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EXACT SEQUENCES OF COMMUTATIVE MONOIDS AND
SEMIMODULES

JAWAD Y. ABUHLAIL

(communicated by George Janelidze)

Abstract
Basic homological lemmas well known for modules over rings

and, more generally, in the context of abelian categories, have
been extended to many other concrete and abstract-categorical
contexts by various authors. We propose a new such extension,
specifically for commutative monoids and semimodules; these
two contexts are equivalent since the forgetful functors from
varieties of semimodules to the variety of commutative monoids
preserve all limits and colimits.

Introduction

The purpose of this paper is to develop a semimodule version of the collection of
basic homological lemmas, including the 5-Lemma, the (3× 3)-Lemma, and the Snake
Lemma, for commutative monoids and semimodules. In doing so, we use a strong
notion of exactness, different from those used by M. Takahashi [18], A. Patchkoria
[13], and K.B. Patil and R.P. Deore [15], which are also different from each other.
The paper is organized as follows:

• We begin by explaining that both contexts, of commutative monoids and of
semimodules, are important in spite of the fact that they are equivalent (Sec-
tion 1).

• We consider various special classes of morphisms and various notions of an exact
sequence of semimodules in Section 2.

• Section 3 is devoted to the above-mentioned homological lemmas.

• Various additional remarks are made in Section 4.

Let us recall here that:

• a semiring S = (S, 0,+, 1, ·) is an algebraic structure in which (S, 0,+) and
(S, 1, ·) are monoids, with commutative + and with x(y + z) = xy + xz (where
xy = x · y, etc.), (x+ y)z = xz + yz, and 0x = 0 = x0 for all x, y, z ∈ S;
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• for a semiring S, an S-semimodule is a commutative monoid A equipped with
a map S ×A −→ A, written as (s, a) 7→ sa, and satisfying s(a+ b) = sa+ sb,
(s+ t)a = sa+ ta, (s · t)a = s(ta), 0a = 0, and s0 = 0 for all s, t ∈ S and a, b ∈
A.

Our main references for semimodules over semirings and categories are [6] and [12]
(or [17]), respectively.

1. Why commutative monoids and semimodules?

1.1. As has been well known for a long time, the following conditions on a variety A
of universal algebras (considered as a category) are equivalent:

(a) A is enriched in the monoidal closed category of abelian groups; that is, there
exist abelian group structures on all hom sets HomA(A,B) (A,B ∈ A), such
that the composition of morphisms distributes over addition on both sides;

(b) A is an additive category;

(c) A is an abelian category;

(d) A is the category of R-modules for some ring R.

1.2. There is a less known similar result on semimodules. It says that the following
conditions on a variety A of universal algebras are equivalent:

(a) A is enriched in the monoidal closed category of commutative monoids; that
is, there exist commutative monoid structures on all hom sets HomA(A,B)
(A,B ∈ A), such that the composition of morphisms distributes over addition
on both sides;

(b) A is the category of S-semimodules for some semiring S.

Both of these results are proved (using different terminology) in [5], and, moreover,
at least Csákány’s proof of 1.2 seems to be the first known such proof.

Observation 1.3. Concerning the so-called basic homological lemmas, we should
observe the following. While in the situation 1.1 they have clear unique formulations
that belong to classical homological algebra, in the situation 1.2 the formulations
might depend on the chosen notion of an exact sequence. However, as soon as the
notion of an exact sequence is defined categorically, using limits and colimits (only),
each such lemma will hold for semimodules if and only if it holds for commutative
monoids. This follows from the fact that the forgetful functor

U : S-SMod −→ CMon

from the category S-SMod of S-semimodules to the category CMon of commuta-
tive monoids preserves limits and colimits and reflects isomorphisms; in particular,
a diagram A −→ B −→ C in S-SMod is an exact sequence (in the chosen sense) if
and only if so is its U -image U(A) −→ U(B) −→ U(C). Therefore, although all our
results apply to the situation 1.2, it suffices to prove them for commutative monoids,
making both these structures fundamentally important for our purposes.
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2. Four notions of an exact sequence of semimodules

Considering semimodules over an arbitrary fixed semiring S, we keep in mind
Observation 1.3, according to which every argument we use reduces to the case of
commutative monoids; that is, to the case where S is the semiring of natural numbers.
Proposition 2.2 below is well known; it describes several categorically defined classes
of morphisms in S-SMod in classically algebraic terms. The readers less familiar
with category theory can use these descriptions as definitions. Before formulating
Proposition 2.2, let us explain our notation and terminology for kernels and cokernels:

2.1. On the one hand, we shall use classical-algebraic notation for kernels and coker-
nels: for a morphism f : A −→ B in S-SMod, we write

Ker(f) = {a ∈ A | f(a) = 0},
Coker(f) = B/{(b1, b2) ∈ B ×B | (∃a1)(∃a2)(b1 + f(a1) = b2 + f(a2))},

and write ker(f) : Ker(f) −→ A and coker(f) : B −→ Coker(f) for the corresponding
canonical maps. On the other hand, we shall use the categorical notation and termi-
nology, according to which ker(f) : Ker(f) −→ A and coker(f) : B −→ Coker(f) are
defined (up to isomorphism) via their universal properties; we will also say that ker(f)
is the kernel of f and coker(f) is the cokernel of f . The classical-algebraic and the
categorical-algebraic notations agree up isomorphism, of course.

