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Detecting a
Network Failure

Jon Kleinberg

Abstract. Measuring the properties of a large, unstructured network can be diffi-

cult: One may not have full knowledge of the network topology, and detailed global

measurements may be infeasible. A valuable approach to such problems is to take mea-

surements from selected locations within the network and then aggregate them to infer

large-scale properties. One sees this notion applied in settings that range from Internet

topology discovery tools to remote software agents that estimate the download times

of popular web pages. Some of the most basic questions about this type of approach,

however, are largely unresolved at an analytical level. How reliable are the results?

How much does the choice of measurement locations affect the aggregate information

one infers about the network?

We describe algorithms that yield provable guarantees for a particular problem of

this type: detecting a network failure. Suppose we want to detect events of the following

form in an n-node network: An adversary destroys up to k nodes or edges, after which
two subsets of the nodes, each of size at least εn, are disconnected from one another. We
call such an event an (ε, k)-partition. One method for detecting such events would be
to place “agents” at a set D of nodes, and record a fault whenever two of them become

separated from each other. To be a good detection set, D should become disconnected

whenever there is an (ε, k)-partition; in this way, it “witnesses” all such events.

We show that every graph has a detection set of size polynomial in k and ε−1, and
independent of the size of the graph itself. Moreover, random sampling provides an

effective way to construct such a set. Our analysis establishes a connection between

graph separators and the notion of VC-dimension, using techniques based on matchings

and disjoint paths.
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1. Introduction
1.1. Inferring Network Properties

In large, unstructured networks, it can be difficult to answer even the most basic

questions–What does the topology look like? How many (large) connected

components are there? What is the average distance (or packet roundtrip time)

between pairs of nodes? Indeed, a vein of recent work has focused on the issue of

designing algorithms that operate on networks for which we do not necessarily

have an explicit representation, or for which detailed global measurements are

not feasible (e.g., [Chung et al. 01, Claffy et al. 99, Paxson 96, Ratnasamy and

McCanne 99, Siamwalla et al. 98] and, in a fairly different context, [Bharat and

Broder 98, Lawrence and Giles 99]).

Such work has arisen from a variety of different motivations, but much of

it–especially in the context of Internet performance metrics–is based on the

notion of taking measurements from selected locations within the network, and

then aggregating these measurements to infer large-scale network properties.

This approach is used, for example, in structural analysis based on Internet to-

mography [Chung et al. 01, Claffy et al. 99], algorithms for discovering Internet

topology [Siamwalla et al. 98] and routing structures [Ratnasamy and McCanne

99], and mechanisms for estimating a variety of Internet performance metrics

[Paxson 96]. Companies such as Keynote Systems [Keynote 03] provide infor-

mation on the average response time of home page requests to high-volume web

sites by combining data collected from software “agents” distributed through the

Internet.

This type of consideration–combining data from measurement agents in a

network–forms the crux of our concerns in this paper. How does the choice of

locations for such agents affect the aggregate information one infers about the

network? How large a subset of locations do we need in order to achieve a desired

level of confidence in such information? For most natural performance metrics,

these questions lead quickly to open problems.

1.2. Network Connectivity

We formulate a concrete inference problem concerning one of the most funda-

mental network properties–connectivity. Consider an undirected graph G on n

nodes, which is initially connected. Suppose, for a parameter ε > 0, we are inter-

ested in detecting ε-partitions: failures of network elements after which there are

two subsets of nodes A and B, each of size at least εn, such that no node in A has

a path to any node in B. For a parameter k > 0, we wish to be able to detect

any ε-partition that is caused by the failure of up to k (adversarially chosen)



Kleinberg: Detecting a Network Failure 39

nodes or edges, and record the occurrence of such an event. Note that increasing

k allows an adversary more power, so handling larger values of k represents a

sequence of successively more difficult problems.

Here is a general approach for doing this, motivated by the type of analysis

discussed above. We place “monitoring agents” at a subset D of the nodes of

G, and each of these agents periodically engages in communication with all the

others. Now, if at some point in time, there are nodes u, v ∈ D such that the

agents at u and v have no path connecting them, we can record a fault in the

network. Such a protocol clearly has the property that a fault is only recorded

if the network has actually become disconnected; we would like to choose D so

that a fault is always recorded when the deletion of up to k nodes or edges has

resulted in an ε-partition. How large a set D do we need in order to achieve this,

for an underlying graph G?

We make this question precise as follows. Let G = (V,E) be a connected

graph; by an element of G, we mean one of its nodes or edges. We say that two

sets of nodes A and B are separated if there is no path with one end in A and

the other in B. We say that a set of elements Z is an (ε, k)-partitioning set if

|Z| ≤ k and G\Z contain disjoint subsets of nodes A and B, each of size at least
εn, that are separated. Finally, we say that a set D ⊆ V is an (ε, k)-detection

set if for every (ε, k)-partitioning set Z, there are two nodes u, v ∈ D \Z that lie
in different connected components of G \ Z. Such a pair of nodes will no longer
be able to communicate after the deletion of the elements in Z, and hence will

“witness” the partitioning of the network.

