmas 3.1, 3.2, and 3.2 and Theorems 2.5

and 2.6.

Proof of Lemma 3.1. We choose k = u log Vol(G)−c
log d̃

J, satisfying

(d̃)k ≤ Vol(G)e−c.
For each fixed sequence of vertices, π = (u = v0, v1 . . . vj−1, vj = v), the proba-
bility that π is not a path of G is

1− wuwvw2i1 · · ·w2ij−1ρj

where ρ = 1/Vol(G). For a given sequence π, “π is not a path of Gβ”

is a monotone decreasing graph property. By the FKG inequality (see

[Alon and Spencer 92]), we have

Pr(d(u, v) ≥ k) ≥
k−1�
j=1

�
i1...ij−1

(1− wuwvw2i1 · · ·w2ij−1ρj)

≈
k−1�
j=1

e
−wuwvρj w1,...,wj−1 w

2
1···w2j−1

≈ e−wuwv
k−1
j=1 ρ

j( n
i=1 w

2
i )
j−1

≈ e−wuwvρ(( i w
2
i ρ)

k−1−1)/( i w
2
i ρ−1)

≥ e−wuwve
−c/d̃(d̃−1)

≥ 1− wuwv

d̃(d̃− 1)e
−c

by the definition of k.
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We will use the following general inequality of large deviation [Chung and Lu

03] for the proof of Lemma 3.2.

Lemma 5.1. [Lu 02] Let X1, . . . , Xn be independent random variables with

Pr(Xi = 1) = pi, P r(Xi = 0) = 1− pi.

For X =
�n

i=1 aiXi, we have E(X) =
�n

i=1 aipi and we define ν =
�n

i=1 a
2
i pi.

Then we have

Pr(X < E(X)− λ) ≤ e−λ
2/2ν (5.1)

Proof of Lemma 3.2. Let Xj be the indicated random variable that a vertex vj ∈ T
is in Γ(S). We have

Pr(Xj = 1) = 1−
�
vi∈S

(1− wiwjρ)

≥ Vol(S)wjρ−Vol(S)2w2jρ2.

The volume of Γ(S)∩T is just
�
vj∈T wjXj . The expected value of Vol(Γ(S)∩

T ) is Vol(S)Vol2(T )ρ−Vol(S)2Vol3(T )ρ2. Using the inequality of large deviation
in Lemma 5.1, with probability at least 1− e−c, we have

Vol(Γ(S) ∩ T ) =
3
vj∈T

wjXj

≥ Vol(S)Vol2(T )ρ−Vol(S)2Vol3(T )ρ2 −
0
2cVol(S)Vol3(T )ρ

≥ (1− 26)Vol(S)Vol2(T )ρ

by the assumption (3.1).

Proof of Lemma 3.3. For vertices vi ∈ S and vj ∈ T , the probability that vivj is not
an edge is

1− wiwjρ.
Since edges are independently chosen, we have

Pr(d(S, T ) > 1) =
�

vi∈S,vj∈T
(1− wiwjρ)

≤ e−Vol(S)Vol(T )ρ

< e−c.
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Proof of Theorem 2.5. To show that a random power law graph with exponent β

is admissible or specially admissible, the key idea is to prove condition (iii) by

choosing appropriate Us for (iii) or (iii’) while other conditions are easy to verify.

Let Uy consist of all vertices with weight less than or equal to d
β−2
β−1y where d

is the average degree. We have

Vol2(Uy) =

n3
i={ny−1/(β−1)Q

w2i

= d2
(β − 2)2

(β − 1)(β − 3)n(1− y
−(β−3) +O(

y2

n
)).

Vol3(Uy) =

n3
i={ny−1/(β−1)Q

w3i

=


d3

(β−2)3
(β−1)2(β−4)n(1− y−(β−4) +O( y

3

n
)) if β > 4.

