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THE GLUING PROBLEM DOES NOT FOLLOW FROM
HOMOLOGICAL PROPERTIES OF A,(G)

ASSAF LIBMAN
(communicated by J. P. C. Greenlees)

Abstract

Given a block b in kG where k is an algebraically closed field
of characteristic p, there are classes ag € H?(Autz(Q); k),
constructed by Kiilshammer and Puig, where F is the fusion
system associated to b and @ is an F-centric subgroup. The glu-
ing problem in F has a solution if these classes are the restriction
of a class a € H?(F¢; k*). Linckelmann showed that a solution
to the gluing problem gives rise to a reformulation of Alperin’s
weight conjecture. He then showed that the gluing problem has
a solution if for every finite group G, the equivariant Bredon
cohomology group HA(|A,(G)[; A') vanishes, where |A,(G)] is
the simplicial complex of the non-trivial p-subgroups of G and
Al is the coefficient functor G/H — Hom(H, k*). The purpose
of this note is to show that this group does not vanish if G = ¥,
where p > 5.

1. Introduction

Given a functor M : C — Ab, where C is a small category, we will write H*(C; M)
for the groups @Z M. When C has one object with a group G of automorphisms, a
functor M : C — Ab is the same thing as a G-module and H*(G; M) = mz M.

Let us now fix a prime p and let F be the fusion system of a block b of a finite
group G. As usual, we will write F¢ for the full subcategory generated by the F-
centric subgroups in F. Let k be an algebraically closed field of characteristic p.
In [8] Kiilshammer and Puig show that for every F-centric subgroup @ there is a
canonically chosen class ag € H*(Aut#(Q); k™). We view Autx+(Q) as a full subcat-
egory of F¢ and say that the gluing problem has a solution in F if there exists a class
a € H?(F¢ k), where k> is the constant functor, such that the restriction | Aut - (Q)
is equal to aq for all Q) € F°.

Linckelmann showed in [10] that if the gluing problem has a solution in the fusion
systems of all blocks then Alperin’s weight conjecture is logically equivalent to a
relation between the number k(b) of complex representations of G associated to b by
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Knorr and Robinson [7] and the Euler characteristic of a certain cochain complex
built from the fusion system of b and the cohomology class a.

Let G be a finite group and C a finite G-poset. The (combinatorial) simplicial com-
plex associated to C, see [13, Chap. 3], is denoted S(C). The n-simplices are sequences
¢p 3 -+ 3 ¢y in C which we denote c. Face maps are inclusion of simplices. We view
S(C) as a topological space via the geometric realization. Clearly G acts on S(C)
whose orbit space is denoted [S(C)]. It is a CW-complex obtained as the geometric
realization of the simplicial set Nr(C)/G where Nr(—) is the nerve construction [3,
X1.2.1]. By abuse of notation, [S(C)] will also denote the poset of the cells of [S(C)]
ordered by inclusion.

As a special case consider the poset A,(G) of the non-trivial p-subgroups of a
finite group G. Note that the isotropy group of an n-simplex P = (Py < --- < P,) in
S(8,(G)) is

Ng(P) = NiZgNg (F).

The objects of the poset [S(A,(G))], viewed as a small category, are the G-conjugacy
classes [P] of the simplices of S(A,(G)) and there is a unique morphism [Q] — [P] if
the simplex Q is conjugate in G to a face of P. There is a functor
Ne: [S(Ap(G))] — Ab defined by Linckelmann in [9]

N&([P]) = Hom(Ng(P), k) = Hom(Ng(P)ap, k).

Theorem 1.2 of [9] implies that the gluing problem in F has a solution if we can prove
that H([S(A,(K));Nk) =0 for all K = Aut+(Q)/Inn(Q) where Q is an F-centric
subgroup. Thus, if we can prove that H'([S(A,(G))];Ng) = 0 for all finite groups
G, then the gluing problem has a solution for all fusion systems. The purpose of this
note is to show that this programme, suggested by Linckelmann, is not feasible.

Theorem 1.1. Set G =X,2. If p > 5 then H'([S(A,(G))]; Ne) # 0.

