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POWER OPERATIONS IN ORBIFOLD TATE K-THEORY

NORA GANTER

(communicated by J. Daniel Christensen)

Abstract
We formulate the axioms of an orbifold theory with power

operations. We define orbifold Tate K-theory, by adjusting
Devoto’s definition of the equivariant theory, and proceed to
construct its power operations. We calculate the resulting sym-
metric powers, exterior powers and Hecke operators and put our
work into context with orbifold loop spaces, level structures on
the Tate curve and generalized Moonshine.

1. Introduction

Tate K-theory,

KTate(X) = K(X)[[q]]

is a form of elliptic cohomology. The corresponding generalized elliptic curve is the
Tate curve, and the corresponding elliptic genus is the Witten genus [4]. The most
conceptual definition of the Tate curve is probably the characterization in [13, Thm.
VII.2.1]: if Mell is the algebraic stack of (nice enough) generalized elliptic curves,1

then the completion ofMell at infinity,

spf Z[[q]] −→Mell,

classifies a formal projective curve. This possesses an algebraization, living over
specZ[[q]], which we will call Tate(q). A more pedestrian, but equivalent, formula-
tion of this definition of Tate(q) can be found in [4].

Out of all known elliptic cohomology theories, KTate might be the one where the
conjectural relationship to string theory is best understood, and Witten’s original
definition of his genus involves loop spaces.

The definition of G-equivariant TateK-theory for finite G goes back to Devoto [14]
and is modeled on the loop space of a global quotient orbifold. Our definition of
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1We write Mell for the stack denoted M1 in [13, III.2.6].
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orbifold Tate K-theory is a mild modification of Devoto’s. Devoto’s work also already
makes the connection to level structures on elliptic curves.

Guided by the ideas in [15], we define power operations on KTate. This project
grew out of the desire for a more explicit link between the findings in [16] and the
string theoretic picture in [15] and was inspired by the similarities between [15]
and [24, 34].

The story in [16] is one of convergence: there, we saw how the purely homotopy
theoretic formalism of power operations in elliptic cohomology (the theory there is
E2) results in a formula much resembling that of Dijkgraaf, Moore, Verlinde and
Verlinde.

Here, we take a more traditional approach to mathematical physics, modeling
the mathematical definitions on the calculations of physicists. The resulting power
operations are closely linked to level structures and isogenies on the Tate curve,
suggesting that this is the ‘right’ definition of elliptic power operations on KTate. To
make precise exactly what is meant by ‘right’ in this context, one has to revisit the
work of Matthew Ando, his power operations on KTate, and the definition of elliptic
power operations in [5]. All this was pioneered in the work of Andrew Baker, who
was the first to define Hecke operators on elliptic cohomology [8, 7] and [9].

The formalism of power operations leads to a number of internal operations, acting
on the Tate K-theory of any space. In particular, it yields symmetric powers

Symn
Tate : KTate(X) −→ KTate(X).

We will write

STate
t (x) :=

∞∑

n=o

Symn
Tate(x) t

n

for the total symmetric power. Here t is a formal variable. On the coefficients of KTate,
the total symmetric power satisfies the identity

STate
t (x) = exp


∑

m>1

Tm(x)tm


 , (1)

where the Tm are the equivariant Hecke operators of generalized Moonshine defined
in [17, 29] and prominent in Carnahan’s proof of the generalized Moonshine Con-
jectures [12]. The identity (1) gives rise to a new formulation of the replicability
condition, although the latter remains mysterious. On the other hand, the total sym-
metric power of a vector bundle is the stable exponential characteristic class

STate
t (V ) =

⊗

k>1

Stk(V ), (2)

used to define the Witten genus. Here St is the total symmetric power in K-theory.
The Witten genus is, of course, an important player in Moonshine, because of the
Hirzebruch conjecture [21, 25].

In the context of replicability, the variable t in (1) lives a peculiar and poorly
understood double life as a formal variable on one hand and as the modular vari-
able e2πiτ on the other. In the context of (2), the same double life occurs, and a
compelling explanation for this phenomenon, involving the boundary of a Krichever
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style2 construction of the relevant moduli space, goes back to unpublished work of
Looijenga [10].
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2. Orbifold Tate K-theory

We will work in the 2-category Gpd whose objects are the (small) topological
groupoids and with

1Hom(X,Y ) = Fun(X,Y )

the groupoid of continuous functors from X to Y and continuous natural isomor-
phisms between them. We do not emphasize the 2-category point of view. For all
practical purposes, we could as well work in the category

Gpd = Gpd / ∼=,

obtained from Gpd by identifying naturally isomorphic 1-morphisms, or even in Moer-
dijk’s orbifold category Orb (see [28]). The center of a groupoid X is the group

Center(X) := 2Hom (IdX , IdX) = Nat (IdX , IdX) ,

of natural transformations from Idx to Idx. We will also need the 2-category Gpdcen

whose objects are pairs (X, ξ) with ξ a center element of X and with

1Hom((X, ξ), (Y, υ)) ⊂ Fun(X,Y )

the full subcategory of functors f satisfying

fξ = υf.

Lemma 2.1. If η : f ∼= f ′ is a natural isomorphism and fξ = υf , then f ′ξ = υf ′.

Proof. For any x ∈ ob(X), we have

υf ′(x) = ηf(x) ◦ υf(x) ◦ η
−1
f(x) = ηf(x) ◦ f(ξx) ◦ η

−1
f(x) = f ′(ξx).

For simplicity of exposition, all center elements are assumed to be of finite order.
This is automatically the case if X is an orbifold groupoid in the sense of Moerdijk.
If G is a finite group and M is a G-space, then we write M//G for the corresponding
translation groupoid.

2Cutting along the circle [0, 1] inside C/〈τ, 1〉, instead of Krichever’s small circle as in [31, 8.11].
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Example 2.2. The group

Center(pt//G) = Center(G)

is the center of the group G.

Example 2.3. The inertia groupoid

ΛX = Fun(pt//Z, X)

of X admits a group homomorphism

Z −→ Center(ΛX)

k 7−→
(
ξk : f 7→ f(k)

)
.

Viewing objects of ΛX as pairs (x, g) with x ∈ ob(X) and g ∈ aut(x), we have

ξk(x,g) = gk

(arrow in ΛX).

For any k ∈ Z, we then have the 2-functor

Gpd −→ Gpdcen

X 7−→ (ΛX, ξk).

Example 2.4. In the global quotient case, we have

Λ(M//G) ≃
∐

[g]

Mg//Cg and ξk|Mg = gk.

Here [g] is the conjugacy class, Mg is the fixed point locus, and Cg is the centralizer
of g in G.