Proposition 2.2. A morphism f : A −→ B in S-SMod is:

(a) a monomorphism, if and only if f an injective map;

(b) a normal monomorphism, that is, a kernel of some morphism, if and only if
(f is injective and) whenever b+ f(a1) = f(a2) for a1, a2 ∈ A and b ∈ B, there
exists a unique a ∈ A with f(a) = b;

(c) a regular epimorphism if and only if f is a surjective map;

(d) a normal epimorphism, that is, a cokernel of some morphism, if and only if it
is surjective and

f(a1) = f(a2) if and only if there exist k1, k2 ∈ Ker(f) with a1 + k1 = a2 + k2.

(e) a pullback stable normal epimorphism, whenever it is a normal epimorphism.

For an arbitrary morphism f : A −→ B in S-SMod, we have the canonical factor-
ization

A
f //

ef !!CC
CC

CC
CC

B

f(A)

mf

=={{{{{{{{

in which ef : A −→ f(A) is induced by f and mf : f(A) −→ B is the inclusion map.



202 JAWAD Y. ABUHLAIL

2.3. For morphisms f : A −→ B and g : B −→ C in S-SMod, consider the diagram

A
f //

ef !!CC
CC

CC
CC

B
g //

eg !!CC
CC

CC
CC

C

f(A)

mf

=={{{{{{{{
g(B)

mg

=={{{{{{{{

For its top row A −→ B −→ C we have

(a) A −→ B −→ C is Takahashi exact, that is, exact in the sense of [18], if and only
if the kernel of g is the normal closure of mf , that is, Ker(g) = Ker(coker(f));

(b) A −→ B −→ C is Patchkoria exact, that is, exact in the sense of [13], if and
only if mf is the kernel of g, that is, Ker(g) = f(A);

(c) A −→ B −→ C is Patil–Deore exact, that is, exact in the sense of [15], if and
only if eg is the cokernel of f .

This shows the Patchkoria exactness and the Patil–Deore exactness dual to each
other and makes both of them more restrictive than Takahashi exactness. We are
going, however, to use an even more restrictive notion, namely:

Definition 2.4. In the notation of 2.3, we will say that A
f−→ B

g−→ C is exact if

mf is the kernel of g and eg is the cokernel of f , or, equivalently, A
f−→ B

g−→ C is
Patchkoria exact and Patil–Deore exact at the same time.

As follows from previous observations, this notion of exactness has the following
classical-algebraic reformulation:

Proposition 2.5. In the notation of 2.3, A
f−→ B

g−→ C is exact if and only if
Ker(g) = f(A) and whenever g(b1) = g(b2) there exist a1, a2 ∈ A with b1 + f(a1) =
b2 + f(a2).

2.6. As usually:

(a) a diagram . . . −→ A −→ B −→ C −→ . . . is said to be exact in B if A −→ B −→
C is exact;

(b) a diagram 0 −→ A −→ B −→ C −→ 0 is said to be a short exact sequence, if it
is exact in A, in B, and in C.

(c) a diagram A0 −→ A1 −→ . . . −→ An−1 −→ An is an exact sequence, if it is
exact in Ai for every i = 1, . . . , n− 1.

Corollary 2.7. In the notation of 2.3, we have:

(a) 0 −→ A −→ B is exact if and only if the map A −→ B is injective;

(b) B −→ C −→ 0 is exact if and only if the map B −→ C is surjective.

3. Homological lemmas

In this section we prove basic homological lemmas for semimodules over an arbi-
trary fixed semiring S. As explained in Section 1, and mentioned again at the begin-
ning of Section 2, we could equivalently do that for commutative monoids, that is, in
the special case where S is the semiring of natural numbers.
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Note that according to Proposition 2.2(b), the normal closure A of a subsemimod-
ule A of a semimodule B is

A = Ker(coker(A −→ B)) = {b ∈ B | there exist a1, a2 ∈ A with b+ f(a1) = fa2)}.

More precisely, we will say that A is the normal closure of A in B.
Next, we will say that a morphism ϕ : X −→ Y of semimodules is cancellative

if so are all elements of its image, that is, if, for x in X and y1 and y2 in Y, x+
y1 = x+ y2 always implies y1 = y2. Let us also agree that, in our diagram-chasing
arguments below, we shall sometimes use elements of semimodules not mentioning
the semimodules they belong to, since it will be clear from the context.