We remark that 3,2 appears as an outer F-automorphism group of @ = (Cp)”2
in the fusion system of the principal block of C}X,.. We also remark, without
proof, that Theorem 1.1 is valid for p = 3 but it fails if p = 2. For p = 2 one observes
that HZ (|B,(G)|; H') = 0, see equation (1), because H' vanishes on all the orbits of
|B,(G)|. For p = 3 one has to examine the exact sequence (3) more carefully than we
do in Propositions 4.2-4.4.

2. Subdivision categories and higher limits

Let G be a finite group. As in the introduction, if C is a finite G-poset, let S(C)
denote the associated G-simplicial complex and let [S(C)] denote its orbit space.
We will denote the set of n-simplices of S(C) by S(C)n. It is the set of the non-
degenerate n-simplices of Nr(C). Thus, the n-simplices of S(C) are sequences c of the
form ¢y 3 --+ 2 ¢, in C. The faces of ¢ are its non-empty subsequences.

The space [S(C)] is the geometric realization of the simplicial set Nr(C)/G whose
set of non-degenerate simplices is [S(C)], = S(C),/G which in turn, corresponds to
the set of n-cells of [S(C)]. We obtain a poset, abusively denoted [S(C)], whose objects
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are the G-orbits of the simplices of S(C) with an arrow [¢/] — [c] if ¢/ is in the orbit
of a face of c. The objects of [S(C)] will be referred to as “simplices”.

Given an n-simplex ¢g 3 -+ 3 ¢, in S(C) where n > 1, we will write d;c for the
(n — 1)-simplex obtained by removing ¢; where 0 < 7 < n. We obtain face maps

8i: S(C)n — Sy and 3] [SO]n — [SC)]n_1,  (0<i < n)

where 0; is G-equivariant and an n-simplex [c] in [S(C)] gives rise to a map of tran-
sitive G-sets [c] 18, [O;c].
Definition 2.1. Fix a commutative ring R. Let C be a finite G-poset and consider a
functor A: [S(C)] — R-mod. Define a cochain complex C*(.A) as follows.
Sro(-1id?
crA)= [ Ale), and d:CmHA) —E——
[c]€[S(C)]n

The homomorphisms @’ : C"~1(A) — C™(A) are defined on the [c]-th component of
C"™(A), where [c] € [S(C)]n, by the composition

Cn(A).

roj A([9;c]=[c
€ (A) P2 A(foye]) ISR A(fe),
Lemma 2.2 (cf. [10, Proposition 3.2]). With the notation of Definition 2.1, the coho-
mology groups of C*(A) are isomorphic to H*([S(C)]; A).

Proof. For every n > 0 consider the projective functors P, : [S(C)] — Ab defined by

P, = @ 7 R MOI“[S(C)] ([C], —).
[c]e[S(C)]n

For every 0 < j < n there are morphisms d{zfl: P, — P,_1 which are induced by
Yoneda’s lemma via the morphisms [9;¢c|] — [c] for every [c] € [S(C)],. Define mor-
phisms dy,_1: P, — Po_1 by dp_q1 = Z;;o(*l)jdf%y We claim that the resulting
P, p M p % g .7 (denoted P, — Z)

is a projective resolution of the constant functor Z. Indeed, the evaluation of P,
at every object [x] € [S(C)], yields the chain complex C,(A™;Z) because the faces
of [x] in [S(C)] generate the standard simplex A™. Finally, by Yoneda’s Lemma
Hom(P,, A) = C*(A) and its homology groups are isomorphic to lim * A. O

3. Bredon cohomology

Throughout this section a space means a simplicial set. Let G be a finite group.
A coefficient functor M for G is a contravariant functor {G-sets} — Ab which turns
coproducts of G-sets into products of abelian groups. By applying M to the sets of
simplices of a G-space X, one obtains a cosimplicial abelian group M(X). The cochain
complex associated to M(X) is denoted C*(X; M), see [15, 8.2]. Its homology groups
are called the Bredon cohomology groups H(X; M), see e.g., [5, §4]. Note that
C™"(X; M) = [[xgcx M([x]) where the product runs through the orbits of the n-
simplices of X.
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If Y is a G-subspace of X then there is a canonical short exact sequence of cochain
complexes