Definition 2.5. The kth power map

Πk : (ΛX, ξk) −→ (ΛX, ξ1)

sends the object (x, g) to (x, gk) and the arrow (x, g)
h
−−→ (hx, hgh−1) to

(x, gk)
h
−−→ (hx, hgkh−1).

We may also interpret Πk as a 1-morphism from (ΛX, ξkm) to (ΛX, ξm).

Definition 2.6. Let X be a topological groupoid, let ξ be an element of its center,
and let k be an integer. Then we define the groupoid

X[ξ
1
k ] := (pt//Z)× Λ(X)/ ∼,

where the equivalence relation ∼ is generated by k ∼ ξ.

Definition 2.7. For an object (X, ξ) of Gpdcen, the subring

Krot(X, ξ) ⊂ Korb(X)[[q
1
|ξ| ]]

is the Grothendieck group of formal power series

F (q) =
∑

a∈Q>0

Vaq
q (3)
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satisfying the rotation condition with respect to ξ:

for each a ∈ Q>0 the coefficient Va is an e2πia-eigenbundle of ξ.

Here we are using Moerdijk’s definition of orbifold K-theory Korb(X); see [28, 5.4].

Power series satisfying the rotation condition may be thought of as (infinite dimen-
sional) vector bundles over

R⋉ξ X := (pt//R)×X/ ∼

with ∼ generated by 1 ∼ ξ.

Definition 2.8. Let X be a topological groupoid. Then the Tate K-theory of X is
defined as

KTate(X) := Krot(Λ(X), ξ1).

2.1. Motivation
2.1.1. The Tate curve
Let S = spec(Z[[q]]). Then there is an isomorphism of formal schemes over S

spf (KTate (CP
∞)) = Tate(q)Ŝ ,

making KTate an elliptic cohomology theory; cf. [4, 2.6]. Let Ck := Z/kZ be the cyclic
group with k elements. Then the complex representation ring of Ck is

R(Ck) ∼= Z[ζk],

where the kth root ζk of one is identified with the representation where 1 acts as
e2πi/k. So,

specR(Ck) ∼= µk

is the scheme of kth roots of unity over Z, where ζk is the irreducible representation
with ζk(1) = e2πi/k, and one expects3

spec(KTate(pt//Ck)) = Tate(q)[k], (4)

where the right-hand side is the scheme of points of order k in Tate(q). By [13,
VII(1.13)],

Tate(q)[k] = spec(Dk),

where

Dk :=
k−1⊕

j=0

Z[[q]][x, x−1]/xk − qj .

After inverting q, we have the map

J : Z((q))[x] −→ Z[ζk]((q
1
k ))

q 7−→ q

x 7−→ ζkq
j
k .

3See [3, 14, 17, 19, 20].
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The map J identifies the jth summand of Dk with the Laurent series satisfying the
rotation condition for the group element j. So, (4) holds over the locus specZ((q)),
where the Tate curve is non-singular. The ring Dk is closely related to isogenies
into Tate(q) and plays a key role in Ando’s definition of power operations on KTate;
see [2, p. 26 ff].

We would also like to draw the reader’s attention to Rezk’s [32], where a much
deeper connection between the constructions in [13] and our Definition 2.8 is dis-
cussed.

2.1.2. Constant loops

The original motivation for Definition 2.8 came from the theory of orbifold loop
spaces. In [23], Lupercio and Uribe identify the inertia groupoid as the full subcate-
gory

ΛX ⊆ Fun(R//Z, X)

of functors that are constant on objects. Viewing the right-hand side as part of the
loop groupoid

LX = Orb
(
S1, X

)
,

then leads them to the identification

ΛX = (LX)R

of the inertia groupoid with the orbifold loops that are fixed by the rotation action.
Under this identification, ξk agrees with the rotation action of k ∈ Z on (constant)
orbifold loops.

Example 2.9 (Global quotients). By [23, 4.1],

L (M//G) ≃
∐

[g]

LgM//Cg

is the union of the “twisted loop spaces” of M , i.e., of paths in M from x to gx, acted
upon by the centralizers Cg. This is what motivated Devoto’s definition of equivariant
Tate K-theory [14, pp. 5f].

In this context, the rotation condition is motivated by the following lemma. Let V
be a finite dimensional, real orbifold vector bundle on X, the V may itself be viewed
as a groupoid (see, e.g., [28]), and we can form LV .

Lemma 2.10. In this situation, we have a dense isomorphism

LV |Λ(X)
∼= V0 ⊕

⊕

a∈Q+

V C
a q

a.

Here V0 is the summand of V |Λ(X) fixed by ξ1, and for a ∈ Q+, the bundle V C
a is the

e2πia-eigenbundle of ξ1 inside the complexification V C
Λ(X), while q

a indicates that R

acts on this summand via t 7→ e2πiat.
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Proof. Let (x, g) be an object in Λ(X). By [23, 4.1.1], we may identify (LV )(x,g) with
the space of loops

{γ : R→ Vx | γ(t+ 1) = gγ(t)}.

So,

LV(x,g) ⊆ maps (R/|g|Z, Vx) .

The Fourier expansion principle gives a dense isomorphism

maps (R/|g|Z, Vx) ∼= Vx,0 ⊕
⊕

n>1

V C
x q

n
|g| ,

under which LV(x,g) maps to the submodule specified in the lemma.

2.1.3. Moonshine

Let M be the monster, and consider the central extension Λ̃α (pt//M) of the inertia
groupoid Λ (pt//M) classified by the Moonshine cocycle

α ∈ H3 (BM,U(1))

(see [26, Meta Thm. p. 29]). Let ξ̃ be a lift of ξ1 to an element of the center of

Λ̃α (pt//M). Then

Λ̃α (pt//M) ≃
∐

[g]

pt//C̃g,

where the C̃g are central extensions of the centralizers in M . A choice of ξ̃ amounts

to a choice of lift g̃ ∈ C̃g for each g in a system of representatives for the conjugacy
classes of M . A Laurent series

F ∈
⊕

n>0

Rep
(
C̃g

)((
q

1
|g̃|

))

satisfies the rotation condition if and only if its character, a function F
(
g, h; q

1
|g̃|

)
in

h ∈ C̃g, satisfies

F
(
g, g̃h; q

1
|g̃|

)
= F

(
g, h; e

2πi
|g̃| q

1
|g̃|

)
.

Interpreting the coefficients as characters of projective representations of Cg, this
equation becomes

F (g, gh; τ) = ζ · F (g, h; τ + 1),

where ζ is a root of unity and q = e2πiτ . These are Condition (3) and half of Condition
(1) of Norton’s generalized Moonshine conjecture [30].

2.2. Properties

Tate K-theory is an orbifold theory with transfers. In other words, it satisfies the
following list of properties:
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Orbifold theory. Let

f : (X, ξ) −→ (Y, υ)

be a 1-morphisms in Gpdcen. Then f induces a ring map

f∗ : Krot(Y, υ) −→ Krot(X, ξ).