The Five Lemma
The following result can be easily proved using diagram chasing (compare (b) with

[14, Lemma 1.9]).

Lemma 3.1. Let

0

��
L1

f1 //

α1

��

M1
g1 //

α2

��

N1

α3

��
L2

f2 //

��

M2
g2 // N2

0

be a commutative diagram of semimodules, in which the first and the third columns
are exact. Then

(a) If α2 is a regular epimorphism and the first row (formed by f1 and g1) is exact,
then the second row (formed by f2 and g2) is exact.

(b) If α2 is a monomorphism and the second row is exact, then the first row is exact.

(c) If a2 is an isomorphism, then the first row is exact if and only if the second row
is exact.

Lemma 3.2. Let

L1
f1 //

α1

��

M1
g1 //

α2

��

N1

α3

��
L2

f2 // M2
g2 // N2

be a commutative diagram of semimodules with exact rows. Then

(a) If g1 and α1 are regular epimorphisms and α2 is a monomorphism, then α3 is
a monomorphism.

(b) If f2 is a monomorphism, α2 is a regular epimorphism, and α3 has zero kernel,
then α1 is a regular epimorphism.
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(c) If f2, α1, and α3 have zero kernels, then α2 also has zero kernel.

(d) If f1 and α2 are cancellative while f2, α1 and α3 are monomorphisms, then α2

also is a monomorphism.

(e) If g1, α1, and α3 are regular epimorphisms, then the normal closure of α2(M1)
in M2 is M2 itself.

Proof. (a) Suppose that α3(n1) = α3(n
′
1) for some n1, n

′
1 ∈ N1. Since g1 is a regular

epimorphism, n1 = g1(m1) and n′
1 = g1(m

′
1) for some m1,m

′
1 ∈ M1. It follows

that (g2 ◦ α2)(m1) = (g2 ◦ α2)(m
′
1). Since the second row is exact, there exist

l2, l
′
2 ∈ L2 such that α2(m1) + f2(l2) = α2(m

′
1) + f2(l

′
2). By assumption, α1 is

a regular epimorphism and so there exist l1, l
′
1 ∈ L1 such that α1(l1) = l2 and

α1(l
′
1) = l′2. Now, we successively obtain the following equalities:

α2(m1) + (f2 ◦ α1)(l1) = α2(m
′
1) + (f2 ◦ α1)(l

′
1),

α2(m1) + (α2 ◦ f1)(l1) = α2(m
′
1) + (α2 ◦ f1)(l′1),

m1 + f1(l1) = m′
1 + f1(l

′
1), (α2 is a monomorphism)

g1(m1) = g1(m
′
1), (g1 ◦ f1 = 0)

n1 = n′
1.

(b) Let l2 ∈ L2. Since α2 is a regular epimorphism, there exists m1 ∈ M1 such
that f2(l2) = α2(m1). It follows that 0 = (g2 ◦ f2)(l2) = (g2 ◦ α2)(m1) = (α3 ◦
g1)(m1), whence g1(m1) = 0 (since α3 has zero kernel). Since the first row is
exact, m1 = f1(l1) for some l1 ∈ L1 and so f2(l2) = α2(m1) = (α2 ◦ f1)(l1) =
(f2 ◦ α1)(l1). Since f2 is a monomorphism, we have l2 = α1(l1).

(c) Suppose that α2(m1) = 0 for some m1 ∈ M1. We have (α3 ◦ g1)(m1) = (g2 ◦
α2)(m1) = 0, whence g1(m1) = 0 (since α3 has zero kernel). Since the first row
is exact, m1 = f1(l1) for some l1 ∈ L1. So, 0 = α2(m1) = (α2 ◦ f1)(l1) = (f2 ◦
α1)(l1), whence l1 = 0 (since f2 and α1 have zero kernels); consequently, m1 =
f1(l1) = 0.

(d) Suppose that α2(m1) = α2(m
′
1) for somem1,m

′
1 ∈ M1. We have (α3 ◦ g1)(m1) =

(g2 ◦ α2)(m1) = (g2 ◦ α2)(m
′
1) = (α3 ◦ g1)(m′

1), whence g1(m1) = g1(m
′
1) since

α3 is a monomorphism. Since the first row is exact, there exist l1, l
′
1 ∈ L1 such

thatm1 + f1(l1) = m′
1 + f1(l

′
1). Now, we successively obtain the following equal-

ities:

α2(m1) + (α2 ◦ f1)(l1) = α2(m
′
1) + (α2 ◦ f1)(l′1),

α2(m
′
1) + (f2 ◦ α1)(l1) = α2(m

′
1) + (f2 ◦ α1)(l

′
1),

(f2 ◦ α1)(l1) = (f2 ◦ α1)(l
′
1), (α2 is cancellative)

l1 = l′1, (f2 and α1 are monomorphisms)
m1 + f1(l

′
1) = m′

1 + f1(l
′
1),

m1 = m′
1. (f1 is cancellative).