Clearly, by taking D to be the entire node set V , we obtain an (ε, k)-detection

set. The question is whether there is a much smaller sample with the same

property.

Our main result is that for every graph G, there is an (ε, k)-detection set

whose size is bounded by a function of ε and k only, independent of the number

of nodes. Specifically, we show

Theorem 1.1. Every graph G has an (ε, k)-detection set of size O(k3ε−1 log ε−1).
Moreover, a set of

O(k3ε−1 log ε−1 + ε−1 log δ−1)

nodes chosen uniformly at random is an (ε, k)-detection set with probability at

least 1− δ.

Thus, the theorem also shows that uniform random sampling yields a detection

set with high probability; in particular, this means that one can construct a small

detection set without detailed local knowledge of the network topology.
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The heart of the proof is the analysis of this sampling procedure. For this,

we use the notion of VC-dimension [Vapnik and Chervonenkis 71]; we define a

particular set system over the vertex set of the graph, show that it has small

VC-dimension, and then relate detection sets to ε-nets [Haussler and Welzl 87]

for this set system. It turns out that the most natural set systems here actually

have very large VC-dimension, and so are not useful in our analysis; formulating

and analyzing a set system for which the VC-dimension is bounded raises some

interesting graph-theoretic issues, including connections to theorems of Gallai

and Mader on disjoint paths [Gallai 61, Mader 78] that generalize the Tutte-

Berge theorem on nonbipartite matchings [Berge 58, Lovász and Plummer]. We

view the connection developed here between VC-dimension and the separators

of a graph as one of the contributions of this work, and believe that our style of

analysis may be amenable to related problems as well.

The role of node and edge separators here suggests connections to problems

such as approximating the failure probability of a network [Karger 95]. It is

important to note, however, that the issues are quite different at a technical

level. Specifically, we are concerned with choosing a fixed set of nodes D from

which we can detect any possible (adversarially chosen) failure of a particular

type. Also, we allow here for node failures in addition to edge failures; network

reliability allowing node failures, on the other hand, is largely an open question

[Karger 95].

1.3. Generalizations

We will actually prove the following strengthening of Theorem 1.1. Suppose that

the nodes of our graph are initially partitioned into two classes: end nodes V0,

and internal nodes V1. We are only allowed to place monitoring agents at nodes

in V0, and we are interested in detecting ε-partitions of V0.

Thus, we say that a set of elements Z is an (ε, k)-partitioning set with respect

to V0 if |Z| ≤ k and G \ Z contains disjoint subsets A,B ⊆ V0, each of size at
least ε|V0|, that are separated. We say that a set D ⊆ V0 is an (ε, k)-detection
set for V0 if for every set Z that is (ε, k)-partitioning with respect to V0, there

are two nodes u, v ∈ D \ Z that lie in different connected components of G \ Z.
Our generalization of Theorem 1.1 is now simply the following.

Theorem 1.2. For every graph G = (V,E), and any set V0 ⊆ V , there is an (ε, k)-
detection set for V0 of size O(k

3ε−1 log ε−1). Moreover, a set of

O(k3ε−1 log ε−1 + ε−1 log δ−1)
nodes chosen uniformly at random from V0 is an (ε, k)-detection set for V0 with

probability at least 1− δ.
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1.4. Alternate Notions of Detection

We note that there are two natural strengthenings of our notion of detection–in

which we drop one or the other of the parameters ε and k–but neither of these

can be achieved in any nontrivial way.

Specifically, one natural strengthening would be to drop the parameter ε and

ask that a set DI have the following property: For any Z ⊆ V ∪ E of size at

most k, if G \Z is not connected, then some two nodes of DI \Z lie in different
components of G \ Z. But if we consider any 2-connected d-regular graph, and
set k = d, we see that Z could consist of the d edges incident to any node, and

hence, we would need to take DI = V .
A second natural strengthening would be to drop the parameter k and ask

that a set DII have the following property: For any Z ⊆ V ∪E, if G \Z contains
separated subsets A and B, each of size at least εn, then some two nodes of

DII \ Z lie in different components of G \ Z. But in this case, consider the star
graph G = K1,n−1, and suppose DII ⊆ V has fewer than (1 − ε)n nodes. Let

Z consist of all edges incident to leaves of G not in DII. G \ Z contains two

separated sets, each of size at least εn, but DII is completely contained in a
single component of G \ Z.
1.5. A Simple Bound Depending on the Size of the Graph

From a qualitative perspective, the crucial feature of our main result is that

the size of the detection set can be bounded independently of the size of the

underlying graph. Indeed, if one is willing to accept a size bound depending on

n = |V | and m = |E|, then one can apply the following easy argument.
Suppose we select a set of nodes D at random from G to form our detection

set, and let c = |D|. For any particular (ε, k)-partitioning set Z, the probability
that D lies entirely in a single component of G\Z is at most (1−ε)c. If we choose
c = Θ(kε−1 log(m+ n)), this probability can be made less than (m+ n)−βk for
any constant β > 1. But there are at most (m+ n)k possible (ε, k)-partitioning

sets (simply because there are at most this many ways to choose k elements

from G); hence applying the union bound over all such sets, we see that D is an

(ε, k)-detection set with high probability.