8
27d

3n(ln y +O(y
3

n
)). if β = 4.

d3
(β−2)3

(β−1)2(4−β)n(y
4−β +O(y

3

n
)) if 3 < β < 4.

We consider the following three cases:

Case 1: β > 4. By choosing y = n1/4, U = Uy satisfies

Vol2(U) = d
2 (β − 2)2
(β − 1)(β − 3)n(1 + o(1)) = (1 + o(1))Vol2(G),

Vol3(U)

Vol2(U)
= (1 + o(1))d

(β − 1)(β − 3)
9

= O(
d̃

log d̃
).

Thus the power law degree sequence with β > 4 is both admissible and specially

admissible.

Case 2: β = 4. To prove the admissibility condition, we choose y = e
logn

log d log logn .

Then U = Uy satisfies

Vol2(U) = d2
(β − 2)2

(β − 1)(β − 3)n(1 + o(1))
= (1 + o(1))Vol2(G),

Vol3(U)

Vol2(U)
= (1 + o(1))d

2

9
log y = o(

d̃

log d̃

log n

log logn
).

Hence, the power law degree sequence with β = 4 is admissible.
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To prove the specially admissibility condition, we choose y = 4. Then U = Uy

satisfies

Vol2(U) = d2
(β − 2)2

(β − 1)(β − 3)n(1−
1

4
+ o(1))

= (
3

4
+ o(1))Vol2(G)

≈ dVol1(G),

Vol3(U)

Vol2(U)
= (1 + o(1))d

8

27
d log 4

= O(
d̃

log d̃
),

since the average degree d is bounded above by a constant in this case. Thus,

the power law degree sequence with β = 4 is specially admissible.

Case 3: 3 < β < 4. To prove admissibility, we choose y = logn
log d log logn . Then,

U = Uy satisfies

Vol2(U) = d
2 (β − 2)2 + o(1)
(β − 1)(β − 3) n = (1 + o(1))Vol2(G),

Vol3(U)

Vol2(U)
= (1 + o(1))d

(β − 2)(β − 3)
(β − 1)(4− β)y

1/(4−β))

= o(
d̃

log d̃

logn

log log n
).

Hence, the power law degree sequence with 3 < β < 4 is admissible.

To prove the specially admissibility condition, we choose y = (β−2) 2
β−3 . Then

U = Uy satisfies

Vol2(U) = d2
(β − 2)2

(β − 1)(β − 3)n(1−
1

(β − 2)2 + o(1))
= (d+ o(1))Vol(G),

Vol3(U)

Vol2(U)
= (1 + o(1))d

(β − 2)(β − 3)
(β − 1)(4− β)y

1/(4−β)

= O(
d̃

log d̃
).

Hence, the power law degree sequence with 3 < β < 4 is specially admissible and

the proof is complete.
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Proof of Claim 4.3. The main tools are Lemma 3.2 and Lemma 3.4. To apply

Lemaa 3.4, we note that the minimum expected degree (weight) is wmin = (1 +

o(1))
d(β−2)
β−1 and d > 1. We want to show that some i-neighborhood of u will

grow “large” enough to apply Lemma 3.2. Let S be i-th neighborhood of u,

consisting of all vertices within distance i from u. Let T = S(wmin, a) denote

the set of vertices with weights between wmin and awmin. Here, a is some large

value to be chosen later. We have

Vol(T ) ≈ nd(1− a2−β);
Vol2(T ) ≈ nd2(1− 1

β − 1)
2β − 1
3− β a

3−β ;

Vol3(T ) ≈ nd3(1− 1

β − 1)
3β − 1
4− β a

4−β .

To apply Lemma 3.2, Vol(Γ(S)) must satisfy:

Vol(Γ(S)) ≥ 2c

62
Vol3(T )

Vol22(T )
Vol(G)

≈ 2c

62
(3− β)2

(β − 2)(4− β)a
β−2

and

Vol(Γ(S)) ≤ 6
Vol2(T )

Vol3(T )
Vol(G)

≈ 6
(β − 2)(3− β)
(β − 1)(4− β)an.