(e) Let m2 ∈ M2. Since g1 and α3 are regular epimorphisms, there exists m1 ∈ M1

such that g2(m2) = (α3 ◦ g1)(m1) = (g2 ◦ α2)(m1). Since the second row is exact
and α1 is a regular epimorphism, there exist l1, l

′
1 ∈ L1 such that

m2 + (f2 ◦ α1)(l1) = α2(m1) + (f2 ◦ α1)(l
′
1),

m2 + α2(f1(l1)) = α2(m1 + f1(l
′
1)),

that is, m2 ∈ α2(M1).
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Proposition 3.3 (The Short Five Lemma). Let

L1
f1 //

α1

��

M1
g1 //

α2

��

N1

α3

��

// 0

0 // L2
f2 // M2

g2 // N2

be a commutative diagram of semimodules with exact rows, and assume that M1 and
M2 are cancellative. If α2(M1) = α2(M1) while α1 and α3 are isomorphisms, then α2

also is an isomorphism.

Corollary 3.4. Let

0 // L1
f1 //

α1

��

M1
g1 //

α2

��

N1

α3

��

// 0

0 // L2
f2 // M2

g2 // N2
// 0

be a commutative diagram of semimodules with exact rows, and assume that M1

and M2 are cancellative. If α2(M1) = α2(M1) and any two of α1, α2, and α3 are
isomorphisms, then the third also is an isomorphism.

Lemma 3.5. Let

U1
d1 //

γ

��

L1
f1 //

α1

��

M1
g1 //

α2

��

N1
//

α3

��

h1 // V1

δ

��
U2

d2 // L2
f2 // M2

g2 // N2
h2 // V2

be a commutative diagram of semimodules with exact rows. Then:

(a) If γ is a regular epimorphism, α1 is a monomorphism and α3 has zero kernel,
then α2 also has zero kernel.

(b) If γ is a regular epimorphism, f1 and α2 are cancellative while α1 and α3 are
monomorphisms, then α2 also is a monomorphism.

(c) If δ has zero kernel while α1 and α3 are regular epimorphisms, then the normal
closure of α2(M1) in M2 is M2 itself.

(d) If γ is a regular epimorphism, δ is a monomorphism, f1 and α2 are cancellative
while α1 and α3 are isomorphisms, then α2 is a monomorphism and the normal
closure of α2(M1) is M2 is M2 itself.

Proof. (a) Suppose that α2(m1) = 0 for some m1 ∈ M1. We have (α3 ◦ g1)(m1) =
(g2 ◦ α2)(m1) = 0. Since α3 has zero kernel, g1(m1) = 0 and so m1 = f1(l1) for
some l1 ∈ L1. It follows that 0 = α2(m1) = (α2 ◦ f1)(l1) = (f2 ◦ α1)(l1), whence
α1(l1) = (d2 ◦ γ)(u1) = (α1 ◦ d1)(u1) for some u1 ∈ U1 (since γ is a regular epi-
morphism and Ker(f2) = d2(U2)). Since α1 is a monomorphism, l1 = d1(u1),
whence m1 = f1(l1) = (f1 ◦ d1)(u1) = 0.

(b) Suppose that α2(m1) = α2(m
′
1) for somem1,m

′
1 ∈ M1. We have (α3 ◦g1)(m1) =

(g2 ◦α2)(m1) = (g2 ◦α2)(m
′
1) = (α3 ◦g1)(m′

1), whence g1(m1) = g1(m
′
1) because
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α3 is a monomorphism. Since L1
f1−→ M1

g1−→ N1 is exact, there exist l1, l
′
1 ∈ L1

such that m1 + f1(l1) = m′
1 + f1(l

′
1). Now, we successively obtain the following

equalities:

α2(m1) + (α2 ◦ f1)(l1) = α2(m
′
1) + (α2 ◦ f1)(l′1),

α2(m
′
1) + (f2 ◦ α1)(l1) = α2(m

′
1) + (f2 ◦ α1)(l

′
1),

f2(α1(l1)) = f2(α1(l
′
1)), (α2 is cancellative)

α1(l1) + k2 = α1(l
′
1) + k′2, (U2

d2−→ L2
f2−→ M2 is exact)

α1(l1) + (d2 ◦ γ)(u1) = α1(l
′
1) + (d2 ◦ γ)(u′

1), (γ is a regular epimorphism)
α1(l1) + (α1 ◦ d1)(u1) = α1(l

′
1) + (α1 ◦ d1)(u′

1),
l1 + d1(u1) = l′1 + d1(u

′
1), (α1 is a monomorphism)

f1(l1) = f1(l
′
1), (f1 ◦ d1 = 0)

m1 + f1(l1) = m1 + f1(l
′
1),

m′
1 + f1(l

′
1) = m1 + f1(l

′
1),

m′
1 = m1. (f1 is cancellative).

