THE GLUING PROBLEM DOES NOT FOLLOW FROM HOMOLOGICAL PROPERTIES OF $\Delta_p(G)$

ASSAF LIBMAN

(communicated by J. P. C. Greenlees)

Abstract

Given a block b in kG where k is an algebraically closed field of characteristic p, there are classes $\alpha_Q \in H^2(\operatorname{Aut}_{\mathcal{F}}(Q); k^{\times})$, constructed by Külshammer and Puig, where \mathcal{F} is the fusion system associated to b and Q is an \mathcal{F} -centric subgroup. The gluing problem in \mathcal{F} has a solution if these classes are the restriction of a class $\alpha \in H^2(\mathcal{F}^c; k^{\times})$. Linckelmann showed that a solution to the gluing problem gives rise to a reformulation of Alperin's weight conjecture. He then showed that the gluing problem has a solution if for every finite group G, the equivariant Bredon cohomology group $H^1_G(|\Delta_p(G)|; \mathcal{A}^1)$ vanishes, where $|\Delta_p(G)|$ is the simplicial complex of the non-trivial p-subgroups of G and \mathcal{A}^1 is the coefficient functor $G/H \mapsto \operatorname{Hom}(H, k^{\times})$. The purpose of this note is to show that this group does not vanish if $G = \Sigma_{p^2}$ where $p \geqslant 5$.

1. Introduction

Given a functor $M: \mathcal{C} \to \mathbf{Ab}$, where \mathcal{C} is a small category, we will write $H^*(\mathcal{C}; M)$ for the groups $\varprojlim_{\mathcal{C}}^* M$. When \mathcal{C} has one object with a group G of automorphisms, a functor $M: \mathcal{C} \to \mathbf{Ab}$ is the same thing as a G-module and $H^*(G; M) \cong \varprojlim_{\mathcal{C}}^* M$.

Let us now fix a prime p and let \mathcal{F} be the fusion system of a block b of a finite group G. As usual, we will write \mathcal{F}^c for the full subcategory generated by the \mathcal{F} -centric subgroups in \mathcal{F} . Let k be an algebraically closed field of characteristic p. In [8] Külshammer and Puig show that for every \mathcal{F} -centric subgroup Q there is a canonically chosen class $\alpha_Q \in H^2(\operatorname{Aut}_{\mathcal{F}}(Q); k^{\times})$. We view $\operatorname{Aut}_{\mathcal{F}}(Q)$ as a full subcategory of \mathcal{F}^c and say that the gluing problem has a solution in \mathcal{F} if there exists a class $\alpha \in H^2(\mathcal{F}^c; k^{\times})$, where k^{\times} is the constant functor, such that the restriction $\alpha|_{\operatorname{Aut}_{\mathcal{F}}(Q)}$ is equal to α_Q for all $Q \in \mathcal{F}^c$.

Linckelmann showed in [10] that if the gluing problem has a solution in the fusion systems of all blocks then Alperin's weight conjecture is logically equivalent to a relation between the number $\mathbf{k}(b)$ of complex representations of G associated to b by

Received May 27, 2009, revised October 19, 2009; published on February 18, 2010. 2000 Mathematics Subject Classification: 20C20, 55N25, 05E25. Key words and phrases: gluing problem, Alperin's conjecture, equivariant cohomology. This article is available at http://intlpress.com/HHA/v12/n1/a1 Copyright © 2010, International Press. Permission to copy for private use granted.

Knörr and Robinson [7] and the Euler characteristic of a certain cochain complex built from the fusion system of b and the cohomology class α .

Let G be a finite group and \mathcal{C} a finite G-poset. The (combinatorial) simplicial complex associated to \mathcal{C} , see [13, Chap. 3], is denoted $S(\mathcal{C})$. The n-simplices are sequences $c_0 \not\preceq \cdots \not\preceq c_n$ in \mathcal{C} which we denote \mathbf{c} . Face maps are inclusion of simplices. We view $S(\mathcal{C})$ as a topological space via the geometric realization. Clearly G acts on $S(\mathcal{C})$ whose orbit space is denoted $[S(\mathcal{C})]$. It is a CW-complex obtained as the geometric realization of the simplicial set $Nr(\mathcal{C})/G$ where Nr(-) is the nerve construction [3, XI.2.1]. By abuse of notation, $[S(\mathcal{C})]$ will also denote the poset of the cells of $[S(\mathcal{C})]$ ordered by inclusion.