If f and g are naturally isomorphic then f∗ = g∗, and if f is an equivalence of
groupoids then f∗ is an isomorphism. It follows that the analogous statements
hold forKTate, and that the latter is a well-defined functor on Moerdijk’s orbifold
category.

Sums and products. We have natural isomorphisms

KTate(∅) ∼= {0},

KTate(pt) ∼= Z[[q]],

KTate(X ⊔ Y ) ∼= KTate(X)⊕KTate(Y ),

and natural maps

KTate(X)⊗KTate(Y ) −→ KTate(X × Y ),

making KTate a lax rig functor from Gpd to abelian rings.

Exactness. Fix a finite group G. Then the functor

M 7−→ KTate(M//G)

sends cofiber sequences of G-spaces to exact sequences.

Proof. Indeed, for any element g ∈ G, the functor

G-spaces −→ Cg-spaces

X 7−→ Xg

preserves cofiber sequences.

2.3. Transfers
In this section all groupoids are assumed to have finite stabilizer groups. Given

two maps of groupoids

X
u

−−−−→ Z
a

←−−−− Y,

we can form the fiber square

X ×Z Y
v //

b

��

Y

a

��

X
u // Z,

(5)

as in [28, 2.3], commuting up to a natural isomorphism η (part of the data) and
universal with respect to this property. We will refer to the groupoid X ×Z Y as the
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fibred product of X and Y over Z. Its objects are triples (x, y, u(x)
g
−→ a(y)), consisting

of an object of eachX and Y and an arrow between their images in Z. Arrows between

two such triples (x, y, g) and (x′, y′, g′) are pairs of arrows (x
h
−→ x′, y

k
−→ y′) in X and

Y satisfying g′u(h) = a(k)g. Examples are the comma category groupoids y ↑ f and
Y ↑ f , defined by the fiber squares

y ↑ f
pX

//

��

X

f

��

pt
y

// Y,

Y ↑ f
PX

∼
//

PY

��

X

f

��

Y Y.

Definition 2.11. We say that f : X → Y is essentially a finite cover if for each object
y ∈ Y , there is a neighborhood U of y in obY such that

U ×Y X ≃ U × (y ↑ f),

and y ↑ f is equivalent to a finite groupoid. Here we have viewed U as a groupoid
with only identity morphisms, so that we can make sense of U ×Y X as in (5).

This condition ensures that pull-back of vector bundles possesses a right-adjoint

RKanf : VectC(X) −→ VectC(Y ),

the right Kan extension along f , with

(RKanf V )y = lim
←−

y↑f (p
∗
XV ) .

Definition 2.12. Let f : X → Y be essentially a finite cover. Then we write

f! : Korb(X) −→ Korb(Y )

For the map induced by RKanf . We will refer to f! as the transfer along f .

Lemma 2.13. Let f : (X, ξ) −→ (Y, υ) be a 1-morphism in Gpdcen. If ξ acts with
eigenvalue e2πia on the vector bundle V on X, then υ acts with the same eigenvalue
on RKanf V .

Proof. The action of υ on

(RKanf V )y ⊆
⊕

(x,g)

Vx

is by the permutation of the summands sending the object (x, g) of y ↑ f to (x, υyg).
The limit condition applied to the arrow ξx : (x, υyg)→ (x, g) in y ↑ f forces an ele-
ment of the limit to satisfy

v(x,g) = ξx(v(x,υyg)) = e2πia · v(x,υyg).

This proves the claim.

Corollary 2.14. We have transfers along essentially finite covers in Krot and in
KTate.
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Proof. The statement follows immediately from the fact that Λ preserves essentially
finite covers.

We will denote these transfers also by f!. So, f! in KTate stands for (Λf)! in Krot.

Proposition 2.15. Given a fiber square as in (5), assume that the map a is essen-
tially a finite cover. Then b! is defined, and we have

u∗a! = b! v
∗.

Proof. Let x be an object of X. Then we have an equivalence of groupoids

x ↑ b = pt×X (X ×Z Y )

≃ pt×Z Y

= u(x) ↑ a.

Consider the canonical natural transformation of functors VectCY → VectCX

u∗RKana =⇒ RKanb v
∗.

Restricted to the fibers, this is the composition of isomorphisms

(RKanb v
∗V )x = lim

←−
x↑b

(
p∗(X×ZY )v

∗V
)

∼= lim
←−

u(x)↑a (p
∗
Y V )

= (RKana)u(x) .

Further, Λ preserves fiber squares.

Corollary 2.16. Orbifold Tate K-theory, restricted to the 2-category Gpdfin of finite
groupoids, is a global Mackey functor.

Here we are using the definition of global Mackey functor spelled out in [18]. It
is well known that, in the same manner, orbifold K-theory gives the Mackey functor
sending a finite group(oid) to its representation ring.

2.4. Characters

Unlike most of this paper, this section only applies to finite groupoids.

2.4.1. n-class functions

Let X be a finite groupoid, let R be a ring, and let n > 0 be a natural number.

Definition 2.17. An n-class function on X with values in R is an R-valued map

χ : [ΛnX] −→ R,

defined on the set of isomorphism classes of the n-fold inertia groupoid of X. We
denote the ring of all such maps by

n-class(X,R) ∼= H0(Borel(ΛnX);R).
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Explicitly, a 0-class function is a function on the isomorphism classes of X, and
for n > 1, an n-class function is defined on n-tuples of commuting automorphisms of
X and satisfies

χ(g1, . . . , gn) = χ(sg1s
−1, . . . , sgns

−1).

Here all the gi are automorphisms of the same object x. It is well known that
0-class(−, R) is a global Mackey functor, namely group cohomology, with transfers
along faithful maps f : X → Y . It follows that n-class(−, R) is also a Mackey functor,
whose transfers along faithful maps are given by

f!(χ)(g1, . . . , gn) =
∑

[h] 7→[g]

|aut(g)|

|aut(h)|
· χ(h1, . . . , hn). (6)

Here g abbreviates (g1, . . . , gn), and [g] and aut(g) are, respectively, its isomorphism
class and its automorphism group in ΛnY , and similarly for h.

If R is a Q-algebra, then (6) makes sense for all f and extends n-class(−;R) to a
Mackey functor with all transfers.

Example 2.18. Let j : H → G be an inclusion of groups and write j also for the cor-
responding map of groupoids j : pt//H → pt//G. Then

j!(χ)(g1, . . . , gn) =
1

|H|

∑

sgs−1∈Hn

χ(sg1s
−1, . . . , sgns

−1).