(c) Let m2 ∈ M2. Since α3 is a regular epimorphism, there exists n1 ∈ N1 such
that g2(m2) = α3(n1). It follows that 0 = (h2 ◦ g2)(m2) = (h2 ◦ α3)(n1) = (δ ◦
h1)(n1), whence h1(n1) = 0 (since δ has zero kernel). Since g1(M1) = Ker(h1),
we have n1 = g1(m1) for some m1 ∈ M1. Notice that (g2 ◦ α2)(m1) = (α3 ◦
g1)(m1) = α3(n1) = g2(m2). Since L2

f2−→ M2
g2−→ N2 is exact and α1 is a reg-

ular epimorphism, there exists l1, l
′
1 ∈ L1 such that

α2(m1) + (f2 ◦ α1)(l1) = m2 + (f2 ◦ α1)(l
′
1),

α2(m1 + f1(l1)) = m2 + α2(f1(l
′
1)),

that is, m2 ∈ α2(M1).

(d) This is a combination of (a), (b) and (c).

Proposition 3.6 (The Five Lemma). Let

0

��
U1

d1 //

γ

��

L1
f1 //

α1

��

M1
g1 //

α2

��

N1
//

α3

��

h1 // V1

δ

��
U2

d2 //

��

L2
f2 // M2

g2 // N2
h2 // V2

0

be a commutative diagram of semimodules with exact rows and exact first and fifth
columns, and assume that M1 and M2 are cancellative. Then:

(a) If α1 and α3 are monomorphisms, then α2 also is a monomorphism.

(b) If α2(M1) = α2(M1) while α1 and α3 are regular epimorphisms, then α2 also is
a regular epimorphism.

(c) If α2(M1) = α2(M1) while α1 and α3 are isomorphisms, then α2 also is an
isomorphism.
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The Nine Lemma

Lemma 3.7. Let

0

��

0

��
L1

f1 //

α1

��

M1
g1 //

α2

��

N1

α3

��
L2

f2 //

β1

��

M2
g2 //

β2

��

N2

β3

��
L3

f3 // M3
g3 // N3

be a commutative diagram with exact columns and exact second row (formed by f2
and g2). Then:

(a) If f2 is cancellative and f3 is a monomorphism, then the first row is exact.

(b) If g2 and β1 are regular epimorphisms and the third row is exact, then the normal
closure of g1(M1) in N1 is N1 itself.

Proof. (a) Notice that α3 ◦ g1 ◦ f1 = g2 ◦ α2 ◦ f1 = g2 ◦ f2 ◦ α1 = 0, whence g1 ◦ f1
= 0 since α3 is a monomorphism. In particular, f1(L1) ⊆ Ker(g1).

• Suppose that g1(m1) = 0. We successively obtain the following equalities:

(α3 ◦ g1)(m1) = 0,
(g2 ◦ α2)(m1) = 0,

α2(m1) = f2(l2),
0 = (β2 ◦ f2)(l2), (β2 ◦ α2 = 0)
0 = (f3 ◦ β1)(l2),

β1(l2) = 0, (Ker(f3) = 0)
l2 = α1(l1), (α1(L1) = Ker(β1))

f2(l2) = (f2 ◦ α1)(l1),
α2(m1) = α2(f1(l1)),

m1 = f1(l1) (α2 is a monomorphism)

• Suppose that g1(m1) = g1(m
′
1) for some m1,m

′
1 ∈ M1. We then successively

obtain the following equalities:

(α3 ◦ g1)(m1) = (α3 ◦ g1)(m′
1),

(g2 ◦ α2)(m1) = (g2 ◦ α2)(m
′
1),

α2(m1) + f2(l2) = α2(m
′
1) + f2(l

′
2) (2nd row is exact)

(β2 ◦ f2)(l2) = (β2 ◦ f2)(l′2) (β2 ◦ α2 = 0)
(f3 ◦ β1)(l2) = (f3 ◦ β1)(l

′
2),

β1(l2) = β1(l
′
2) (f3 is a monomorphism)
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l2 + α1(l1) = l′2 + α1(l
′
1) (first column is exact)

f2(l2) + (f2 ◦ α1)(l1) = f2(l
′
2) + (f2 ◦ α1)(l

′
1),

f2(l2) + (α2 ◦ f1)(l1) = f2(l
′
2) + (α2 ◦ f1)(l′1),

α2(m1) + f2(l2) + (α2 ◦ f1)(l1) = α2(m1) + f2(l
′
2) + (α2 ◦ f1)(l′1)

f2(l
′
2) + α2(m

′
1 + f1(l1)) = f2(l

′
2) + α2(m1 + f1(l

′
1))

α2(m
′
1 + f1(l1)) = α2(m1 + f1(l

′
1)) (f2 is cancellative)

m′
1 + f1(l1) = m1 + f1(l

′
1) (α2 is a monomorphism)

The result follows from the fact that f1(L1) ⊆ Ker(g1).