As a special case consider the poset $\Delta_p(G)$ of the non-trivial *p*-subgroups of a finite group G. Note that the isotropy group of an n-simplex $\mathbf{P} = (P_0 < \cdots < P_n)$ in $S(\Delta_p(G))$ is

$$N_G(\mathbf{P}) = \bigcap_{i=0}^n N_G(P_i).$$

The objects of the poset $[S(\Delta_p(G))]$, viewed as a small category, are the G-conjugacy classes $[\mathbf{P}]$ of the simplices of $S(\Delta_p(G))$ and there is a unique morphism $[\mathbf{Q}] \to [\mathbf{P}]$ if the simplex \mathbf{Q} is conjugate in G to a face of \mathbf{P} . There is a functor $\mathcal{N}_G \colon [S(\Delta_p(G))] \to \mathbf{Ab}$ defined by Linckelmann in $[\mathbf{9}]$

$$\mathcal{N}_G([\mathbf{P}]) = \operatorname{Hom}(N_G(\mathbf{P}), k^{\times}) = \operatorname{Hom}(N_G(\mathbf{P})_{ab}, k^{\times}).$$

Theorem 1.2 of [9] implies that the gluing problem in \mathcal{F} has a solution if we can prove that $H^1([S(\Delta_p(K))]; \mathcal{N}_K) = 0$ for all $K = \operatorname{Aut}_{\mathcal{F}}(Q)/\operatorname{Inn}(Q)$ where Q is an \mathcal{F} -centric subgroup. Thus, if we can prove that $H^1([S(\Delta_p(G))]; \mathcal{N}_G) = 0$ for all finite groups G, then the gluing problem has a solution for all fusion systems. The purpose of this note is to show that this programme, suggested by Linckelmann, is not feasible.

Theorem 1.1. Set
$$G = \Sigma_{p^2}$$
. If $p \geqslant 5$ then $H^1([S(\Delta_p(G))]; \mathcal{N}_G) \neq 0$.

We remark that Σ_{p^2} appears as an outer \mathcal{F} -automorphism group of $Q = (C_p)^{p^2}$ in the fusion system of the principal block of $C_p \wr \Sigma_{p^2}$. We also remark, without proof, that Theorem 1.1 is valid for p=3 but it fails if p=2. For p=2 one observes that $H_G^*(|\mathcal{B}_p(G)|;\mathcal{H}^1)=0$, see equation (1), because \mathcal{H}^1 vanishes on all the orbits of $|\mathcal{B}_p(G)|$. For p=3 one has to examine the exact sequence (3) more carefully than we do in Propositions 4.2–4.4.

2. Subdivision categories and higher limits

Let G be a finite group. As in the introduction, if C is a finite G-poset, let S(C) denote the associated G-simplicial complex and let [S(C)] denote its orbit space. We will denote the set of n-simplices of S(C) by $S(C)_n$. It is the set of the non-degenerate n-simplices of Nr(C). Thus, the n-simplices of S(C) are sequences \mathbf{c} of the form $c_0 \not\preceq \cdots \not\preceq c_n$ in C. The faces of \mathbf{c} are its non-empty subsequences.

The space $[S(\mathcal{C})]$ is the geometric realization of the simplicial set $Nr(\mathcal{C})/G$ whose set of non-degenerate simplices is $[S(\mathcal{C})]_n = S(\mathcal{C})_n/G$ which in turn, corresponds to the set of *n*-cells of $[S(\mathcal{C})]$. We obtain a poset, abusively denoted $[S(\mathcal{C})]$, whose objects

are the G-orbits of the simplices of $S(\mathcal{C})$ with an arrow $[\mathbf{c}'] \to [\mathbf{c}]$ if \mathbf{c}' is in the orbit of a face of \mathbf{c} . The objects of $[S(\mathcal{C})]$ will be referred to as "simplices".

Given an *n*-simplex $c_0 \not\supseteq \cdots \not\supseteq c_n$ in $S(\mathcal{C})$ where $n \geqslant 1$, we will write $\partial_i \mathbf{c}$ for the (n-1)-simplex obtained by removing c_i where $0 \leqslant i \leqslant n$. We obtain face maps

$$\partial_i : S(\mathcal{C})_n \to S(\mathcal{C})_{n-1}$$
 and $[\partial_i] : [S(\mathcal{C})]_n \to [S(\mathcal{C})]_{n-1}$, $(0 \leqslant i \leqslant n)$

where ∂_i is G-equivariant and an n-simplex $[\mathbf{c}]$ in $[S(\mathcal{C})]$ gives rise to a map of transitive G-sets $[\mathbf{c}] \xrightarrow{[\partial_i]} [\partial_i \mathbf{c}]$.