1.6. Subsequent Results

Since the appearance of the conference version of this paper, there have been

two extensions of the results presented here. Fakcharoenphol [Fakcharoenphol

01] improved the VC-dimension bound we obtain for the set system defined in

Section 3, leading to an improved bound of O(kε−1 log k log ε−1) on the size of
an (ε, k)-detection set in an arbitrary graph.
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Gupta [Gupta 00] introduced the notion of a weak detection set, which satisfies

a less stringent requirement than our definition here; specifically, one says that

DI is a weak detection set if for every (ε, k)-partitioning set Z, it is the case that
DI intersects Z, or there are two nodes u, v ∈ DI that lie in different connected
components of G \ Z. (In other words, as an alternative to having nodes of DI
in different components, it is sufficient that the failure of Z causes one of the

nodes in DI to fail.) Gupta shows that every graph has a weak detection set
of size O(kε−1), a bound that is easily seen to be tight. His proof technique
involves a construction in terms of the structure of the underlying graph, and

does not imply a result for random sampling of nodes. Whether a comparable

bound can be obtained under the definition of detection sets that we use here is

an interesting open question.

2. Detecting Edge Failures

We begin by considering the special case in which only edges can fail. We also

assume here that V0 = V . Focusing on this special case first provides a good

illustration of the way in which we use VC-dimension arguments; it also allows

us to work with a particularly natural set system defined over the vertex set for

which we can show that our VC-dimension analysis is tight.

Thus, we say that D ⊆ V is an (ε, k)-detection set with respect to edge failures
if for every (ε, k)-partitioning set Z consisting only of edges, some two nodes of D

lie in different components of G\Z. We say that a set S ⊆ V is k-edge-separable
if there exists a set Z of at most k edges such that S is the union of connected

components of G \ Z.
It is not difficult to show that a set which meets every large k-edge-separable

set is, in fact, a detection set.

Lemma 2.1. If D ⊆ V intersects every k-edge-separable set of size at least εn, then

it is an (ε, k)-detection set with respect to edge failures.

Proof. Let Z be a set of edges of size at most k, and suppose there exist disjoint
sets A,B ⊆ V , each of size at least εn, that are separated in G \ Z. Let AI
denote the union of all components of G \Z that intersect A, and let BI denote
the union of all components of G \ Z that intersect B; note that AI and BI are
disjoint. Also, each of AI and BI is a k-edge-separable set of size at least εn;
hence D contains at least one node from each of AI and BI, and these lie in
different components of G \ Z.
We need the following background on the VC-dimension of set systems. Let Ω

be a finite set and X a collection of subsets of Ω. We say that A ⊆ Ω is shattered
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by X if for all B ⊆ A, there exists an X ∈ X such that B = A ∩ X. The
VC-dimension of the set system (Ω,X ) is the maximum cardinality of a subset

of Ω that is shattered by X . Here is a simple lemma, which we note for later
use.

Lemma 2.2. Let (Ω,X ) be a set system, ΩI a subset of Ω, and X |ΩI = {X∩ΩI : X ∈
X}. Then the VC-dimension of (ΩI,X|ΩI) is bounded above by the VC-dimension
of (Ω,X ).

We say that N ⊆ Ω is an ε-net with respect to (Ω,X ) if for every X ∈ X of

cardinality, at least ε|Ω|, the set N contains an element of X.

We now have the following theorem of Blumer et al. [Blumer 89], strengthening

a result of Haussler and Welzl [Haussler and Welzl 87].

Theorem 2.3. ([Blumer 89, Haussler and Welzl 87]) There is a function

f(d, ε, δ) = O(dε−1 log ε−1 + ε−1 log δ−1)

such that the following holds. Let (Ω,X ) be any set system with VC-dimension

at most d. Then a random subset of Ω of size f(d, ε, δ) is an ε-net with probability

at least 1− δ.

The crux of this theorem is the nonobvious point that there exist ε-nets for

arbitrary set systems with a size that is polynomial in ε−1 and the VC-dimension,
and independent of the cardinality of the underlying set Ω.

Taken together, Lemma 2.1 and Theorem 2.3 suggest that we focus on the set

system (V,S), where S consists of the k-edge-separable sets. Indeed, Lemma 2.1
states that an ε-net with respect to this set system will be an (ε, k)-detection

set.