Both the above equations are easy to satisfy by appropriately choosing the values

for “c” and “6.” For example, we can select “a” = “c” = log log log n, “6” = 1
4 , and

“τ” = log log log n. Then, Lemma 3.4 implies that there are constants c0, c1, c2

and an index i0 ≤ c0τ so that we have

Vol(Γi0(u)) ≥ τ

with probability at least 1− c1τ
3/2

ec2τ
= 1− o(1). By Lemma 3.2, with probability

at least 1− e−c = 1− 1
log logn , the volume of Γi(u) for i > i0 will grow at a rate

greater than

(1− 26)Vol2(T )
Vol(G)

≈ d(β − 2)2)
2(β − 1)(3− β)a

3−β ,

if Γi(u) has volume not too large (<
√
n). After, at most, (1 + o(1)) 2 loglogn

(3−β) log a =

o(log log n) steps, the volume of the reachable vertices is at least log2 n. Lemma
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3.3 then implies that with one additional step, we can reach a vertex of weight

logC n with probablility at least 1 − e− log2 n The total number of steps is, at
most,

c0τ + o(log logn) + 1 = o(loglogn).

The total failure probability for u to reach a vertex of weight at least logC n is,

at most,

o(1) + o(log log n)
1

log logn
+ e−Θ(log

2 n) = o(1).

Claim 4.3 is proved.

Proof of Claim 4.4. To prove that the diameter is O(log n) with probability 1− o(1),
it suffices to show that for each vertex v in the giant component, with probability

1−o(n−2), v is within distance O(log n) from a vertex of degree at least O(log n).
To apply Lemma 3.4, we choose “a” = 100, “c” = 3 log n, “6” = 1

4 , and “τ” =

( 3
c2
+ 96)

(β−3)3
(β−2)(4−β)100

β−2 logn. Similar to the proof for Claim 4.3, the total

failure probability for u to reach a vertex of weight at least logC n is, at most,

c0τ
3/2

ec2τ
+O(log log n)e−3 logn + e−Θ(log

2 n) = o(
1

n2
).

The total number of steps is, at most,

c0τ +O(log log n) + 1 = O(log n).

Now we will show a lower bound of Θ(log n) for the diameter. Recall that

the minimum weight is wmin =
d(β−2)
β−1 . We consider all vertices with weight less

than d. There are (β−2
β−1 )

β−1n such vertices. For a vertex u, the probability that
u has only one neighbor and having weight less than d is at least3

wv<d

wuwvρ
�
j W=v
(1− wuwjρ)

≈ wuVol(S(wmin,
β − 1
β − 2))ρe

−wu

≈ (1− (β − 2
β − 1)

β−2)wue−wu .

Note that this probability is larger than some constant c. Thus with proba-

bility at least n−1/100, we have an induced path of length logn
100 log c . Starting with

a vertex u, we search for a path of length log n
100 log c as an induced subgraph in

S(wmin,
β−1
β−2 ). If we fail to find such a path, we simply repeat the process by

selecting another starting vertex. Since S(wmin,
β−1
β−2 ) has (

β−2
β−1 )

β−1n vertices,
with high probability, we will find such a path. Hence, the diameter is Θ(log n).
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Proof of Theorem 2.6 for the case β = 3. We first examine the following. Let T denote
the set of vertices with weights less than t. Then we have

Vol(T ) =

n3
i=n( d2t )

2

d

2
(
i

n
)−1/2

≈ n

8 n

( d2t )
2

d

2
x−1/2dx

= nd(1− d

2t
),

Vol2(T ) =

n3
i=n( d2t )

2

d2

4
(
i

n
)−1

≈ n

8 n

( d2t )
2

d2

4
x−1dx

=
nd2

2
log

2t

d
,

Vol3(T ) =

n3
i=n( d2t )

2

d3

8
(
i

n
)−3/2

≈ n

8 n

( d2t )
2

d3

8
x−3/2dx

=
nd3

4
(
2t

d
− 1)

=
nd2

2
(t− d

2
).