Definition 2.1. Fix a commutative ring R. Let \mathcal{C} be a finite G-poset and consider a functor $\mathcal{A}: [S(\mathcal{C})] \to R$ -mod. Define a cochain complex $C^*(\mathcal{A})$ as follows.

$$C^n(\mathcal{A}) = \prod_{[\mathbf{c}] \in [S(\mathcal{C})]_n} \mathcal{A}([\mathbf{c}]), \quad \text{and} \quad d \colon C^{n-1}(\mathcal{A}) \xrightarrow{\sum_{j=0}^n (-1)^j d^j} C^n(\mathcal{A}).$$

The homomorphisms $d^j: C^{n-1}(\mathcal{A}) \to C^n(\mathcal{A})$ are defined on the [c]-th component of $C^n(\mathcal{A})$, where $[\mathbf{c}] \in [S(\mathcal{C})]_n$, by the composition

$$C^{n-1}(\mathcal{A}) \xrightarrow{\operatorname{proj}} \mathcal{A}([\partial_j \mathbf{c}]) \xrightarrow{\mathcal{A}([\partial_j \mathbf{c}] \preceq [\mathbf{c}])} \mathcal{A}([\mathbf{c}]).$$

Lemma 2.2 (cf. [10, Proposition 3.2]). With the notation of Definition 2.1, the cohomology groups of $C^*(A)$ are isomorphic to $H^*([S(C)]; A)$.

Proof. For every $n \ge 0$ consider the projective functors $P_n: [S(\mathcal{C})] \to \mathbf{Ab}$ defined by

$$P_n = \bigoplus_{[\mathbf{c}] \in [S(\mathcal{C})]_n} \mathbb{Z} \otimes \mathrm{Mor}_{[S(\mathcal{C})]}([\mathbf{c}], -).$$

For every $0 \le j \le n$ there are morphisms $d_{n-1}^j \colon P_n \to P_{n-1}$ which are induced by Yoneda's lemma via the morphisms $[\partial_j \mathbf{c}] \to [\mathbf{c}]$ for every $[\mathbf{c}] \in [S(\mathcal{C})]_n$. Define morphisms $d_{n-1} \colon P_n \to P_{n-1}$ by $d_{n-1} = \sum_{j=0}^n (-1)^j d_{n-1}^j$. We claim that the resulting

$$\cdots \to P_n \xrightarrow{d_{n-1}} P_{n-1} \to \ldots \xrightarrow{d_1} P_1 \xrightarrow{d_0} P_0 \to \underline{\mathbb{Z}} \qquad \text{(denoted $P_{\bullet} \to \underline{\mathbb{Z}}$)}$$

is a projective resolution of the constant functor $\underline{\mathbb{Z}}$. Indeed, the evaluation of P_{\bullet} at every object $[\mathbf{x}] \in [S(\mathcal{C})]_n$ yields the chain complex $C_*(\Delta^n; \mathbb{Z})$ because the faces of $[\mathbf{x}]$ in $[S(\mathcal{C})]$ generate the standard simplex Δ^n . Finally, by Yoneda's Lemma $\text{Hom}(P_{\bullet}, \mathcal{A}) = C^*(\mathcal{A})$ and its homology groups are isomorphic to $\varprojlim \mathcal{A}$.

3. Bredon cohomology

Throughout this section a space means a simplicial set. Let G be a finite group. A coefficient functor \mathcal{M} for G is a contravariant functor $\{G\text{-sets}\} \to \mathbf{Ab}$ which turns coproducts of G-sets into products of abelian groups. By applying \mathcal{M} to the sets of simplices of a G-space X, one obtains a cosimplicial abelian group $\mathcal{M}(X)$. The cochain complex associated to $\mathcal{M}(X)$ is denoted $C^*(X;\mathcal{M})$, see [15, 8.2]. Its homology groups are called the Bredon cohomology groups $H_G^*(X;\mathcal{M})$, see e.g., [5, §4]. Note that $C^n(X;\mathcal{M}) = \prod_{[\mathbf{x}]\subseteq X} \mathcal{M}([\mathbf{x}])$ where the product runs through the orbits of the n-simplices of X.

If Y is a G-subspace of X then there is a canonical short exact sequence of cochain complexes

$$0 \to C_G^*(X, Y; \mathcal{M}) \to C_G^*(X; \mathcal{M}) \to C_G^*(Y; \mathcal{M}) \to 0$$

which defines the relative cohomology groups $H_G^*(X, Y; \mathcal{M})$ together with the usual long exact sequences. Bredon cohomology is an equivariant cohomology theory, cf. [4]. In particular it turns G-homotopy equivalences into isomorphisms and if X is a union of subspaces $Y_1 \cup Y_2$, one has the usual Mayer Vietoris sequence.

The normalized cochain complex $NC^*(X; \mathcal{M})$ is a sub-complex of $C^*(X; \mathcal{M})$ defined by

$$NC^{n}(X; M) = \bigcap_{i=0}^{n-1} \Big(\operatorname{Ker}(C^{n}(X; \mathcal{M}) \xrightarrow{s^{i}} C^{n-1}(X; \mathcal{M})) \Big),$$

where s^i are the codegeneracy maps of the cosimplicial group $\mathcal{M}(X)$. If $[\mathbf{x}]$ is the orbit of a simplex in X and s_i is a degeneracy operator of X, it is easy to check that $s_i \colon [\mathbf{x}] \to [s_i \mathbf{x}]$ is an isomorphism of transitive G-sets and in particular $\mathcal{M}([\mathbf{x}]) = \mathcal{M}([s_i \mathbf{x}])$. It easily follows that $NC^n(X; \mathcal{M}) = \prod_{[\mathbf{x}] \subseteq X} \mathcal{M}([\mathbf{x}])$ where $[\mathbf{x}]$ runs through the orbits of the *non-degenerate n*-simplices of X.