We bound the VC-dimension of this set system by the following line of reason-

ing: Any large set of nodes A can be “paired up” in G via edge-disjoint paths;

deleting a set of k edges cannot destroy all these paths; and hence there is no

k-edge-separable set whose intersection with A produces exactly one node from

each group in our pairing. It then follows that A cannot be shattered.

To show how such a pairing can be achieved, we use the following lemma.

Lemma 2.4. Let H = (VH , EH) be a connected graph, and T ⊆ VH a set of terminals
of cardinality 2f, for a natural number f. Then there exist mutually edge-disjoint

paths P1, P2, . . . , Pf such that each node in T appears as one end of exactly one

of these paths.
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Proof. It clearly suffices to prove the result when H is a tree; indeed, if it holds

in trees, then for an arbitrary connected graph K, we can construct the desired

disjoint paths in a spanning tree of K.

We will prove the result by induction on the number of nodes in H , with the

two-node tree forming an easy base case. For a larger tree H , we observe that if

any leaf v does not belong to T , then we can delete v and proceed inductively.

Thus we will suppose that all leaves belong to T . Now, let v ∈ T be an arbitrary
leaf, let w be the node adjacent to v, and consider the following two cases.

(i) w ∈ T . In this case, define H I to be the tree H with edge (v, w) and node v

deleted, and define T I = T \ {v, w}. By induction, there exist edge-disjoint
paths joining the terminals T I in H I; together with the one-edge path from
v to w, this yields the desired paths joining T in H .

(ii) w W∈ T . In this case, we again define H I to be the tree H with edge (v, w)

and node v deleted, and define T II = (T \ {v}) ∪ {w}. By induction, there
exist edge-disjoint paths joining the terminals T II in H I; by concatenating
the edge (v, w) to the end of the path terminating at w, we obtain the

desired paths joining T in H .

Lemma 2.5. The VC-dimension of (V,S) is at most 2k + 1.

Proof. Let us consider an arbitrary set A ⊆ V of size 2k + 2; we must show that

it is not shattered by (V,S). We apply Lemma 2.4, obtaining a set of mutually
edge-disjoint paths P1, P2, . . . , Pk+1 such that each node in A appears as one end

of exactly one of these paths. Relabeling A if necessary, we will assume that Pi
has ends equal to ai and ai+k+1.

Now we claim that B = {a1, a2, . . . , ak+1} cannot be written as A∩ S for any
k-edge-separable set S. Suppose it could, and let Z ⊆ E have the property that
|Z| ≤ k and S is a union of connected components of G \ Z. Since |Z| < k + 1,
there is some path Pi that contains no edge in Z. But then we have ai ∈ S,
ai+k+1 W∈ S, and a path connecting them in G \ Z–this is a contradiction.

By Lemma 2.5 and Theorem 2.3, a small random set of nodes of V will form

an ε-net of the set system (V,S) with high probability. By Lemma 2.1, such a
set system will be a detection set. Thus we have the following theorem.

Theorem 2.6. A random subset of V of size

f(2k + 1, ε, δ) = O(kε−1 log ε−1 + ε−1 log δ−1)
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is an (ε, k)-detection set with respect to edge failures with probability at least

1− δ.

In fact, the bound on the size of a random subset needed in Theorem 2.6

is asymptotically tight. Consider a graph G that is a two-level rooted tree;

the root v has a set of c children W = {w1, . . . , wc}, where c = Ω(kε−1), and
each node wi has at least εn/k children. Now, standard bounds for occupany

problems [Alon and Spencer 92] show that if we choose a random sample D of

size o(kε−1 log ε−1), then with high probability, D fails to intersect at least k of

the subtrees rooted at nodes in W . Let F denote the set of edges from v to k of

these nodes in W ; we observe that F is an (ε, k)-partitioning set, and all nodes

in D belong to a single component of G \ F .
For the case in which only edges can fail, our notion of detection sets is equiva-

lent to Gupta’s notion of weak detection sets [Gupta 00]. As a result, his theorem

shows that every graph has an (ε, k)-detection set with respect to edge failures

of size O(kε−1). (The example of the previous paragraph shows that there are
graphs in which a detection set of such a size cannot be obtained through uniform

random sampling.)

We conclude this section with a lower bound matching the result in Lemma 2.5.

Proposition 2.7. There exist graphs G = (V,E) for which the VC-dimension of the
associated set system (V,S) is equal to 2k + 1.
Proof. Since Lemma 2.5 provides an upper bound, we need only demonstrate a
graph G = (V,E) for which some set of 2k + 1 nodes is shattered by k-edge-

separable sets.

Let G be the star graph K1,2k+1, and let A be the leaves of G; we claim that

A is shattered by (V,S). Indeed, let B be any subset of A. If |B| ≤ k, then

B is k-edge-separable as we may delete the set Z of all edges incident to nodes

in B. Hence, B = A ∩ S for a set S ∈ S. On the other hand, if |B| > k,

then |A \ B| ≤ k. In this case, we may delete the set Z of all edges incident to
nodes in A \B; one of the components of the resulting graph is V \ (A \B), and
B = A ∩ (V \ (A \B)).