Example 2.19. Let G be a finite group, and let εG : pt//G→ pt be the unique map.
Then

(εG)!(χ)(1) =
1

|G|

∑

g

χ(g1, . . . , gn),

where the sum runs over all n-tuples of commuting elements of G.

Note that, unlike equation (6), the sums in these examples are over elements, rather
than conjugacy classes. This is consistent, because various |aut(·)| factors cancel out.

2.4.2. Character theory
Write Gpdf for the 2-category of finite groupoids, and assume that E is an orbifold
theory with transfers as in Section 2.2.

Definition 2.20. A character theory for E of height n consists of a ring R and a
natural transformation of Mackey functors

χ : E|Gpdf =⇒ n-class(−, R).

Here R is assumed to be either a Q-algebra or torsion free with the understanding
that some transfers in n-class(−, R) are, a priori, only defined over Q⊗R. Naturality
of χ then implies integrality of transfers in the image of χ.

Example 2.21. K-theory has a character theory of height 1 with

R = lim−→k
Z[ζk],

where ζk is a kth root of 1. Note that the universal level k-structure on the multiplica-
tive group has its home over spec(Z[ζk]). The integrality statement above amounts
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to the well-known fact that

1

|G|

∑

g∈G

χ(g) ∈ Z

when χ is the character of a representation.

Example 2.22. Tate K-theory has a height 2 character theory, taking values in

lim−→k

(
Z[ζk][[q

1
k ]]
)
;

compare to Section 2.1.1. By [13, VII.2.4,VII.1.16.4]),

specZ[ζk][[q
1
k ]] −→ (Mk)

is the completion at infinity of the level k stackMk defined in [13, p. 36, IV.3.2,3.5].

Example 2.23. Fix a prime p, and let En be Borel equivariant Morava-Lubin-Tate
theory. This has a height n character theory ([16, 7.9], [22, Thms. C&D]), taking
values in

L(En) = S−1lim−→k
En(B(Z/pkZ)n),

where the multiplicative set S consists of the Euler classes of non-trivial representa-
tions. The ring

Dk := im
(
En(B(Z/pkZ)n)→ S−1En(B(Z/pkZ)n)

)

is the home of the universal level k-structure on the formal group of En (see [1, Thm.
3.3.2]).

The character theory in [22] is a lot more powerful than our summary here sug-
gests. It would be interesting to formulate Hopkins-Kuhn-Ravenel theory for orbifolds
and to see exactly how much of the Hopkins-Kuhn-Ravenel story can be told for
KTate. It seems reasonable to expect that KTate fits into Stapleton’s framework of
transchromatic character maps [33].

2.4.3. A formula for induction
Let H ⊆ G be an inclusion of finite groups, M a G-manifold, and let

j : M//H −→M//G

be the inclusion. Then the transfer j! in Korb is

ind G
H : KH(M) −→ KG(M).

We will write

IGH : KTate(M//H) −→ KTate(M//G)

for the transfer j! in KTate. Let a be an element of KTate(M//H). Then IGH(a) is an
element of ⊕

[g]

KCG(g)(M
g)[[q

1
|g| ]].

Fix g ∈ G, choose representatives h1, . . . , hk for the H-conjugacy classes contained
in [g]G, and for 1 6 i 6 k, choose si ∈ G with sihis

−1
i = g. Write Ci := CH(hi), and
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CG := CG(g), and view the former as a subgroup of the latter via the inclusion

Ci →֒ CG

t 7→ sits
−1
i .

Proposition 2.24. With the above notation, the [g]th summand of IGH(a) equals

IGH(a)[g] =
k⊕

i=1

ind CG

Ci
(ai) ,

where ai = a[hi]

Proof. Because of the commuting diagram

M//H
j

// M//G

(G×H M)//G,

∼

OO

pr2

55kkkkkkkkkkkkkkk

IGH may be identified with the G-equivariant (Atiyah) transfer in Krot along Λ(pr2).
This may be viewed as the map of G-spaces

G×H ob(Λ(M//H)) −→ ob(Λ(M//G)

(s, (x, h)) 7−→ (sx, shs−1).

Hence we have

IGH(a)[g] =
∑

r−1gr∈H

r · a[r−1gr], (7)

where the sum runs over r ∈ R, a system of representatives of G/H. Without loss of
generality, the set of those representatives contributing to the sum may be chosen of
the form

s1 · R1 ⊔ · · · ⊔ sk · Rk,

with Ri a system of representatives for CG(hi)/CH(hi). Then (7) becomes

k⊕

i=1

si ·
⊕

r∈Ri

ra[hi] =

k⊕

i=1

si · ind
CG(hi)
CH(hi)

a[hi],

as claimed.

3. Power operations

3.1. Symmetric powers of orbifolds
Recall that Gpd is a symmetric bimonoidal category (“rig” category) with the

monoidal structures given by (⊔, ∅) and (×, pt). Every groupoid X ∈ ob(Gpd) is a
monoid with respect to (⊔, ∅), via the fold map

d : X ⊔X −→ X.

A groupoid X is a monoid with respect to (×, pt) if and only if X is endowed with
the structure of a symmetric monoidal category.
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Definition 3.1. Then nth symmetric power of X ∈ ob(Gpd) is the groupoid Sn ≀X
obtained from Xn by adding the additional arrows

(x1, . . . , xn)
σ

−−−−→ (xσ−1(1), . . . , xσ−1(n)) σ ∈ Sn,

composing with the arrows in Xn as follows:

σ ◦ (g1, . . . , gn) = (gσ−1(1), . . . , gσ−1(n)) ◦ σ.

The total symmetric power of X is

S(X) :=
∐

n>0

Sn ≀X.

The endofunctor S of Gpd is exponential in the sense that it is a monoidal functor

S : (Gpd,⊔, ∅) −→ (Gpd,×, pt).

It follows that S(X) comes equipped with a symmetric monoidal structure

∗ := S(d),

which turns out to be concatenation. The unit of ∗ is the unique object () of S0 ≀X.
The triple

(S(X), ∗, ())

may be viewed as the free symmetric monoidal category on X. More precisely, the
functor

X 7−→ (S(X), ∗, ())

is the left adjoint to the forgetful functor from the category of monoids in Gpd to
Gpd. In particular, S is a monad.

Definition 3.2. We will write

µ : S2 =⇒ S

and

ι : Id =⇒ S

for the structure maps of the monad S. Explicitly, these are given by the inclusions
Sn ≀ Sm ⊆ Snm and by the inclusion of X = S1 ≀X inside S(X).

3.2. The inertia groupoid of S(X)
Objects of Λ(S(X)) are given by quadruples (n, x, g, σ), where n > 0 is a natural

number, x ∈ ob(Xn), and σ ∈ Sn, while g is a system of arrows xi
gi
−→ xσ(i). Note

that this notation is somewhat redundant, all the information is contained in the pair
(σ; g). The inertia groupoid inherits a monoidal structure from S(X), given by

(σ; g1, . . . , gn) ∗ (τ ;h1, . . . , hm) = (σ ⊔ τ ; g1, . . . , gn, h1, . . . , hm).