It is well known that the inclusion of $NC^*(X; \mathcal{M})$ in $C^*(X; \mathcal{M})$ is a homology equivalence. See [15, 8.3].

Recall that the Borel construction of a G-space U is $U \times_G EG$ where EG is a contractible space on which G acts freely. If U = G/K then $U \times_G EG = BK$ is the classifying space of K.

Definition 3.1. Fix a finite group G, an abelian group A and an integer $n \ge 0$. Define a coefficient functor \mathcal{H}^n for G by $\mathcal{H}^n(U) = H^n(U \times_G EG; A)$. Observe that $\mathcal{H}^n(G/K) = H^n(K; A)$ where A has the trivial action of K.

Definition 3.2. Let \mathcal{C} be a finite G-poset and let \mathcal{M} be a coefficient system. The underlying set of every object $[\mathbf{c}]$ of $[S(\mathcal{C})]$ is a transitive G-set and we define a functor $\mathcal{A}_{\mathcal{M}} : [S(\mathcal{C})] \to \mathbf{Ab}$ by

$$\mathcal{A}_{\mathcal{M}}([\mathbf{c}]) = \mathcal{M}([\mathbf{c}]).$$

If $[\mathbf{c}']$ is a face of $[\mathbf{c}]$, we define $\mathcal{A}_{\mathcal{M}}([\mathbf{c}'] \to [\mathbf{c}])$ by applying \mathcal{M} to the map $[\mathbf{c}] \to [\mathbf{c}']$ of transitive G-sets.

By inspection of Definition 2.1, $C^*(\mathcal{A}_{\mathcal{M}}) \cong NC_G^*(|\mathcal{C}|;\mathcal{M})$ and the next result follows from Lemma 2.2. It has been observed by Słominska [12, p. 116] and by others e.g., Grodal in [6, Theorem 7.3], Linckelmann [10, Proposition 3.5] and Dwyer in [5].

Lemma 3.3. Let C be a finite G-poset and let \mathcal{M} be a coefficient functor for G. With the notation of Definition 3.2, $H^*([S(C)]; \mathcal{A}_{\mathcal{M}}) \cong H^*_G(|C|; \mathcal{M})$.

4. Proof of Theorem 1.1

Set $G = \Sigma_{p^2}$ and let \mathcal{C} denote the poset $\Delta_p(G)$ of the non-trivial p-subgroups of G. First we observe that $\operatorname{Hom}(K,A) = H^1(K;A)$ for any finite group K and any abelian group A. Thus, the functor $\mathcal{N}_G \colon [S(\mathcal{C})] \to \mathbf{Ab}$ defined in the introduction is

canonically isomorphic to $\mathcal{A}_{\mathcal{H}^1}$ as defined in 3.2 and in 3.1 with $A=k^\times$ where k is an algebraically closed field of characteristic p. In light of Lemma 3.3 we need to prove that $H^1_G(|\Delta_p(G)|;\mathcal{H}^1)\neq 0$. Consider the G-subposet $\mathcal{B}_p(G)$ of the nontrivial radical p-subgroups of G, namely the non-trivial p-subgroup $P\leqslant G$ such that $N_G(P)/P$ contains no non-trivial normal p-subgroup. It is well known that the inclusion $|\mathcal{B}_p(G)|\subseteq |\Delta_p(G)|$ is a G-homotopy equivalence, see e.g., [2, Proposition 6.6.5]. Therefore, it remains to prove that

$$H_G^1(|\mathcal{B}_p(G)|; \mathcal{H}^1) \neq 0. \tag{1}$$

The radical p-subgroups of the symmetric groups were classified by Alperin and Fong in [1]. In $G = \Sigma_{p^2}$ they form the following conjugacy classes:

- (R1) The conjugacy class of the Sylow p-subgroup $V_{1,1} \stackrel{\text{def}}{=} C_p \wr C_p \leqslant \Sigma_{p^2}$. Its normalizer is $V_{1,1} \rtimes (\operatorname{GL}_1(p) \times \operatorname{GL}_1(p))$ with the diagonal action of $\operatorname{GL}_1(p)$ on the base group $(C_p)^p$ and the usual action of the second $\operatorname{GL}_1(p)$ on C_p at the top.
- (**R2**) The conjugacy class of the subgroup $V_2 = C_p \times C_p$ embedded in Σ_{p^2} via its action on itself by translation. Its normalizer is $V_2 \rtimes \operatorname{GL}_2(p)$.
- (R3) For every $k=1,\ldots,p$ the conjugacy class of the subgroup ${V_1}^{\times k}$ which is isomorphic to ${C_p}^{\times k}$ as a subgroup of ${\Sigma_p}^{\times k} \leqslant {\Sigma_{p^2}}$. The normalizer of $V_1^{\times k}$ is

$$((V_1 \rtimes \operatorname{GL}_1(p)) \wr \Sigma_k) \times \Sigma_{p(p-k)}.$$

Definition 4.1. Consider the following subposets of $\mathcal{B}_p(G)$.