3. Detecting General Failures

Analyzing the construction of detection sets when both nodes and edges can fail

is a much more complicated problem. To see some of the issues involved, we first

consider what goes wrong when we try to extend the technique of the previous

section in a direct way.
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By analogy with the notion of k-edge-separability, we can define a set S to be

k-separable if there exists a set Z of at most k elements (i.e. nodes or edges) such

that S is the union of connected components of G \ Z. Now, a direct analogue
of Lemma 2.1 still applies with this new definition: an ε-net with respect to

k-separable sets would indeed be an (ε, k)-detection set. Unfortunately, the

corresponding analogue of Lemma 2.5 now fails badly: The VC-dimension of the

k-separable sets in a graph can be nearly as large as the size of the vertex set

itself. Consider the star graph K1,n−1: Every subset of the leaves is 1-separable,
as can be seen by deleting the singleton set Z consisting of the “center” of the

star. Consequently, for this graph, the approach of the previous section will yield

an upper bound for the size of (ε, k)-detection sets that is actually larger than

n, the number of nodes.

However, while the star graph shows that k-separable sets can have large

VC-dimension, it does not provide a counterexample to the existence of small

detection sets. We simply need to base our analysis on something stronger than

k-separable sets. Thus, in this section, we consider a more complicated set system

defined over the vertex set V of a graph, establish a bound on the VC-dimension

of this set system, and show that ε-nets for this set system yield detection sets.

We begin with a connected graph G = (V,E), and a partition of V into sets V0
of end nodes and V1 of internal nodes. Recall that our detection set D must be

a subset of V0 (i.e., we can only place monitoring agents at end nodes), and that

we are trying to detect partitions of V0. Let n0 = |V0| and n1 = |V1|. We will
assume that k < 1

3εn0; for otherwise, we can choose all of V0 as our detection

set and still remain within the bounds of Theorem 1.2.

We first subdivide each edge of G, adding each of the subdividing nodes to

the set V1. In this way, we may assume that any (ε, k)-partitioning set Z we

consider consists only of nodes; for if it contains an edge e, we can replace e with

an appropriate subdividing node in V1, and this new set will induce the same

partition of V0.

Now, what was the underlying problem in using the collection of k-separable

sets? Essentially, it allowed too many possible unions of distinct components.

We need a way to reduce the combinatorial complexity of the underlying set

system, by restricting the way in which we form unions of components, and at

the same time keep the set system rich enough that its ε-nets form detection

sets. One natural way is to impose a lexicographic order on nodes, and hence

on components, and force our unions to respect this ordering. Thus, let us

arbitrarily index the vertex set V = {v1, v2, . . . , vn}. Given two disjoint subsets
A and B, we say that A precedes B lexicographically if the minimum index of a

node in A is less than the minimum index of a node in B. Now, we say that S

is a k-segmental set if it can be obtained in the following way:
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(i) Choose a set Z of at most k nodes. (Recall that we will only consider the

deletion of nodes from now on.)

(ii) Let U1, U2, . . . , Us be the connected components of G \ Z, indexed in as-
cending lexicographic order.

(iii) For numbers p and q (1 ≤ p ≤ q ≤ s), define S = Up ∪ Up+1 ∪ · · · ∪ Uq.
Thus, briefly, S is the union of a set of connected components of G \ Z that are
consecutive in lexicographic order. We will say that Z is the generator of S, and

that {Up, . . . , Uq} are the constituents of S.
We first establish that the set system of k-segmental sets is related to the

construction of detection sets. For a subset of nodes U , we define its V0-weight

to be the cardinality of U ∩V0, and we denote this quantity by π0(U) = |U ∩V0|.

Lemma 3.1. If D ⊆ V intersects every k-segmental set of V0-weight at least
1
3εn0,

then it is an (ε, k)-detection set for V0.

Proof. Let Z be a set of nodes of size kI ≤ k, and let U1, . . . , Us be the components
of G \ Z in ascending lexicographic order. Suppose there exist disjoint sets

A,B ⊆ V \ Z, each of V0-weight at least εn0, that are separated in G \ Z. In
this case, it follows that no component Ui has V0-weight greater than (1− ε)n0.
Now, let j be the minimum index such that π0(U1 ∪ · · ·∪Uj) > 1

3εn0; then we

must have

π0(U1 ∪ · · · ∪ Uj) ≤ 1

3
εn0 + (1− ε)n0

≤ (1− 2
3
ε)n0.

Thus,

π0(Uj+1 ∪ · · · ∪ Us) ≥ n0 − kI − (1− 2
3
ε)n0

=
2

3
εn0 − kI ≥ 1

3
εn0.