2cVol3(T )Vol(G)

62Vol22(T )
≈ 2c

nd2

2 (t− d
2 )nd

62(nd
2

2 log 2t
d
)2
≈ 2c(2t/d− 1)

62 log2 2t/d
.

We state the following useful lemma which is an immediate consequence of

Lemma 3.2.

Lemma 5.2. Suppose a random power law graph with exponent β = 3 has average

degree d. For any 6 < 1/2, c > 0, any set S with supposed Vol(S) > 2c
62

2t/d
log2 2t/d
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and Vol(S) ≤ n2/3, satisfies

Vol(Γ(S)) > (1− 26)d
2
log

2t

d
Vol(S)

with probability at least 1− e−c.

By Lemma 3.1, almost surely the average distance is at least (1 + o(1)) logn
log d̃

.

Now we will prove an upper bound by establishing a series of facts.

Claim 5.3. For a vertex u in the giant component, with probability at least 1− 1
log2 n

,

the volume of Γi1(u) is at least log
6 logn. for some i1 = O(log

6 log n).

Proof of Claim 5.3. We use Lemma 3.1, with the choice of “τ” = log6 log n. Thus,
with probability at least 1 − 1

log2 n
, there are a constant C and an index i0

satisfying: i0 ≤ C log6 logn and Vol(Γi0(u)) ≥ log6 log n.

Claim 5.4. With probability at least 1−o( 1
log2 n

), a subset S with Vol(S) ≥ log6 logn
has Vol(Γi(S)) > m if i > logm

log logm .

Proof of Claim 5.4. We apply Lemma 5.2 repeatedly. At each step, we choose

“c” = log2 log n, “6” = 1
log logn , and “t” =

d62ai
4c log2 6

2ai
2c where ai is defined

recursively as follows. First, we define a0 ≥ log6 log n. For i ≥ 1, we define

ai+1 =
d
10ai log ai. We note that ai+1 > ai and ai ≥ log6 log n. We will prove

by induction that Vol(Γi(S)) ≥ ai. From Claim 5.3, it holds for i = 0. Suppose

that it is true for i. We verify the assumption for Lemma 5.2 since

2t/d

log2 2t/d
=

62ai

2c

log2 6
2ai
2c

(log 62ai
2c + 2 log log

62ai
2c )

2

≤ 62ai

2c

≤ 62Vol(Γi(S))

2c
.

Hence,

Vol(Γi+1(S)) ≥ (1− 26)ai d
2
log

2t

d

≥ d

10
ai log ai.

= ai+1
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Next we will inductively prove ai ≥ (i + s)i+s for s = e10e/d. We can assume
that a0 = log

6 logn ≥ ss since s is bounded. For i + 1, we have

ai+1 ≥ d

10
ai log ai

≥ d

10
(i+ s)i+s(i+ s) log(i+ s)

≈ (i+ 1 + s)i+1+s
d

10e
log(i+ s)

> (i+ 1 + s)i+1+s.

Therefore, we have proved that ai ≥ (i+s)i+s. Let i = logm
log logm−log log logm −s =

(1 + o(1)) logm
log logm . Then,

ai ≥ (i+ s)i+s

≥ m.

Claim 5.5. With probability at least 1 − o( 1
log2 n

), a subset S with Vol(S) ≥ m

satisfies Vol(Γi(S)) >
√
n log n if i >

(1+o(1))(log
√
n−logm)

log( d2 logm)
.

Proof of Claim 5.5. To apply Lemma 5.2, we choose “c” = log2 log n, “6” = 1
log logn ,

and “t” = m. The assumptions of Lemma 5.2 can be easily verified as follows:

Vol(S) ≥ m

≥ 2c

62
2m/d

log 2m/d
.