- 1. Let \mathcal{D}_1 be the subposet consisting of the conjugacy class of $V_{1,1}$ and the conjugacy classes of $V_1, V_1^{\times 2}, \dots, V_1^{\times p}$.
- 2. Let \mathcal{V}_1 be the subposet consisting of the conjugacy classes of $V_1, V_1^{\times 2}, \dots, V_1^{\times p}$.
- 3. Let \mathcal{D}_2 be the subposet consisting of the conjugacy classes of $V_{1,1}$ and V_2 .
- 4. Let \mathcal{D}_3 be the subposet consisting of the conjugacy class of $V_{1,1}$.

Observe that V_2 is a transitive subgroup of Σ_{p^2} so it cannot be conjugate to a subgroup of $V_1^{\times k}$ whose orbits have cardinality p. Also, V_2 acts freely so it cannot contain a conjugate of $V_1^{\times k}$ since the latter do not act freely on the underlying set of p^2 elements. We see that up to conjugacy $\mathcal{B}_p(G)$ has the form

$$[V_1] < [V_1^{\times 2}] < \dots [V_1^{\times p}] < [V_{1,1}] > [V_2]$$

and it follows that

$$|\mathcal{B}_p(G)| = |\mathcal{D}_1| \cup |\mathcal{D}_2|, \quad \text{and} \quad |\mathcal{D}_3| = |\mathcal{D}_1| \cap |\mathcal{D}_2|.$$
 (2)

The Mayer Vietoris sequence gives an exact sequence

$$\cdots \to H_G^0(|\mathcal{D}_1|;\mathcal{H}^1) \oplus H_G^0(|\mathcal{D}_2|;\mathcal{H}^1) \to H_G^0(|\mathcal{D}_3|;\mathcal{H}^1) \to H_G^1(|\mathcal{B}_p(G)|;\mathcal{H}^1) \to \cdots$$
(3)

For what follows, it will be convenient to denote

$$L = \operatorname{Hom}(\operatorname{GL}_1(p), k^{\times}) \cong \mathbb{F}_p^{\times}$$

Proposition 4.2. $H_G^0(|\mathcal{D}_3|;\mathcal{H}^1) \cong L \times L \text{ and } H_G^{*\geqslant 1}(|\mathcal{D}_3|;\mathcal{H}^1) = 0.$

Proposition 4.3. $H_G^0(|\mathcal{D}_2|;\mathcal{H}^1) \cong L \text{ and } H_G^{*\geqslant 1}(|\mathcal{D}_2|;\mathcal{H}^1) = 0.$

Proposition 4.4. $H_G^0(|\mathcal{D}_1|;\mathcal{H}^1) \cong C_2 \text{ and } H_G^{*\geqslant 1}(|\mathcal{D}_1|;\mathcal{H}^1) = 0.$

Propositions 4.2–4.4 together with the exact sequence (3) immediately imply (1) because by hypothesis $p \ge 5$, whence $|L| \ge 4$.

Recall that k has characteristic p. Therefore the kernel of any group homomorphism $H \to k^{\times}$ contains the commutator subgroup of H and any p-subgroup of H. We will use this fact repeatedly.

Proof of Proposition 4.2. Since \mathcal{D}_3 is a single orbit of G with isotropy group $N_G(V_{1,1})$ it follows from (**R1**) that $H_G^*(|\mathcal{D}_3|;\mathcal{H}^1) = \text{Hom}(N_G(V_{1,1}),k^{\times}) = L \times L$.

Proof of Proposition 4.3. Since $|\mathcal{B}_p(G)|$ is G-equivalent to $|\Delta_p(G)|$, Symond's resolution of Webb's conjecture in [14] shows that the orbit space $|\mathcal{B}_p(G)|/G$ is contractible. But (2) shows that $|\mathcal{B}_p(G)|/G = (|\mathcal{D}_1|/G) \vee (|\mathcal{D}_2|/G)$. It follows that the CW-complex $|\mathcal{D}_2|/G$, namely $[S(\mathcal{D}_2)]$, is contractible and since it is 1-dimensional with two 0-simplices $[V_2]$ and $[V_{1,1}]$, the poset $[S(\mathcal{D}_2)]$ must have the form