(b) Let n1 ∈ N1, and pick m2 ∈ M2 such that g2(m2) = α3(n1) (by assumption g2
is a regular epimorphism). We successively obtain the following equalities:

g3(β2(m2)) = β3(g2(m2)),
= (β3 ◦ α3)(m2),
= 0, (β3 ◦ α3 = 0)

β2(m2) = f3(l3), (f3(L3) = Ker(g3))
= f3(β1(l2)), (β1 is a regular epimorphism)
= β2(f2(l2)),

m2 + α2(m1) = f2(l2) + α2(m
′
1), (2nd column is exact)

g2(m2) + (g2 ◦ α2)(m1) = (g2 ◦ α2)(m
′
1), (g2 ◦ f2 = 0)

α3(n1 + g1(m1)) = α3(g1(m
′
1)),

n1 + g1(m1) = g1(m
′
1), (α3 is injective)

that is, n1 ∈ g1(M1).

Similarly, one can prove the following result:

Lemma 3.8. Let

L1
f1 //

α1

��

M1
g1 //

α2

��

N1

α3

��
L2

f2 //

β1

��

M2
g2 //

β2

��

N2

β3

��
L3

f3 //

��

M3
g3 //

��

N3

0 0

be a commutative diagram with exact columns and exact second row. Then:

(a) If g1 is a regular epimorphism and f3(L3) = f3(L3), then the third row is exact.

(b) If the first row is exact, α2 is cancellative while f2 and α3 are monomorphisms,
then f3 also is a monomorphism.

The following result is obtained immediately by combining Lemmas 3.7 and 3.8:
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Proposition 3.9 (The Nine Lemma). Let

0

��

0

��

0

��
0 // L1

f1 //

α1

��

M1
g1 //

α2

��

N1
//

α3

��

0

0 // L2
f2 //

β1

��

M2
g2 //

β2

��

N2
//

β3

��

0

0 // L3
f3 //

��

M3
g3 //

��

N3
//___

���
�
� 0

0 0 0

be a commutative diagram with exact columns and exact second row where M2 is
cancellative. If f3(L3) = f3(L3) and g1(M1) = g1(M1), then the first row is exact if
and only if the third row is exact.

The Snake Lemma
One of the basic homological lemmas that are proved usually in categories of

modules, or more generally in abelian categories, is the so-called Kernel-Cokernel
Lemma (Snake Lemma). Several versions of this lemma were proved also in non-
abelian categories that do not include the category of commutative monoids (e.g.,
homological categories [4], relative homological categories [9], and incomplete relative
homological categories [10]).

Theorem 3.10 (The Snake Lemma). Let

0

��

0

��

0

��
Ker(α1)

ker(α1)

��

fK // Ker(α2)

ker(α2)

��

gK // Ker(α3)

ker(α3)

��

δ

||x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

L1
f1 //

α1

��

M1
g1 //

α2

��

N1
//

α3

��

0

0 // L2
f2 //

coker(α1)

��

M2
g2 //

coker(α2)

��

N2

coker(α3)

��
Coker(α1)

fC

//

��

Coker(α2) gC
//

��

Coker(α3)

��
0 0 0

be a diagram of semimodules with exact columns and exact two middle rows, and
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assume that the two middle squares are commutative. Then

(a) There exist unique morphisms fK , gK , fC , and gC which extend the diagram
commutatively.

(b) If f1 is cancellative, then the first row is exact.

(c) If fC(Coker(α1)) = fC(Coker(α1)), then the last row is exact.

(d) There exists a connecting morphism δ : Ker(α3) −→ Coker(α1) with Ker(δ) =
gK(Ker(α2)), δ(Ker(α3)) = Ker(fC), and assume that δ(k3) = δ(k′3) for any k3
and k′3 ∈ Ker(α3) implies that k3 + k̃3 = k′3 + k̂3 for some k̃3, k̂3 ∈ Ker(δ).

(e) If α2 is cancellative, and gK(Ker(α2)) = gK(Ker(α2)), then the following se-
quence is exact:

Ker(α2)
gK // Ker(α3)

δ //___ Coker(α1)
fC // Coker(α2)

Proof. (a) The existence and uniqueness of the morphisms fK , gK , fC , and gC are
guaranteed by the universal properties of the (co)kernels and the commutativity
of the middle two squares.