An object (σ, g) of Λ(S(X)) is indecomposable with respect to ∗ if and only if n > 0
and σ acts on {1, . . . , n} with a single orbit (i.e., σ is a long cycle). Otherwise, the
cycle decomposition of σ yields a decomposition of (σ, g) into indecomposables.
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Definition 3.3. Let ςk ∈ Sk be the cycle ςk = (1, . . . , k), and let Φk(X) be the full
subgroupoid of Λ(S(X)) with objects (ςk, x). Let Φ(X) be the groupoid

Φ(X) :=
∐

k>1

Φk(X).

Further, let ϕ ∈ Center(Φ) be the restriction of ξ1 to Φ(X).

The essential image of Φ(X) inside Λ(SX) is the subgroupoid of indecomposable
objects. The functor Φ is additive, i.e., Φ(∅) = ∅, and Φ preserves ⊔.

Lemma 3.4. We have an equivalence of monoidal groupoids

Q : S(Φ(X)) −→ Λ(S(X)),

which is natural in X and satisfies

QS(ϕ) = ξ1Q.

Proof. Let I be the inclusion

I : Φ(X) →֒ Λ(S(X)),

and let Q be the composite

Q : S(Φ(X))
S(I)

−−−−−−→ S(Λ(S(X)))
ε

−−−−→ Λ(S(X)),

where the second map is the counit of the adjunction (S, ∗, ()) ⊣ forget. Then Q is
monoidal. Since the essential image of I consists exactly of the indecomposable objects
of Λ(S(X)), it follows that Q is essentially surjective. One checks that Q is also fully
faithful. (This boils down to the fact that σ and τ are conjugate in Sn if and only if
their cycle decompositions are congruent.)

Definition 3.5. For each k > 1, we define a map of groupoids

Ek : Φk(X) −→ Λ(X)[ξ
1
k ]

((x1, . . . , xk), (ςk; g1, . . . , gk)) 7−→ (x1, gk · · · g1) on objects, and

(id;h1, . . . , hk)) 7−→ h1 and

ϕ 7−→ ξ
1
k on morphisms.

Lemma 3.6. The map Ek is a well-defined equivalence of groupoids.

In order to make the notation more manageable, we will simply write g for the
object of Λ(X) previously denoted (x, g).
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Proof. It is clear that Ek is surjective on objects. Let (ςk; g) be an object of Φk(X),

and write (id; ĝ) for its image under Πk. In other words, ĝi ∈ ob(Λ(X)) is the com-
posite

ĝi : xi
gi
−−→ xi+1

gi+1
−−−−→ xi+2

gi+2
−−−−→ · · ·xi−1

gi−1
−−−−→ xi.

Then we have

ϕk
(x,g) = (id, ĝ). (8)

Let (ςmk , h) be an arrow in Φk(X). Then (ςmk , h) can be factored as

(id, h′) ◦ ϕm = ϕm ◦ (id, h′)

with m ∈ Z, and this presentation is unique up to the relation (8).

Consider an arrow of the form (id, h) from (x, g) to (x′, g′) in Φk(X). Then the hi
fit into a commuting diagram

x1
g1

//

h1

��

x2
g2

//

h2

��

x3 //

h3

��

· · · // xk
gk

//

hk

��

x1

h1

��

x′1
g′
1 // x′2

g′
2 // x′3 // · · · // x′k

g′
k // x′1.

(9)

In particular,

h1ĝ1h
−1
1 = ĝ′1 (10)

(and, similarly for i). Hence Ek is well defined. Further, the hi are uniquely determined
by h1, and any h1 satisfying (10) gives rise a to system h fitting into (9). Hence Ek

is fully faithful.

Definition 3.7. Let Fk be the quasi-inverse of Ek that sends the object g to

(ςk; g, id, . . . , id)

(k − 1 times id).

All the above constructions are Morita invariant.

3.2.1. Comparison to Dijkgraaf, Moore, Verlinde and Verlinde

Let X be the groupoid of a global quotient orbifold M//G, where G is a finite group.
Then the loop space of Sn ≀X,

L(Sn ≀X) ≃ Fun(R//Z, Sn ≀X),

has objects (σ; g, γ), where (σ; g) ∈ Sn ≀G and γ is an n-tuple of paths

γi : R −→M

satisfying

giγi(t) = γσ(i)(t+ 1). (11)
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Example 3.8. Assume that σ = ςk. Then we have

γ1(t+ k) = gk · · · g1γ1(t)

γ2(t+ k) = g1gk · · · g2γ2(t)

and so on, and each γi determines the others via (11). Hence

γi ∈ Fun(R//kZ, X)

may be thought of as a loop of length k in M//G.

Let LkX ⊆ L(Sn ≀X) be the full subgroupoid whose objects have σ = ςk. Then our
groupoid Φk can be identified with LkX

R, the part of LkX that is invariant under
the rotation action by R. So, ΦkX may be viewed as the groupoid of constant loops
of length k in M//G, and ϕ is identified with the rotation action by 1 ∈ Z on these
long loops. The key argument in [15] is summarized by the equivalence of groupoids

LS(X) ≃ S


∐

k>1

LkX


 (12)

(see also [34]). Our Lemma 3.4 above follows from (12) by restricting to constant
loops on both sides.

3.3. Power operations in orbifold theories
Let E be an orbifold theory with products.

Definition 3.9. A total power operation for E is a (non-linear) natural transforma-
tion

P : E =⇒ E ◦ S

satisfying the following properties:

Comodule property. P makes E a comodule over the comonad (−) ◦ S, i.e., the
following diagrams commute:

E
P

+3

P

��

E ◦ S

P

��

E ◦ S
µ∗

+3 E ◦ S ◦ S

E
P

+3

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
C

C
E ◦ S

ι∗

��

E.

Exponentiality: The map

P : E(∅) −→ E(pt)

sends 0 to 1, and

P : E(X ⊔ Y ) −→ E(SX × SY )

sends (a, b) to the external product P (a)⊗ P (b).

We can write P as P = (Pn)n>0, with Pn := ι∗nP . Then Pn is called the nth power
operation of P .
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Example 3.10 (Atiyah power operations). Let V be an orbifold vector bundle on X.
Then we have the Atiyah Power Operations

Pn(V ) := Sn ⋉ V ⊗n

of [6]. We will see below how to extend this definition to virtual vector bundles.
For now we note that P = (Pn)n>0 satisfies the axioms of a total power operation,
whenever it is defined.