$$[V_2] \rightarrow [V_2 < V_{1,1}] \leftarrow [V_{1,1}].$$

Now, $V_2 \leq V_{1,1} = C_p \wr C_p$ is generated by the copy of C_p at the top and the diagonal copy of C_p in the base group $C_p \times \cdots \times C_p$ which is the centre of $V_{1,1}$. One easily deduces from (**R1**) and (**R2**) that $N_G(V_2 < V_{1,1})/N_{V_{1,1}}(V_2) \cong GL_1(p)^2$ as a diagonal subgroup of $GL_2(p)$. With the notation of Definition 3.2 we have

$$\mathcal{A}_{\mathcal{H}^1}([V_2 < V_{1,1}]) \cong \text{Hom}(GL_1(p)^2, k^{\times}) \cong \mathcal{A}_{\mathcal{H}^1}([V_{1,1}]),$$

and $\mathcal{A}_{\mathcal{H}^1}([V_2]) = \operatorname{Hom}(\operatorname{GL}_2(p), k^{\times}) \cong L$ because $\operatorname{GL}_2(p)_{\operatorname{ab}} = \mathbb{F}_p^{\times}$. By Lemma 3.3, the groups $H_G^*(|\mathcal{D}_2|;\mathcal{H}^1)$ are isomorphic to $H^*([S(\mathcal{D}_2)];\mathcal{A}_{\mathcal{H}^1})$, namely to the derived functors of the diagram $L \xrightarrow{\Delta} L \times L \xleftarrow{\operatorname{id}} L \times L$. This completes the proof.

Lemma 4.5. The inclusion $V_1 \subseteq \mathcal{D}_1$, see Definition 4.1, induces a G-equivariant homotopy equivalence $|V_1| \to |\mathcal{D}_1|$.

Proof. Given a subgroup P of G let $\delta_1(P)$ denote the subgroup of P generated by all the permutations $g \in P$ whose support contains at most p elements. Observe that δ_1 is invariant under conjugation, namely $\delta_1(gPg^{-1}) = g\delta_1(P)g^{-1}$. By inspection $\delta_1(V_1^{\times k}) = {V_1^{\times k}}$ and $\delta_1(V_{1,1}) = {V_1^{\times p}}$. We obtain a G-equivariant morphism of posets $\delta_1 \colon \mathcal{D}_1 \to \mathcal{V}_1$. Clearly, $|\delta_1| \circ i_{|\mathcal{V}_1|}^{|\mathcal{D}_1|} = \mathrm{Id}_{|\mathcal{V}_1|}$. The inclusions $\delta_1(P) \leqslant P$ give a G-equivariant homotopy $i_{|\mathcal{V}_1|}^{|\mathcal{D}_1|} \circ |\delta_1| \simeq \mathrm{Id}_{|\mathcal{D}_1|}$, cf. [11, 1.3]. The result follows. \square

We leave the following result as an easy exercise for the reader.

Lemma 4.6. Let K be a finite group, fix an integer $n \ge 1$ and set $G_n = K \wr \Sigma_n$. Then $(G_n)_{ab} \cong K_{ab} \times (\Sigma_n)_{ab}$. The restriction of $G_n \to (G_n)_{ab}$ to any one of the factors K of $K^n \le G_n$ is the canonical projection $K \to K_{ab}$ and the restriction of $G_n \to (G_n)_{ab}$ to Σ_n is the projection onto $(\Sigma_n)_{ab}$.

If $n, m \ge 1$ then $G_n \times G_m \le G_{n+m}$. The resulting $(G_n)_{ab} \times (G_m)_{ab} \to (G_{n+m})_{ab}$ is induced by the fold map $K_{ab} \times K_{ab} \to K_{ab}$ and by $(\Sigma_n)_{ab} \times (\Sigma_m)_{ab} \to (\Sigma_{n+m})_{ab}$.

Notation 4.7. The following non-standard description of the (n-1)-simplex Δ^{n-1} will be used throughout. The r-simplices of Δ^{n-1} are sequences $i_0 < \cdots < i_r$ where $1 \leq i_0, \ldots, i_r \leq n$. Face maps are obtained by inclusion of sequences. (The usual convention is $0 \leq i_0, \ldots, i_r \leq n-1$.)

Proof of Proposition 4.4. In light of Lemma 4.5 and Lemma 3.3, we must prove that $H_G^*([S(\mathcal{V}_1)]; \mathcal{A}_{\mathcal{H}^1}) \cong C_2$.

The high transitivity of the symmetric groups and the description of $N_G(V_1^{\times k})$ in (**R3**) imply that every r-simplex of $S(\mathcal{V}_1)$ is conjugate in G to a simplex of the form $V_1^{\times i_0} < \cdots < V_1^{\times i_r}$ where $1 \le i_0 < \cdots < i_r \le p$. With the notation of 4.7 we see that $[S(\mathcal{V}_1)] = \Delta^{p-1}$.