(b) This follows from Lemma 3.7 applied to the first three rows.

(c) This follows from Lemma 3.8 applied to the last three rows.

(d) We show first that δ exists and is well defined.

• We define δ as follows: For k3 ∈ Ker(α3), we choose m1 ∈ M1 and l2 ∈ L2

such that g1(m1) = k3 and f2(l2) = α2(m1); notice that this is possible since
g1 is a regular epimorphism and (g2 ◦ α2)(m1) = (α3 ◦ g1)(m1) = α3(k3) =
0 whence α2(m1) ∈ Ker(g2) = f2(L2). Define δ(k3) := coker(α1)(l2) = [l2],
the equivalence class of L2/α1(L1) that contains l2.

• δ is well defined; that is, δ(k3) is independent of our choice of m1 ∈ M1 and
l2 ∈ L2 satisfying the stated conditions.
Suppose that g1(m1) = k3 = g1(m

′
1) for some m1 and m′

1 ∈ M1, and that
f2(l2) = α2(m1), f2(l

′
2) = α2(m

′
1) for some l2, l

′
2 ∈ L2. Since the second row

is exact, there exist l1, l
′
1 ∈ L1 such that m1 + f1(l1) = m′

1 + f1(l
′
1). We suc-

cessively obtain the following equalities:

α2(m1) + (α2 ◦ f1)(l1) = α2(m
′
1) + (α2 ◦ f1)(l′1),

f2(l2) + (f2 ◦ α1)(l1) = f2(l
′
2) + (f2 ◦ α1)(l

′
1),

f2(l2 + α1(l1)) = f2(l
′
2 + α1(l

′
1)),

l2 + α1(l1) = l′2 + α1(l
′
1), (f2 is a monomorphism)

[l2] = [l′2].

Thus l2 and l′2 lie in the same equivalence class of L2/α1(L1); that is, δ is
well defined.

• We prove first that gK(Ker(α2)) ⊆ Ker(δ). Notice that it is enough to prove
that gK(Ker(α2)) ⊆ Ker(δ). Let k3 = gK(k2) for some k2 ∈ Ker(α2). Since
the definition of δ is independent of the choice of m1 ∈ M1 and l2 ∈ L2

satisfying the given conditions above and since g1(k2) = gK(k2) = k3, we
can choose m1 = k2 and l2 = 0. Notice that we have f2(l2) = α2(m1) =
α2(k2) = 0, whence l2 = 0 (recall that Ker(f2) = 0). It follows that δ(k3) =
[l2] = [0]. Consequently, gK(Ker(α2)) ⊆ Ker(δ).
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We prove now that Ker(δ) ⊆ gK(Ker(α2)). Let k3 ∈ Ker(δ), and pick some
m1 ∈ M1 and l2 ∈ L2 such that g1(m1) = k3 and f2(l2) = α2(m1). Then, by
assumption, [l2] = δ(k3) = [0]; that is, l2 + α1(l1) = α1(l

′
1) for some l1, l

′
1 ∈

L1. We successively obtain the following equalities

f2(l2) + (f2 ◦ α1)(l1) = (f2 ◦ α1)(l
′
1),

α2(m1) + α2(f1(l1)) = α2(f1(l
′
1)),

m1 + f1(l1) + k2 = f1(l
′
1) + k′2,

g1(m1) + g1(k2) = g1(k
′
2) (g1 ◦ f1 = 0)

k3 + gK(k2) = gK(k′2).

Consequently, gK(Ker(α2)) = Ker(δ).

• Let k3 ∈ Ker(α3), and pick some m1 ∈ M1, l2 ∈ L2 such that g1(m1) = k3
and f2(l2) = α2(m1). It follows that

(fC ◦ δ)(k3) = fC([l2]) = [f2(l2)] = [α2(m1)] = [0].

Consequently, δ(Ker(α3)) ⊆ Ker(fC). We claim that Ker(fC) ⊆ δ(Ker(α3)).
Let [l2] ∈ Ker(fC), so that [f2(l2)] = fC([l2]) = [0]. By assumption, there
exist m1,m

′
1 ∈ M1 such that f2(l2) + α2(m1) = α2(m

′
1). Since α2(M1) =

α2(M1), there exists m̃1 ∈ M1 such that α2(m̃1) = f2(l2). It follows that
(α3 ◦ g1)(m̃1) = (g2 ◦ α2)(m̃1) = (g2 ◦ f2)(l2) = 0. So g1(m̃1) ∈ Ker(α3) and
[l2] = δ(g1(m̃1)). Consequently, Ker(fC) = δ(Ker(α3)).