Here, we use the assumption m > nδ . With probability 1 − O( 1
log2 logn

), the

volume Γi(S) grows at the rate of (1− 26)d̃ as i increases. Claim 5.5 is proved.

By Lemma 3.3, almost surely the distance of two sets with weight greater than√
nlogn is at most 1. By Claims 4.1—4.3, almost surely the distance of u and v

in the giant connected component is

2(O(log6 log n) + (1 + o(1))
logm

log logm
+

(1 + o(1))(1/2 log n− logm)
log(d2 logm)

) = Θ(
log n

log logm
).
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To derive an upper bound for the diameter, we need the following:

Claim 5.6. For a vertex u in the giant component, with probability at least 1− 1
n3
,

the volume of Γi1(u) is at least 8e
4 logn for some i1 = O(logn).

Proof of Claim 5.6. By choosing “τ” = 8e4 logn, Lemma 3.1, implies that there

are a constant C and an index i0 satisfying: i0 ≤ 8Ce4 log n and Vol(Γi0(u)) ≥
8e4 logn with probability at least 1− n−3.

Claim 5.7. With probability at least 1− n−3, any subset S with Vol(S) ≥ 8e4 logn
satisfies Voli(S) >

√
n logn if i > (1 + o(1)) logn2 log d .

Proof of Claim 5.7. We will apply Lemma 5.2 with the choice of “c” = 4 logn,

“6” = 1
4 and “t” =

e4d
2 . Note that

2c

62
2t/d

log2 2t/d
= 8e4 log n.

By Lemma 5.2, with probability 1−n4 at each step, the volume of i-neighborhoods
of S grows at the rate of

(1− 26)d
2
log(2t/d) = d

if the volume of Γi(S) is O(
√
n). By Claims 4.4 and 5.3, with probability at

least 1−1/n, for all pair of vertices u and v in the giant component, the distance
between u and v is at most

2(O(logn) + (1 + o(1))
logn

2 log d
) + 1 = O(logn).

The lower bound Θ(logn) of the diameter follows the same argument as in the

proof for the range 2 < β < 3.

The proof of Theorem 2.6 is complete.

6. Summary

When random graphs are used to model large complex graphs, the small world

phenomenon of having short characteristic paths is well captured in the sense that

with high probability, power law random graphs with exponent β have average
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Figure 3. The power law degree distribution of the Collaboration Graph G2.

distance of order log n if β > 3, and of order log logn if 2 < β < 3. Thus, a

phase transition occurs at β = 3 and, in fact, the average distance of power law

random graphs with exponent 3 is of order log n/ log logn. More specifically,

for the range of 2 < β < 3, there is a distinct core of diameter log logn so that

almost all vertices are within distance log logn from the core, while almost surely

there are vertices of distance logn away from the core.

Another aspect of the small world phenomenon concerns the so-called cluster-

ing effect, which asserts that two people who share a common friend are more

likely to know each other. However, the clustering effect does not appear in

random graphs and some explanation is in order. A typical large network can be

regarded as a union of two major parts: a global network and a local network.

Power law random graphs are suitable for modeling the global network while the

clustering effect is part of the distinct characteristics of the local network.

Based on the data graciously provided by Jerry Grossman [Grossman et al.

03], we consider two types of collaboration graphs with roughly 337,000 authors

as vertices. The first collaboration graph G1 has about 496,000 edges with each

edge joining two coauthors. It can be modeled by a random power law graph

with exponent β1 = 2.97 and d = 2.94. The second collaboration graph G2 has

about 226,000 edges, each representing a joint paper with exactly two authors.

The collaboration graph G2 corresponds to a power law graph with exponent
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Figure 4. An induced subgraph of the collaboration graph G2.

β2 = 3.26 and d = 1.34 (see Figures 3 and 4). Theorem 2.5 predicts that the

value for the average distance in this case should be 9.89 (with a lower order error

term). In fact, the actual average distance in this graph is 9.56 (see [Grossman

et al. 03]).
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