For any group K let \widehat{K} denote the abelian group $\operatorname{Hom}(K, k^{\times})$. Let N denote the normalizer of C_p in Σ_p . Thus, $N = C_p \rtimes \operatorname{GL}_1(p)$ and observe that $\operatorname{GL}_1(p) \leqslant \Sigma_p$ is generated by an odd permutation, in fact a cycle of even length (p is odd). Set

$$L = \widehat{N} = \operatorname{Hom}(N, k^{\times}) = \operatorname{Hom}(\operatorname{GL}_1(p), k^{\times}) \cong C_{p-1}.$$

Consider the following functor $\Phi : (\Delta^{p-1})^{\text{op}} \to \{\text{Groups}\}$. On objects

$$\Phi(i_0 < \dots < i_r) = \left(\prod_{t=0}^r N \wr \Sigma_{i_t - i_{t-1}}\right) \times \Sigma_{p^2 - i_r p}, \quad \text{(by convention } i_{-1} = 0).$$

For an r-simplex **i** and for $0 \le j \le r$, the effect of $\Phi(\mathbf{i}) \to \Psi(\partial_j \mathbf{i})$ is induced by the inclusions

$$\begin{array}{ll} (N \wr \Sigma_{i_j-i_{j-1}}) \times (N \wr \Sigma_{i_{j+1}-i_j}) \leqslant (N \wr \Sigma_{i_{j+1}-i_{j-1}}) & \text{if } 0 \leqslant j < r \\ (N \wr \Sigma_{i_r-i_{r-1}}) \times \Sigma_{p(p-i_r)} \leqslant \Sigma_{p(p-i_{r-1})} & \text{if } j = r. \end{array}$$

Inspection of (**R3**) shows that $\mathcal{A}_{\mathcal{H}^1} = \widehat{\Phi}$, namely $\mathcal{A}_{\mathcal{H}^1} = \operatorname{Hom}(\Phi, k^{\times})$. Having identified $[S(\mathcal{V}_1)]$ with Δ^{p-1} , it remains to prove that

$$H^*(\Delta^{p-1}; \widehat{\Phi}) \cong C_2.$$
 (4)

Consider the following functor $\Psi \colon \Delta^{p-1} \to \mathbf{Ab}$ defined by

$$\Psi(i_0 < \dots < i_r) = \left(\prod_{t=0}^r N \wr \Sigma_{i_t - i_{t-1}}\right) \times (N \wr \Sigma_{p - i_r}), \quad \text{(by convention } i_{-1} = 0).$$

It is a subfunctor of Φ via the inclusions $N \wr \Sigma_{p-i_r} \leqslant \Sigma_{p(p-i_r)}$. We obtain a morphism of functors $\widehat{\Phi} \to \widehat{\Psi}$ of abelian groups. Our goal now is to prove that it is a monomorphism and to calculate its cokernel. Fix an r-simplex $\mathbf{i} = (i_0 < \dots < i_r)$ in Δ^{p-1} and consider $\widehat{\Phi}(\mathbf{i}) \to \widehat{\Psi}(\mathbf{i})$. Note that $(\Sigma_n)_{ab} = C_2$ if $n \geqslant 2$ and that if $H \leqslant \Sigma_n$ contains an odd permutation then $H_{ab} \to (\Sigma_n)_{ab}$ is surjective.

Case (a). If $i_r = p$ then $\Sigma_{p^2 - i_r p}$ and $N \wr \Sigma_{p - i_r}$ are the trivial group and therefore $\widehat{\Phi}(\mathbf{i}) \to \widehat{\Psi}(\mathbf{i})$ is an isomorphism.

Case (b). If $i_r = p - 1$ then $N \wr \Sigma_{p-i_r} = N$ and $\Sigma_{p(p-i_r)} = \Sigma_p$. Since $N = C_p \rtimes C_{p-1}$ contains an odd permutation, by applying $\operatorname{Hom}(-, k^{\times})$ to the inclusion $N \leqslant \Sigma_p$ we obtain the monomorphism $C_2 \to L$ and therefore $\widehat{\Phi}(\mathbf{i}) \to \widehat{\Psi}(\mathbf{i})$ is injective with cokernel L/C_2 .

Case (c). Assume that $i_r \leqslant p-2$. The inclusion of $N^{p-i_r} \leqslant \Sigma_{p(p-i_r)}$ contains odd permutations. Since p is odd, also the diagonal inclusion $\Sigma_{p-i_r} \leqslant \Sigma_{p(p-i_r)}$ contains

odd permutations. By Lemma 4.6 the induced map $\widehat{\Sigma_{p(p-i_r)}} \to \widehat{N} \widehat{\iota} \widehat{\Sigma_{p-i_r}}$ is the diagonal inclusion $C_2 \to L \oplus C_2$ into $C_2 \oplus C_2$. It follows that $\widehat{\Phi}(\mathbf{i}) \to \widehat{\Psi}(\mathbf{i})$ is injective with cokernel L.