3.3.1. Consequences of the definition
Proposition 3.11.

1. We have P1(a) = a.

2. More generally,

i∗kPk(a) = a⊗k

(external product), where ik is the inclusion of Xk in Sk ≀X.

3. We have

(PS) ◦ P = µ∗ ◦ P,

or, equivalently,

Pn(Pm(a)) = resSnm

Sn≀Sm
(Pnm(a)) .

4. P0(a) = 1.

5. The external product of a ∈ E(X) and b ∈ E(Y ) is given by

a⊗ b = i∗P (a, b),

where (a, b) ∈ E(X ⊔ Y ), and

i := (ιX × ιY ) : X × Y →֒ SX × SY

is the product of the canonical inclusions (see Definition 3.2).

6. We have

P (a⊗ b) = j∗ (P (a)⊗ P (b))

(external products), where

j : S(X × Y ) −→ S(X)× S(Y )

is defined as

j = (S(πX), S(πY )),

with πX and πY the projections to the respective factors.

7. The map P , and equivalently all the Pn, preserves interior products:

Pn(ab) = Pn(a)Pn(b),

for a, b ∈ E(X).

8. For each n, we have Pn(1) = 1.



POWER OPERATIONS IN ORBIFOLD TATE K-THEORY 331

Proof. The Comodule Property translates into Points 1. and 3. To prove Point 2., we
apply naturality of P to the fold map f : X ⊔ · · · ⊔X → X, noting that S(f) is the
concatenation product ∗. This leads to a commuting diagram

E(X)
P //

f∗

��

E(SX)

(∗)∗

��

(ιkik)
∗

// E(Xk)

E(X ⊔ · · · ⊔X)
P // E((SX)k),

(ιk1 )
∗

66lllllllllllll

where f∗(a) = (a, . . . , a). By the Exponential Property, the bottom composite sends
(a, . . . , a) to P1(a)

⊗k, hence 2.

For Point 4., we apply naturality of P to the unique map e : ∅ → X, arriving at

ι∗0 ◦ P |X = P |∅ ◦ e
∗.

The left-hand side of this is P0. By the first part of the Exponential Property, the
right-hand side is the constant map 1.

Point 5. is an immediate consequence of the Exponential Property and 1.

To prove Point 6., one checks that j = µ ◦ S(i) and considers the diagram

E(X ⊔ Y )
P //

P

��

E(SX × SY )
i∗ //

P

��

E(X × Y )

P

��

E(SX × SY )
µ∗

// E(S2(X ⊔ Y ))
(Si)∗

// E(S(X × Y )),

whose left square commutes by 3., and whose right square commutes by naturality of
P . By Point 5., the composite on the top row sends (a, b) to a⊗ b. By the Exponential
Property, the leftmost vertical arrow sends (a, b) to P (a)⊗ P (b).

Point 7. follows from 6. by considering the special case X = Y : Let δ : X → X ×X
be the diagonal map. Then we have

P (ab) = P (δ∗ (a⊗ b))

= (Sδ)∗P (a⊗ b)

= (Sδ)∗j∗(P (a)⊗ P (b))

= δ∗S(X) (P (a)⊗ P (b))

= P (a)P (b).

Finally, we show Point 8. In the special case X = pt, this follows from 3. and the first
part of the Exponential Property. The general case follows by applying naturality of
P to the unique map from X to pt.

3.4. The graded ring E(S(X))

From now on, we assume that E possesses transfers along (faithful) essentially
finite covers. Then transfer along the concatenation product

∗ : S(X)× S(X) −→ S(X)
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defines a second multiplication • on the ring E(S(X)), making it a graded ring with
respect to the grading

E(S(X)) ∼=

∧⊕

n>0

E(Sn ≀X)

with unit 1 in degree zero.

Proposition 3.12. Assume that P is natural also with respect to transfers, and let
a, b ∈ E(X). Then we have

P (0) = 1

and

P (a+ b) = P (a) • P (b).

Proof. The first equality follows by applying naturality of P to the transfer along the
inclusion of ∅ in X. The second follows by applying naturality of P to the transfer
along the fold map X ⊔X → X.

Assume now that E is an orbifold theory such that, for each finite group G, the
functor EG(M) = E(M//G) is not just exact, but actually the degree zero part of a
G-equivariant cohomology theory. In this situation, we demand that P be natural
also with respect to maps in the G-equivariant stable category. Spanier-Whitehead
duality implies that each EG possesses transfers along G-equivariant finite covers and
our assumption on P implies that P is natural with respect to these transfers. Note
that by the proof of Proposition 2.24, this class of transfers includes transfers along
the maps

M//H −→M//G,

induced by the inclusion of a subgroupH ⊆ G. In particular, P is natural with respect
to the map

∗ : SX × SX → SX

whenever X//G is a global quotient orbifold.
It seems reasonable to expect that, in a suitably defined category of ‘orbispectra’,

a similar argument would make the demand for naturality along faithful transfers
redundant and that all K-theoretic transfers above should be induced by maps in a
Korb-localization of this orbispectra category.

Corollary 3.13. The Atiyah power operations of Example 3.10 can be extended, in
a unique way, to virtual vector bundles.

Proof. Indeed, P takes values in 1+Korb(SX) and hence P ([V ]) is invertible with
respect to • for any vector bundle V .

Similarly, one argues that the definition of Atiyah power operations extends to
Krot, giving

P : Krot(X, ξ) −→ Krot(SX,Sξ).
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3.5. Power operations in Tate K-theory

Recall from Lemma 3.4 that we have

KTate(S(X)) ∼= Krot (S(Φ(X)), S(ϕ)) .

This becomes a graded isomorphism if, on the right-hand side, elements supported
on Sn ≀ Φk(X) are given degree nk.

Definition 3.14. Let X be an orbifold groupoid, let ξ be an element of its center,
and let k > 1 be a natural number. Then we define the map

sk : Krot(X) −→ Krot(X[ξ
1
k ])[∑

Vaq
a
]
7−→

[∑
Vaq

a
k

]
,

where ξ
1
k acts on the coefficient Va by e2πia/k.

The map sk commutes with the Atiyah power operations in the following sense:
let (X, ξ) be as in Definition 3.14, recall the notation X(k) for X[ξ

1
k ] and let

δ : (SX)(k) →֒ S(X(k))

be the canonical inclusion (i.e., δ sends (Sξ)
1
k to S(ξ

1
k )). Then we have

sk ◦ P = δ∗Psk.

Definition 3.15. Let

θ : KTate(X) −→ Krot(Φ(X), ϕ)

be the additive operation whose kth component is E∗k ◦ sk. Here Ek is the equivalence
defined in Lemma 3.6.