0—Ca(X,)Ys M) = CH(X; M) = CL(YsM) =0

which defines the relative cohomology groups H(X,Y; M) together with the usual
long exact sequences. Bredon cohomology is an equivariant cohomology theory, cf. [4].
In particular it turns G-homotopy equivalences into isomorphisms and if X is a union
of subspaces Y7 U Y5, one has the usual Mayer Vietoris sequence.
The normalized cochain complex NC*(X; M) is a sub-complex of C*(X; M)
defined by
n—1
NCMX M) = ) (Ker(C”(X;M) LN C"-l(X;M))),
i=0
where s are the codegeneracy maps of the cosimplicial group M(X). If [x] is the
orbit of a simplex in X and s; is a degeneracy operator of X, it is easy to check that
sit [x] — [six] is an isomorphism of transitive G-sets and in particular
M([x]) = M([six]). It easily follows that NC™(X; M) = []c x M([x]) where [x]
runs through the orbits of the non-degenerate n-simplices of X.
It is well known that the inclusion of NC*(X; M) in C*(X; M) is a homology
equivalence. See [15, 8.3].
Recall that the Borel construction of a G-space U is U xg EG where EG is a
contractible space on which G acts freely. If U = G/K then U x¢ EG = BK is the
classifying space of K.

Definition 3.1. Fix a finite group G, an abelian group A and an integer n > 0.
Define a coefficient functor H™ for G by H"(U) = H"(U xg EG; A). Observe that
H"(G/K) = H"(K; A) where A has the trivial action of K.

Definition 3.2. Let C be a finite G-poset and let M be a coefficient system. The
underlying set of every object [c] of [S(C)] is a transitive G-set and we define a functor
Apr: [S(C)] — Ab by

Am(le]) = M([c]).
If [c'] is a face of [c], we define Axq([c'] — [c]) by applying M to the map [c] — [c/]

of transitive G-sets.

By inspection of Definition 2.1, C*(Ax) = NCE(|C|; M) and the next result fol-
lows from Lemma 2.2. It has been observed by Slominska [12, p. 116] and by others
e.g., Grodal in [6, Theorem 7.3], Linckelmann [10, Proposition 3.5] and Dwyer in [5].

Lemma 3.3. Let C be a finite G-poset and let M be a coefficient functor for G. With
the notation of Definition 3.2, H*([S(C)]; Am) = HE(IC; M).

4. Proof of Theorem 1.1

Set G = X,2 and let C denote the poset A,(G) of the non-trivial p-subgroups of
G. First we observe that Hom(K, A) = H!(K; A) for any finite group K and any
abelian group A. Thus, the functor NVg: [S(C)] — Ab defined in the introduction is
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canonically isomorphic to A1 as defined in 3.2 and in 3.1 with A = k* where k
is an algebraically closed field of characteristic p. In light of Lemma 3.3 we need
to prove that H}(]A,(G)|;H') # 0. Consider the G-subposet B,(G) of the non-
trivial radical p-subgroups of G, namely the non-trivial p-subgroup P < G such that
N¢g(P)/P contains no non-trivial normal p-subgroup. It is well known that the inclu-
sion |B,(G)| C |A,(G)] is a G-homotopy equivalence, see e.g., [2, Proposition 6.6.5].
Therefore, it remains to prove that

HE(1B,(G); H') # 0. (1)
The radical p-subgroups of the symmetric groups were classified by Alperin and

Fong in [1]. In G = %> they form the following conjugacy classes:

(R1) The conjugacy class of the Sylow p-subgroup V; 1 def Cp 0y < Xp2. Its normal-
izer is V4 1 % (GL1(p) x GL1(p)) with the diagonal action of GL;(p) on the base
group (Cp)P and the usual action of the second GL1(p) on C, at the top.

(R2) The conjugacy class of the subgroup Vi = C}, x C}, embedded in ¥, via its
action on itself by translation. Its normalizer is Vo x GLa(p).