• Suppose that δ(k3) = δ(k′3) for some k3, k
′
3 ∈ Ker(α3), and pick m1,m

′
1 ∈

M1, l2, l
′
2 ∈ L2 such that g1(m1) = k3, g1(m

′
1) = k′3, α2(m1) = f2(l2), and

α2(m
′
1) = f2(l

′
2). By assumption, [l2] = [l′2]; that is, l2 + α1(l1) = l′2 + α1(l

′
1)

for some l1, l
′
1 ∈ L1 and we successively obtain the following equalities:

f2(l2) + (f2 ◦ α1)(l1) = f2(l
′
2) + (f2 ◦ α1)(l

′
1),

α2(m1) + (α2 ◦ f1)(l1) = α2(m
′
1) + (α2 ◦ f1)(l′1),

m1 + f1(l1) + k2 = m′
1 + f1(l

′
1) + k′2, (second column is exact)

g1(m1) + g1(k2) = g1(m
′
1) + g1(k

′
2), (g1 ◦ f1 = 0)

k3 + gK(k2) = k′3 + gK(k′2).

The last statement in (4) follows since gK(Ker(α2)) ⊆ Ker(δ).

(e) If gK(Ker(α2)) = gK(Ker(α2)), then Ker(δ) = gK(Ker(α2)) = gK(Ker(α2)).
Suppose that fC [l2] = fC [l

′
2] for some l2, l

′
2 ∈ L2. By definition, ∃ m1,m

′
1 ∈ M1

such that f2(l2) + α2(m1) = f2(l
′
2) + α2(m

′
1). We successively obtain the follow-

ing equalities:

(g2 ◦ α2)(m1) = (g2 ◦ α2)(m
′
1) (g2 ◦ f2 = 0)

(α3 ◦ g1)(m1) = (α3 ◦ g1)(m′
1),

g1(m1) + k3 = g1(m
′
1) + k′3,

g1(m1 + m̃1) = g1(m
′
1 + m̂1) (g1 is surjective)

m1 + m̃1 + f1(l̃1) = m′
1 + m̂1 + f1(l̂1),

α2(m1) + α2(m̃1) + (α2 ◦ f1)(l̃1) = α2(m
′
1) + α2(m̂1) + (α2 ◦ f1)(l̂1),
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f2(l
′
2) + α2(m1) + α2(m̃1) + (f2 ◦ α1)(l̃1) = [f2(l

′
2) + α2(m

′
1)] + α2(m̂1)

+(f2 ◦ α1)(l̂1),

f2(l
′
2) + α2(m1) + α2(m̃1) + (f2 ◦ α1)(l̃1) = f2(l2) + α2(m1) + α2(m̂1)

+(f2 ◦ α1)(l̂1),

f2(l
′
2) + α2(m̃1) + (f2 ◦ α1)(l̃1) = f2(l2) + α2(m̂1) + (f2 ◦ α1)(l̂1),

f2(l
′
2 + l̃2 + α1(l̃1)) = f2(l2 + l̂2 + α1(l̂1)),

l′2 + l̃2 + α1(l̃1) = l2 + l̂2 + α1(l̂1) (f2 is injective)

[l′2] + [l̃2] = [l2] + [l̂2],
[l′2] + δ(k3) = [l2] + δ(k′3).

The result follows since δ(Ker(α3)) ⊆ Ker(fC).

4. Additional Remarks

4.1. Our homological lemmas are new, taking into consideration the well-known fact
that S-SMod is, in general, not exact in the sense of [16], not semi-abelian in the
sense of [11], and not homological in the sense of [4]. Moreover, they cannot be
obtained via results on relative homological categories in the sense of [9]; in particular,
this applies to the results of [10].

4.2. Our homological lemmas allow investigating new notions for semimodules over
semirings (e.g., normally flatness [1]). This was in fact one of the main motivations
behind this paper.

4.3. S-SMod is Barr-exact [3] ([8]) with canonical factorization system (Surj, Inj),
where Surj is the class of surjective morphisms (regular epimorphisms) and Inj is the
class of injective morphisms (monomorphisms). Moreover, S-SMod is homological in
the sense of [7].

4.4. Our definition of exact sequences in S-SMod is based on analyzing the notion
of an exact sequence in an arbitrary pointed category relative to a given factorization
system. It is consistent with the notion of an exact sequence in an arbitrary pointed
regular Barr-exact category with finite limits [4, 4.1.7]. Moreover, our notion of a
short exact sequence 0 −→ A −→ B −→ C −→ 0 coincides with that of an extension
in the sense of [19] (see also [13]).

4.5. Being a Barr-exact category, a natural tool to study exactness in S-SMod is
that of an exact fork [3]. However, since S-SMod has additional features, one still
expects to deal with exact sequences rather than the more complicated exact forks.
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