Definition 3.16. The total power operation in KTate is defined as the composite

PTate : KTate(X)
θ
−−→ Krot(ΦX,ϕ)

P
−−−→ Krot(SΦX,Sϕ)

(Q∗)−1

−−−−−−→ KTate(SX).

Theorem 3.17. This PTate satisfies the axioms of a total power operation.

Proof. The Exponential Property follows immediately from that of P and from addi-
tivity of θ,

θ : KTate(X ⊔ Y ) −→ Krot(ΦX ⊔ ΦY )

(a, b) 7−→ (θa, θb).

The following lemma is the first step towards proving the Comodule Property:

Lemma 3.18. Let the natural transformation ϑ be defined as the composite

ϑX : ΦSX
ISX−−−−−−→ ΛS2X

ΛµX
−−−−−−→ ΛSX.

(Note that ϑ and θ denote two different things.) Then we have

(θS) ◦ PTate = ϑ∗PTate.
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In other words, the diagram

KTate(X)
PTate

//

PTate

��

KTate(SX) Krot(ΛSX, ξ)

ϑ∗

��

KTate(SX)
θ // Krot(ΦSX,ϕ)

commutes.

Proof. It suffices to prove this equality after restricting both sides to ΦkS. Consider
the commuting diagram

Λ(k)S
FkS

≃
// ΦkS

ϑ // ΛS

(SΦ)
(k)

Q(k) ≃

OO

δ // S(Φ(k))
Su

≃
// SΦ,

Q ≃

OO

where the equivalence u sends the object (ςl; g) of Φ
(k)
l ) to the object

(ςkl; id, . . . , id︸ ︷︷ ︸
k−1

, g1, id, . . . , id︸ ︷︷ ︸
k−1

, g2, id, . . . , . . . , id, gl),

of Φkl, sends a morphism of the form (id, h) to

(id;h1, . . . , h1︸ ︷︷ ︸
k

, h2, . . . , h2︸ ︷︷ ︸
k

, . . . , . . . , hl, . . . , hl︸ ︷︷ ︸
k

),

and ϕ
1
k to ϕ. We have

u∗θ = skθ,

and

(Q(k))∗sk = skQ
∗

where sk us as in Definition 3.14. Hence

(Q(k))∗ ◦ F ∗k ◦ ϑ
∗ ◦ PTate = δ∗ ◦ (Su)∗ ◦ P ◦ θ

= δ∗ ◦ P ◦ u∗ ◦ θ

= δ∗ ◦ P ◦ sk ◦ θ

= sk ◦ P ◦ θ

= (Q(k))∗ ◦ sk ◦ P
Tate

= (Q(k))∗ ◦ F ∗k ◦ E
∗
k ◦ sk ◦ P

Tate

= (Q(k))∗ ◦ F ∗k ◦ θ ◦ sk ◦ P
Tate

Since (Fk ◦Q
(k))∗ is an isomorphism, the claim of the lemma follows.
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To complete the proof of the theorem, we consider the commuting diagram

SΦS
Sϑ //

QS ≃

��

SΛS

ε

��

S2Φ
SQ

≃
oo

µΦ

��

ΛS2
Λµ

// ΛS SΦ,
Q

≃
oo

where the middle map, ε, is the counit of the adjunction (S, ∗, ()) ⊣ forget (compare
to the definition of Q in the proof of Lemma 3.4). This yields

(PTateS) ◦ PTate = ((QS)∗)−1 ◦ (PΦS) ◦ ϑ∗ ◦ (Q∗)−1 ◦ (PΦ) ◦ θ

= ((QS)∗)−1 ◦ (Sϑ)∗ ◦ ((SQ)∗)−1 ◦ (PSΦ) ◦ (PΦ) ◦ θ

= ((QS)∗)−1 ◦ (Sϑ)∗ ◦ ((SQ)∗)−1 ◦ (µΦ)∗ ◦ (PΦ) ◦ θ

= (Λµ)∗(Q∗)−1 ◦ (PΦ) ◦ θ

= (Λµ)∗PTate.

3.6. Symmetric and exterior powers
Let E be a theory with transfers and power operations. Write

ε : S(pt) −→ N

for the augmentation map, sending Sn ≀ pt to n. We may identify E(N×X) with the
formal power series ring E(X)[[t]].

Definition 3.19. The total E-theoretic symmetric power St is the composite

St : EX
P

−−−−→ ESX
δ∗

−−−−−→ E(S(pt)×X)
ε!−−−−→ E(X)[[t]],

where δ is the diagonal map, sending the arrow (σ, g) to the arrow (σ; g, . . . , g) with
n copies of g if σ ∈ Sn.

Proposition 3.20. In the definition of St, the maps δ∗ and ε! are maps of graded
rings.

Corollary 3.21. The total symmetric power is exponential:

St(a+ b) = St(a) · St(b).

Proof. We now prove the proposition. The ring multiplication on E(X)[[t]] corre-
sponds to

E(N×X × N×X)
δ∗X // E(N×X × N)

m! // E(N×X),

where δX : X → X ×X is the diagonal map and m : N× N→ N is multiplication.
Similarly, one defines the graded multiplication on E(S(pt)×X) as the push-pull

E
(
(S(pt)×X)

2
)

δ∗X−−−−−→ E
(
S(pt)2 ×X

) ∗!−−−−→ E(S(pt)×X).

The claim then follows by a tedious but straightforward iterated application of Propo-
sition 2.15.
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3.7. Symmetric powers in Tate K-theory

Definition 3.22. For a positive natural number k, we define the operator

βk : KTate(X) −→ KTate(X)

F 7−→
[
Π∗kF (q

1
k )
]Z/kZ

,

where Πk is the kth power map of Definition 2.5, and the generator of Z/kZ acts
on the coefficient Π∗k(Va) of q

a
k by ξ1 · e−2πi

a
k . So, the Z/kZ-invariant part consists

of the largest possible subspaces of the coefficients such that the result satisfies the
rotation condition for ξ1.

The action of the βk should be compared to the action of Ẑ× in [22].

Say the order of ξ1 is r and we are given an element F (q
1
r ) ∈ KTate(X). A priori,

it looks like βk(F ) is a power series in q
1
kr , but the rotation condition implies that it

is in fact a power series in q
1
r .

Example 3.23. If X =M is a manifold, then F is of the form F =
∑∞

n=0 Vnq
n, and

βk(F ) =
∞∑

m=1

Vkmq
m.

This should be compared to [15, (2.13)].

Theorem 3.24. The total symmetric power in Tate K-theory is described by the
formula

STate
t (F ) =

∞⊗

k=1

Stk(βk(F )). (13)

Here St stands for the total Atiyah symmetric power on KTate.