(R3) For every k =1,...,p the conjugacy class of the subgroup V4 ** which is iso-
morphic to CpXk as a subgroup of EpXk < Xp2. The normalizer of V1X’C is

(Vi % GLi(D) 15%) % Sy

Definition 4.1. Consider the following subposets of B,(G).

1. Let D; be the subposet consisting of the conjugacy class of V; ; and the conju-
gacy classes of Vi, V372, ... Vi %P,

2. Let V; be the subposet consisting of the conjugacy classes of Vi, Vi %2, ... V1 %P,
3. Let D be the subposet consisting of the conjugacy classes of V7 ; and V5.

4. Let D3 be the subposet consisting of the conjugacy class of V; j.

Observe that V, is a transitive subgroup of ¥,> so it cannot be conjugate to a
subgroup of V1X/C whose orbits have cardinality p. Also, V5 acts freely so it cannot
contain a conjugate of V1Xk since the latter do not act freely on the underlying set of
p? elements. We see that up to conjugacy B,(G) has the form

Vil < ] < ..o 7] < Vi > [V
and it follows that
IBp(G)| = [D1|U[Ds|,  and  [Ds| = |D1[N[Dy. (2)
The Mayer Vietoris sequence gives an exact sequence
- — HE (D1 HY) @ HE(|D2 ;1Y) — HE(IDs|sHY) — He(1B,(G)HY) — ... (3)
For what follows, it will be convenient to denote

L = Hom(GLy(p), k™) =T .

Proposition 4.2. H%(|Ds|;H') = L x L and HiZ'(|Ds|; H) = 0.
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Proposition 4.3. Hg(|D2|;H1) ~ I, and Hg>1(|D2|;H1) =0.
Proposition 4.4. H(|Dy|; H') = Cy and HZ'(|Dy1]; HY) = 0.

Propositions 4.2-4.4 together with the exact sequence (3) immediately imply (1)
because by hypothesis p > 5, whence |L| > 4.

Recall that k has characteristic p. Therefore the kernel of any group homomorphism
H — k> contains the commutator subgroup of H and any p-subgroup of H. We will
use this fact repeatedly.

Proof of Proposition 4.2. Since Ds is a single orbit of G with isotropy group N (V1,1)
it follows from (R1) that H}(|Ds|; H') = Hom(Ng(Vi1),k*) = L x L. O

Proof of Proposition 4.3. Since |B,(G)| is G-equivalent to |A,(G)|, Symond’s reso-
lution of Webb’s conjecture in [14] shows that the orbit space |B,(G)|/G is con-
tractible. But (2) shows that |B,(G)|/G = (|D1|/G) Vv (|D2|/G). It follows that the
CW-complex |Ds|/G, namely [S(D2)], is contractible and since it is 1-dimensional
with two O-simplices [V5] and [V 1], the poset [S(D2)] must have the form

Vo] — [Va<Via] « [Vi].

Now, Vo < Vi1 = C}, 1 C), is generated by the copy of C), at the top and the diagonal
copy of Cp in the base group C)p x --- x C}, which is the centre of V; ;. One easily
deduces from (R1) and (R2) that Ng(Va < Vi.1)/Ny, , (Va) = GL;(p)? as a diagonal
subgroup of GLy(p). With the notation of Definition 3.2 we have

Az ([Va < Via]) = Hom(GLy (p)?, k) = As ([Va,1)),

and Ay ([Vz]) = Hom(GLa(p), k™) = L because GLz(p)a, = F)f. By Lemma 3.3, the
groups HZ (|D2|; H') are isomorphic to H*([S(D2)]; A ), namely to the derived func-

tors of the diagram L 2. Lx L% [ xL. This completes the proof. O

Lemma 4.5. The inclusion Vi C Dy, see Definition 4.1, induces a G-equivariant
homotopy equivalence |V1| — |D1].