Now, U1 ∪ · · ·∪Uj and Uj+1 ∪ · · ·∪Us are both k-segmental sets of V0-weight at
least 13εn0, and so D contains at least one node in each; and these lie in different

components of G \ Z, as required.

Let E denote the collection of all k-segmental subsets of V . We wish to show that
(V, E) has bounded VC-dimension; then Lemma 2.2 will imply that (V0, E|V0) has
bounded VC-dimension as well, allowing us to use Theorem 2.3 in conjunction
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with Lemma 3.1. In the analogous situation in the previous section, we used an

argument based on the fact that every subset of nodes of even cardinality could

be partitioned into two subsets linked by edge-disjoint paths. But this approach

cannot be directly applied here: In the example of K1,n−1, we see that a graph
can have a large set of nodes (the leaves) for which no two large disjoint subsets

can be paired up via node-disjoint paths.

Thus, linkages via node-disjoint paths behave very differently from linkages

via edge-disjoint paths. To analyze the obstacles to linkages via node-disjoint

paths, we use the following min-max theorem due to Gallai [Gallai 61]

Theorem 3.2. ([Gallai 61]) Let H = (VH , EH) be a graph, and let A ⊆ VH . Suppose
that for a number f, there is no set of f + 1 mutually node-disjoint paths in H,

all of whose ends are in A. Then there exists a set W ⊆ VH so that G \W has

components X1, . . . , Xt and

|W |+
t3
i=1

� |A ∩Xi|
2

b
≤ f.

Note thatW constitutes a witness to the fact that no set of f+1 disjoint paths

exists: Each path with ends in A must “consume” a node in W (accounted for

by the first term) or two nodes of A that lie in the same component of G \W
(accounted for by the second term). We refer the reader to [Frank 90, Schrijver

01] for a discussion of Theorem 3.2 and some related results, including a deep

generalization due to Mader [Mader 78].

As a first step, we derive a consequence of Theorem 3.2 that is slightly weaker,

but easier to use in the arguments to follow.

Lemma 3.3. Let H = (VH , EH) be a graph, and let A ⊆ VH . Suppose that for a
number f, there is no set of f+1 mutually node-disjoint paths in H, all of whose

ends are in A. Then there is a set W I ⊆ VH of size at most 3f such that each

node in A \W I belongs to a different component of H \W I.
Proof. By Theorem 3.2, there is a set W ⊆ VH so that G \W has components

X1, . . . , Xt and

|W |+
t3
i=1

� |A ∩Xi|
2

b
≤ f.

We say that a component Xi is large if |A ∩ Xi| ≥ 2, and we let W ∗ denote
the set of all nodes in A that belong to large components Xi. In other words,

W ∗ =
�

Xi large

(A ∩Xi).



Kleinberg: Detecting a Network Failure 49

Since each large component Xi contributes at least 1 to the left-hand side of the

above inequality, there can be at most f large components. Hence,

|W ∪W ∗| = |W |+
3

Xi large

|A ∩Xi|

≤ |W |+
 3
Xi large

1 + 2

� |A ∩Xi|
2

b
≤ f+ 2

^
|W |+

t3
i=1

� |A ∩Xi|
2

b�
≤ 3f.

Finally, we defineW I =W ∪W ∗ and claim that no two nodes of A\W I belong
to the same component of H \W I. Indeed, if ai, aj ∈ A were to belong to the
same component of H \W I, then they would also belong to the same component
Xi of H \ W ; but then Xi would be a large component, and we would have
ai, aj ∈ W ∗ ⊆ W I, a contradiction.

We now analyze the VC-dimension of (V, E) using a two-pronged argument: For
any set A of sufficient cardinality, either G contains many mutually node-disjoint

paths with ends in A, or it contains a disconnecting set W I as in Lemma 3.3. In
both cases, we argue that A cannot be shattered.

Lemma 3.4. The VC-dimension of (V, E) is at most O(k3).

Proof. Recall that we have fixed a lexicographic ordering of V , as v1, v2, . . . , vn.
We define r = 3(3k + 1)(k + 1)2 + 3k and suppose by way of contradiction that

there is a set A, of size greater than r, that is shattered by (V, E).
We first claim:

(i) There is no set of a k + 1 mutually node-disjoint paths, all of whose ends

are in A.

Suppose there were such paths P1, . . . , Pk+1, such that Pi has ends ai, a
I
i ∈ A.

Now, by our assumption that A is shattered, there is a k-segmental set S such

that B = {a1, . . . , ak+1} = A ∩ S. Let Z be a generator of S. Then since

|Z| < k + 1, there is some path Pi that contains no node in Z. But this is a

contradiction, since ai ∈ S, aIi W∈ S, and Pi is a path connecting them in G \ Z.
By (i), and Lemma 3.3, there is a set W I of size at most 3k such that every

node in A\W I belongs to a different component of G\W I. For a node v ∈ V \W I,
we use C(v) to denote the component of G\W I containing v, and N(v) to denote
the set of nodes in W I that are neighbors of at least one node in C(v). We write
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AI = A \W I = {aI1, . . . , aIs}, where s ≥ r − 3k and the indexing need not be
related to the lexicographic order on V .