Corollary 3.25. If X =M is a manifold and F = V is a vector bundle on M , then
STate
t (V ) is Witten’s stable exponential characteristic class,

STate
t (V ) =

∞⊗

k=1

Stk(V )
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Proof of Theorem 3.24. We will construct a commuting diagram:

K(ΛX) K(ΛX)

K(Φ(X)) K(Φ× ΛX) K(N>1 × ΛX)
⊕

k>1

K(ΛX)

K(SΦ(X)) K (S (Φ×ΛX)) K(S(N>1×ΛX))
⊗

k>1
K(SΛX)

K(ΛSX) K(SΦ× ΛX) K(SN>1 × ΛX)
⊗

k>1
K(S(pt)× ΛX)

K(ΛS(pt)× ΛX) K(N0 × ΛX) K(Π× ΛX)
⊗

k>1
K(N0 × ΛX)

K(ΛX)[[t]]
⊗

k>1
K(ΛX)[[tk]].

θ (βk)

d∗

P

(a×id)!

P

∼

P
⊗P

(Sd)∗

Q!

S(a×id)!

diag∗ΛX diag∗ΛX ⊗δ∗

Λδ∗

(Sa×id)!

(Q
×i

d)!

(e×id)! ⊗(ε×id)!

(Λε×id)!

≀

∼(s×id)!

≀

tk←− [ tk

Again, K is short for Krot. The composite of the six red arrows (along the left edge
of the diagram, starting in the upper-left corner and ending at K(ΛX)[[t]]) gives the
left-hand side of (13), that of the six blue arrows (the composite of the right-most
vertical arrows and the bottom arrow) gives the right-hand side. The other arrows
are defined as follows: abbreviating Φ(pt) as Φ, we let

d : Φ× ΛX → Φ(X)

be the restriction of Λδ to the source of d. So, the kth component dk of d sends the
object g to (ςk; g, . . . , g) and the morphism (ςmk , h) to (ςmk ;h, . . . , h). Let

a : Φ→ N>1

be the map that sends Φk(pt) to {k}. Together with θ, these maps form the top
square of the diagram.

The three commuting squares in the second row are almost immediate from the
properties of P : the right-most follows, by induction over the degree, from the expo-
nential property. The unlabeled horizontal maps out of the tensor products on the
very right all are obtained as the (internal) product of projection maps of the form

S

(
∐

k

Yk

)
−→ S(Yj),

mapping (yi) to the list of entries from Yj .
Next, we have the maps diagΛX defined as

diagΛX : SN>1 × ΛX −→ S(N>1 × ΛX)

((k1, . . . , kn), g) 7−→ ((k1, g), . . . , (kn, g)) on objects

(σn, h) 7−→ (σn;h, . . . , h)) on morphisms,

and similarly, with Φ in the role of N>1.
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Finally, we write Π for the set of isomorphism classes of ΛS(pt) or, equivalently,
SΦ or SN>1. Elements of Π may be thought of as sequences (nk)k>1 with all but
finitely many entries equal to zero, and we have the degree map

s : Π −→ N0

(nk)k 7−→
∑

k

knk,

and the canonical quotient map

e : SN>1 −→ Π,

fitting into the pentagon in the fourth row. The right square in the same row is
obtained from the family of commuting squares

SN>1 S{k}

Π kN0,

πk

e ε

πk

where πk is the map of isomorphism classes induced by πk. The fact that e! ◦
∏
π∗k

equals
⊗
ε! is not immediate. The argument boils down to the fact that, for a

G-representation V and an H-representation W , the invariant part (V ⊗W )G×H

equals V G ⊗WH .

3.8. Adams operations and Hecke operators
The total symmetric power in K-theory has the well-known generating function

St(x) = exp


∑

m>1

ψm(x)

m
tm


 , (14)

where the ψm are the Adams operations. In fact, (14) is often used as a definition
of the Adams operators. As a consequence of Theorem 3.24, we obtain the following
generating function for STate

t :

STate
t (F ) = exp


∑

m>1

Tm(F )tm


 ,

where the Hecke operators Tm are defined as

Tm(F ) :=
1

a

∑

ad=m

ψa (βd(F )) .

Example 3.26. It is well known that the Adams operations on the coefficient rings
KG(pt) = R(G) have the following effect on characters:

ψm(χ)(g) = χ(gm).

Let F be an element of the coefficient ring

KTate
G (pt) ∼=

⊕

[g]

R(Cg)[[q
1
|g| ]].
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As in Section 2.1.3, we view F as the q-expansion of a function F (g, h; τ), with

q
1
|g| = e2πiτ/|g|. Then

βd(F )(g, h; τ) =
1

d

∑

06b<d

F

(
gd, g−bh;

τ + b

d

)
,

and hence

Tm(F )(g, h; τ) =
1

m

∑

ad=m

∑

06b<d

F

(
gd, g−bha;

τ + b

d

)
.

These are the equivariant Hecke operators that play an important role in Moonshine;
see [12, 17, 27] and [29].

The equivariant Hecke operators can be defined by an equivariant Hecke corre-
spondence, and this is the sense in which our power operations on KTate are ‘elliptic’.
A natural question is whether our notion of elliptic can be strengthened to resemble
the definition of H∞ elliptic spectrum in [5, Def. 16.4]. In other words, do our power
operations define descent data for level structures on the Tate curve as in [5], and do
our power operations specialize to the ones Ando defines in [2, 6.3]?

3.9. Exterior powers and replicability

The total exterior power ΛTate
t is defined by the equality

ΛTate
t (F ) =

(
STate
−t (F )

)−1
,

so

ΛTate
−t (F ) = exp


−

∑

m>1

Tm(F )tm


 .

Let

F (q) ∈ R(G)((q))

be of the form

F (q) = q−1 + a1q + a2q
2 + · · · .

From the Moonshine literature, such F are known as McKay-Thompson series. We
recall4 that the Faber polynomials Φm,F of F are defined by

−
∞∑

m=1

Φm,F (w)t
m = log (t(F (t)− w)) .

Hence Φm,F is a polynomial in w of degreem, which depends on the firstm coefficients
of F and is uniquely characterized by the fact that it is of the form

Φm,F (F (q)) = q−m + b1q + b2q
2 + · · · .

4Compare, e.g., [35, (2.1)] with b = 1, t = 1/z and F (q) = g(z).
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Definition 3.27. Let F be a McKay-Thompson series. We write F (a) for the ath

Adams operations applied to F . We call F replicable, if for every natural number m,
we have

Φm,F (F (q)) =
∑

ad=m

∑

06b<d

F (a)

(
aτ + b

d

)

= m · Tm(F )(q).

Here q = e2πiτ .

This appears to be the right notion of replicability of McKay-Thompson series;
it is the one that turns up in [11]. It follows that a McKay-Thompson series F is
replicable if and only if it satisfies

F (t)− F (q) = t−1 · ΛTate
−t (F (q)).
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