Proof. Given a subgroup P of G let §;(P) denote the subgroup of P generated by
all the permutations g € P whose support contains at most p elements. Observe
that d; is invariant under conjugation, namely 6;(gPg~1) = gd;(P)g~!. By inspec-
tion 61 (Vi) = V1% and 6,(Vi1) = Vi *P. We obtain a G-equivariant morphism of
posets 01: Dy — Vy. Clearly, |01] o iigf“ = Id}y,|. The inclusions 6;(P) < P give a G-

equivariant homotopy i}gf“ o [01] ~ Id|p,|, cf. [11, 1.3]. The result follows. O

We leave the following result as an easy exercise for the reader.

Lemma 4.6. Let K be a finite group, fix an integer n > 1 and set G,, = K1%,,. Then
(Gn)ab = Kap X (Xn)ab- The restriction of Gy, — (Gr)ab to any one of the factors K
of K™ < G, is the canonical projection K — Ky, and the restriction of G, — (Gp)ab
to X, is the projection onto (X;,)ab-

Ifn,m = 1 then Gy, X Gy < G- The resulting (Gp)ap X (Gim)ab — (Gntm)ab
is induced by the fold map Ka, X Koy, — Kap and by (2,)ab X (Zm)ab — (Zntm)ab-
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Notation 4.7. The following non-standard description of the (n — 1)-simplex A"~1
will be used throughout. The r-simplices of A"~ ! are sequences g < - -- < 4, where
1 <ig,-..,% < n. Face maps are obtained by inclusion of sequences. (The usual con-
vention is 0 < ig,...,4 <n—1.)

Proof of Proposition 4.4. In light of Lemma 4.5 and Lemma 3.3, we must prove that
HE (IS5 A ) = Ca.

The high transitivity of the symmetric groups and the description of N(;(Vlch ) in
(R3) imply that every r-simplex of S(V1) is conjugate in G to a simplex of the form
Vo < oo < V' where 1 < g < -+ - < i < p. With the notation of 4.7 we see that
[S(V1)] = AP~L,

For any group K let K denote the abelian group Hom(K, k). Let N denote the
normalizer of C, in ¥,. Thus, N = C, x GL1(p) and observe that GLi(p) < L, is
generated by an odd permutation, in fact a cycle of even length (p is odd). Set

L = N = Hom(N, k*) = Hom(GLy (p), k*) = C,_1.
Consider the following functor ®: (AP~1)°P — {Groups}. On objects

Dip < -+ <iy) = (HN 1 0 —ir ) X Ep2_i (by convention i_; = 0).
t=0
For an r-simplex i and for 0 < j < r, the effect of ®(i) — ¥(9;i) is induced by the
inclusions
(NUEi, i) X (N 1By, —) < (N5, ,) fo<yj<r
(N B i 1) X Bp(pin) S Bpp—iy 1) ifj=r.

Inspection of (R3) shows that Ay = </IS, namely A1 = Hom(®, k*). Having identi-
fied [S(V1)] with AP~1 it remains to prove that

H*(AP~1: ®) =~ (. (4)
Consider the following functor U: AP~! — Ab defined by

T
W(ig < -+ < iy) = (HN V1) X (N1 Ep5,), (by convention i_; = 0).
t=0
It is a subfunctor of ® via the inclusions N X, ; < ¥,,_;,). We obtain a morphism
of functors ® — U of abelian groups. Our goal now is to prove that it is a monomor-
phism and to calculate its cokernel. Fix an r-simplex i = (ip < --- < 4,) in AP~! and
consider ®(i) — U(i). Note that (,)ap = Co if n > 2 and that if H < ¥, contains
an odd permutation then Hg, — (X,,)ap is surjective.

Case (a). If i, = p then ¥,2_; , and N2 ¥,_; are the trivial group and therefore
5(1) — \T/(l) is an isomorphism.

Case (b). If i, =p—1 then N2¥, ; =N and X,,_; ) = %,. Since N = C)p %
Cp—1 contains an odd permutation, by applying Hom(—, k) to the inclusion N < %,
we obtain the monomorphism Cy — L and therefore ®(i) — \Tl(l) is injective with
cokernel L/Cs.