The remainder of the proof is guided by the following basic idea. We will

consider a subset of AI (called BII below) such that the components of G \W I
containing nodes of BII are “interlaced” in lexicographic order with components
containing nodes of AI \ BII. Now, for any supposed k-segmental set S so that
A ∩ S = BII, we will show that several of the components of G \W I are, in fact,
constituents of S. Because of the lexicographic interlacing of the components

of G \W I, and because S must consist of components that are contiguous in
lexicographic order, we will find that in order to include all nodes of BII, S must
include at least one node from AI \BII. This will contradict our assumption that
A ∩ S = BII, and hence show that A cannot be shattered.
We define a parameter γ = 3(k + 1)2. We define the weight wv of a

node v ∈ W I to be the number of sets N(aIi), aIi ∈ AI, that contain v. We
say v ∈ W I is heavy if wv ≥ γ; otherwise, we say it is light. Let Wh denote

the heavy nodes in W I, and Wf denote the light nodes. We say a node a
I
i ∈ AI

is typical with respect to Wh and Wf if N(a
I
i) ⊆ Wh; otherwise, we say it is

atypical.

Consider performing the following procedure. We delete all the sets C(aIi) for
which aIi is atypical; update A

I, the weights {wv : v ∈W I}, and the sets Wh and

Wf; and then iterate. We stop when there are no atypical nodes remaining. We

claim:

(ii) At most 3kγ nodes of AI are deleted by the above procedure.

We prove this by the following counting argument. First, observe that for any

node v ∈W I, there is at most one iteration in which it is light, but has positive
weight. Indeed, the weight of v never increases; and in the first iteration in which

it is declared light, all sets C(aIi) for which v ∈ N(aIi) are deleted, and so the
weight of v is reduced to zero. Now, consider any node aIi ∈ AI that is deleted.
In the iteration in which it is deleted, there is some v ∈Wf∩N(aIi); we charge aIi
to v. A node v ∈ W I can only be charged in the single iteration when it is light
but has positive weight; in this iteration, at most γ nodes in AI can be charged
to it. Since |W I| ≤ 3k, (ii) follows.
Thus, when this deletion procedure terminates, we have a final partition of

W I into heavy and light nodes, which we will refer to as Wh and Wf for the

remainder of the proof. We define AII ⊆ AI to be the set of nodes not deleted
from AI by the deletion procedure; by (ii), we know that there are at least s−3kγ
such nodes. We also know that all nodes in AII are typical with respect to Wh

and Wf, and that for each node v ∈ Wh, there are at least γ nodes a
II ∈ AII for

which v ∈ N(aII).
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We now partition AII into sets B and BI as follows. For each node v ∈ Wh,

we select nodes bv,1, . . . , bv,k+1 ∈ AII with the property that v ∈ N(bv,i), and
place them in B. We define BI = AII \ B. Since |B| ≤ 3k(k + 1), |BI| = t ≥
s − 3kγ − 3k(k + 1) = 3(k + 1). We index BI = {bI1, bI2, . . . , bIt} in ascending
lexicographic order of the sets {C(bIi)}.
Now, partition BI into BI1 = {bI1, bI2, . . . , bIk+1}, BI2 = {bIk+2, . . . , bI2k+2}, and

BI3 = {bI2k+3, . . . , bIt}. Note that each of BI1, BI2, and BI3 has at least k + 1
elements. We define BII = BI1 ∪BI3, and claim:
(iii) There is no k-segmental set S ⊆ V so that BII = A ∩ S.
This will yield a contradiction to our assumption that A is shattered, and

hence prove the lemma.

To prove (iii), suppose there were such a set S, with generator Z. Let

U1, U2, . . . , Us denote the components of G \ Z in lexicographic order; for some
indices p and q, we have S = Up ∪ Up+1 ∪ · · · ∪ Uq. First we claim:
(iii(a)) Each node of BII belongs to a different constituent of S.

Suppose not, and let bIi, b
I
j ∈ BII belong to the same constituent Uf. Then

there is a path P ⊆ Uf with ends equal to b
I
i and b

I
j . Since b

I
i and b

I
j belong

to distinct components of G \W I, there is a node v ∈ W I ∩ P , and hence in
W I ∩ Uf. Now consider the nodes bv,1, . . . , bv,k+1 that were placed in B because

v ∈ N(bv,i) for i = 1, 2, . . . , k+1. For each such node bv,i, there is a path Qi with
ends equal to v and bv,i such that W

I ∩ Qi = {v}. But v W∈ Z, and |Z| < k + 1;
thus, there is some Qi that does not meet Z. It follows that the corresponding

node bv,i belongs to Uf, and hence, belongs to S. But bv,i W∈ BII, contradicting
our assumption that BII = A ∩ S. This proves (iii(a)).
Next, we claim:

(iii(b)) Wh ⊆ Z.
Again, suppose not, and say that v ∈ Wh \ Z. Now, AII contains at least γ

nodes aII for which v ∈ N(aII). We have |B| ≤ 3k(k + 1) and |BI2| = k + 1; thus
BII = AII\(B∪BI2) contains at least γ−(3k+1)(k+1) ≥ k+2 nodes bII for which
v ∈ N(bII). Let BIIv denote this set of nodes in BII. Since |Z| ≤ |BIIv | − 2, there
exist two nodes bIv, b

II
v ∈ BIIv such that Z ∩ (C(bIv)∪C(bIIv)) = φ. But this implies

there is a path in G \Z with ends equal to bIv and bIIv , contradicting (iii(a)); this
proves (iii(b))

Since AII consists entirely of typical nodes, the following is a direct consequence
of (iii(b)).

(iii(c)) For each aII ∈ AII, we have N(aII) ⊆ Z.
Now, since BI1, B

I
2, and B

I
3 each have at least k + 1 nodes, there exist nodes

bIi ∈ BI1, bIj ∈ BI2, and bIf ∈ BI3 such that Z ∩ (C(bIi) ∪ C(bIj) ∪ C(bIk)) = φ.
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Combined with (iii(c)), this implies

(iii(d)) Each of C(bIi), C(b
I
j), and C(b

I
f) is a component of G \ Z.

Finally, recall that we indexed BI = {bI1, bI2, . . . , bIt} in ascending lexicographic
order of the sets C(bI1), . . . , C(b

I
t). But since b

I
i, b
I
f ∈ BII, (iii(d)) implies that

C(bIi) and C(b
I
f) are constituents of S. Now, C(b

I
j) is a component of G \ Z

that comes between C(bIi) and C(b
I
f) lexicographically; since S is k-segmental,

it follows that C(bIj) ⊆ S and hence bIj ∈ S. But bIj W∈ BII, contradicting our
assumption that BII = A∩S. This contradiction establishes (iii), and hence the
lemma.

Finally, we prove the theorem described initially.

Theorem 1.2 For every graph G = (V,E), and any set V0 ⊆ V , there is an (ε, k)-
detection set for V0 of size O(k

3ε−1 log ε−1). Moreover, a set of

O(k3ε−1 log ε−1 + ε−1 log δ−1)

nodes chosen uniformly at random from V0 is an (ε, k)-detection set for V0 with

probability at least 1− δ.

Proof. By Lemmas 2.2 and 3.4, the VC-dimension of (V0,E|V0) is O(k3). Thus,
by Theorem 2.3, a random set of O(k3ε−1 log ε−1 + ε−1 log δ−1) nodes chosen
uniformly at random from V0 is a

1
3ε-net for this set system with probability at

least 1− δ.
By definition, such a 1

3ε-net D has the property that for any S ∈ E , if |S∩V0| ≥
1
3εn0, then S∩V0 contains an element ofD. Thus, D intersects every k-segmental
set of V0-weight at least

1
3εn0, and so by Lemma 3.1, it is an (ε, k)-detection set

for V0.

4. Further Extensions: Probabilistic Adversaries

Using our analysis of detection sets, we can extend our results to a setting in

which nodes and edges can fail according to an unknown (adversarially chosen)

probability distribution. Specifically, we consider a model in which an adversary

assigns a failure probability pj to each element j of G, subject only to the

condition that the mean number of failures
�

j∈V ∪E pj is bounded by a number
k. Note that since an adversary could assign a failure probability of 1 to k

elements, and 0 to all others, this model clearly includes our initial adversarial

model.
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Under this model, we can show that a random subset D of V0 of size

O(k3ε−1δ−3 log(kε−1δ−1)) has the following property with high probability: If
elements fail according to any assignment of probabilities {pj} as above, the
probability that two subsets of V0 of size ε|V0| become separated but all nodes of
D remain connected is at most δ. In other words, regardless of the distribution

of failures in this model (assuming only that they have bounded mean), there

is only a small probability that our set D will fail to “witness” any significant

partition of the end nodes.

The proof of this statement is a direct consequence of Markov’s inequality

combined with Theorem 1.2. Indeed, let B denote the event that more than

kδ−1 elements of G are deleted; let E denote the event that two subsets of V0 of
size ε|V0| become separated by the deletion process; and let F denote the event

that all nodes of D lie in a single component of G after the deletion occurs.

We want to show that Pr [E ∩ F ] ≤ δ. But if the event B does not occur, then
Theorem 1.2 implies D is large enough so that the event E ∩ F cannot occur;

hence we have E ∩F ⊆ B. By Markov’s inequality, Pr [B] ≤ δ, since the expected

number of elements deleted is at most k; it follows that Pr [E ∩ F ] ≤ Pr [B] ≤ δ.
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