Case (c). Assume that i, < p — 2. The inclusion of NP—ir L Yp(p—i,) contains odd
permutations. Since p is odd, also the diagonal inclusion ¥, ; < X,,_;.) contains
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odd permutations. By Lemma 4.6 the induced map Ep/(p,\ir) — NZ/Z;Z-T is the diag-
onal inclusion Cy — L & C into Cy & Cs. It follows that ®(i) — (i) is injective with
cokernel L.

We obtain a short exact sequence of functors AP~! — Ab

0—></15—>‘/l\/—>1—‘—>07 (5)
where the functor I' has the form
0 ifi, =p
ri)=< L/Cy ifi,=p—1
L ifi, <p-—2.

By Lemma 4.6, T'(j) — T'(i) are induced by the quotient maps L — L/Cs — 0.
Let I",T": AP~! — Ab be the functors defined for objects i = (ip < --- < i,.) by

L if1<i.<p—1 . Cy ifi,=p—1
rE =9, o =

0 ifi.=p 0 ifi.#p—1.
Face maps i C j induce either the identity or the trivial homomorphisms I (i) — IV (j)
and I (i) — I'"(j). We get a short exact sequence of functors

0—-T"—->T"-T—0.

We view AP~2 as the (p — 1)st face of AP~ that is, AP~2 consist of the simplices
i=(ip <---<i,) of AP~1 with i, < p— 1. Similarly AP~3 is the (p — 2)nd face of
AP~2_ Thus, AP~3 is the subcomplex of AP~! of the simplices i with i, < p— 2. At
this point we should recall that p > 5.

By inspection of Definition 2.1 we see that C*(I'”) is isomorphic to the cochain
complex C*(AP~2  AP=3;(5) of the relative simplicial complex (AP~2, AP~3). Since
p = 5, the contractibility of the standard simplices and Lemma 2.2 imply that

H*(AP~LT) = H*(AP™2 AP73; Cy) = 0.
The acyclicity of I now shows that IV — I' induces an isomorphism
H*(AP~LT) S H*(APLT). (6)
By Lemma 4.6 we see that U: AP~ — Ab has the following form

~ r — 0 if 7:'r‘ :p
\IJ(ZO << ZT) = L x Eit—’it— X _— ...
(tl;([) Y Lx3%, . ifi <p.

We obtain a constant subfunctor ¥/(i) = L of ¥ via the diagonal inclusion and it is
easy to check that the following square commutes

v ——y

I'——T.

By inspection of Definition 2.1, there are isomorphisms C*(¥’) = C*(AP~1; L) and
C*(I") = C*(AP~2; L). The map ¥’ — I gives rise to the map of cochain complexes
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induced by A?=2 C AP~ We deduce from Lemma 2.2 and the contractibility of the
standard simplices that ¥’ — I’ induces an isomorphism

L ifx=0

H*(N"l;‘l");H*(A’H;F')%{ . (7)
0 if+*=0.
The commutative square above, together with (6) and (7) imply that T — T induces
an epimorphism H*(AP~1;¥) — H*(AP~1:T). By (6) and (7) and the long exact
sequence associated to (5), the proof of (4), whence the proof of this proposition,
will be complete if we prove that H*(AP~L; (I\!) >~ [ & Cy (cohomology concentrated
in degree 0).

Set K = N X, and let it act on the poset 2 of the non-empty subsets of {1,...,p}
via the projection onto ¥,. One easily checks that [S(Q2)] = AP~! and that, by choos-
ing appropriate representatives, the isotropy groups of the r-simplices of S(Q)) are

ISOK(iQ <0< ir) = \II(Z() < e < ir).
Thus, if H}, is the coefficient functor for K defined in 3.1 with A = k>, we see that
C*(¥) = C*(Ap ), whence by Lemma 3.3,

H (AP 0) = HY([S(Q)); Arg, ) = Hi (1] H).

Now, |Q] is K-equivalent to a point because {1,...,p} is a maximal element of Q
fixed by K. Therefore Hj (|Q; Hf) = Hi(pt) = N1X, = L@ Cy by Lemma 4.6.
This completes the proof. O
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