We obtain a short exact sequence of functors $\Delta^{p-1} \to \mathbf{Ab}$

$$0 \to \widehat{\Phi} \to \widehat{\Psi} \to \Gamma \to 0, \tag{5}$$

where the functor Γ has the form

$$\Gamma(\mathbf{i}) = \begin{cases} 0 & \text{if } i_r = p \\ L/C_2 & \text{if } i_r = p-1 \\ L & \text{if } i_r \leqslant p-2. \end{cases}$$

By Lemma 4.6, $\Gamma(\mathbf{j}) \to \Gamma(\mathbf{i})$ are induced by the quotient maps $L \to L/C_2 \to 0$. Let $\Gamma', \Gamma'': \Delta^{p-1} \to \mathbf{Ab}$ be the functors defined for objects $\mathbf{i} = (i_0 < \cdots < i_r)$ by

$$\Gamma'(\mathbf{i}) = \begin{cases} L & \text{if } 1 \leqslant i_r \leqslant p - 1 \\ 0 & \text{if } i_r = p \end{cases} \qquad \Gamma''(\mathbf{i}) = \begin{cases} C_2 & \text{if } i_r = p - 1 \\ 0 & \text{if } i_r \neq p - 1. \end{cases}$$

Face maps $\mathbf{i} \subseteq \mathbf{j}$ induce either the identity or the trivial homomorphisms $\Gamma'(\mathbf{i}) \to \Gamma'(\mathbf{j})$ and $\Gamma''(\mathbf{i}) \to \Gamma''(\mathbf{j})$. We get a short exact sequence of functors

$$0 \to \Gamma'' \to \Gamma' \to \Gamma \to 0.$$

We view Δ^{p-2} as the (p-1)st face of Δ^{p-1} , that is, Δ^{p-2} consist of the simplices $\mathbf{i} = (i_0 < \cdots < i_r)$ of Δ^{p-1} with $i_r \leq p-1$. Similarly Δ^{p-3} is the (p-2)nd face of Δ^{p-2} . Thus, Δ^{p-3} is the subcomplex of Δ^{p-1} of the simplices \mathbf{i} with $i_r \leq p-2$. At this point we should recall that $p \geq 5$.

By inspection of Definition 2.1 we see that $C^*(\Gamma'')$ is isomorphic to the cochain complex $C^*(\Delta^{p-2}, \Delta^{p-3}; C_2)$ of the relative simplicial complex $(\Delta^{p-2}, \Delta^{p-3})$. Since $p \ge 5$, the contractibility of the standard simplices and Lemma 2.2 imply that

$$H^*(\Delta^{p-1}; \Gamma'') \cong H^*(\Delta^{p-2}, \Delta^{p-3}; C_2) = 0.$$

The acyclicity of Γ'' now shows that $\Gamma' \to \Gamma$ induces an isomorphism

$$H^*(\Delta^{p-1}; \Gamma') \xrightarrow{\cong} H^*(\Delta^{p-1}; \Gamma).$$
 (6)

By Lemma 4.6 we see that $\widehat{\Psi} \colon \Delta^{p-1} \to \mathbf{Ab}$ has the following form

$$\widehat{\Psi}(i_0 < \dots < i_r) = \left(\prod_{t=0}^r L \times \widehat{\Sigma_{i_t - i_{t-1}}}\right) \times \begin{cases} 0 & \text{if } i_r = p \\ L \times \widehat{\Sigma_{p-i_r}} & \text{if } i_r < p. \end{cases}$$

We obtain a constant subfunctor $\Psi'(\mathbf{i}) = L$ of $\widehat{\Psi}$ via the diagonal inclusion and it is easy to check that the following square commutes

$$\begin{array}{ccc}
\Psi' & \longrightarrow \Psi \\
\downarrow & & \downarrow \\
\Gamma' & \longrightarrow \Gamma.
\end{array}$$

By inspection of Definition 2.1, there are isomorphisms $C^*(\Psi') \cong C^*(\Delta^{p-1}; L)$ and $C^*(\Gamma') \cong C^*(\Delta^{p-2}; L)$. The map $\Psi' \to \Gamma'$ gives rise to the map of cochain complexes

induced by $\Delta^{p-2} \subseteq \Delta^{p-1}$. We deduce from Lemma 2.2 and the contractibility of the standard simplices that $\Psi' \to \Gamma'$ induces an isomorphism

$$H^*(\Delta^{p-1}; \Psi') \xrightarrow{\cong} H^*(\Delta^{p-1}; \Gamma') \cong \begin{cases} L & \text{if } * = 0 \\ 0 & \text{if } * = 0. \end{cases}$$
 (7)

The commutative square above, together with (6) and (7) imply that $\widehat{\Psi} \to \Gamma$ induces an epimorphism $H^*(\Delta^{p-1}; \widehat{\Psi}) \to H^*(\Delta^{p-1}; \Gamma)$. By (6) and (7) and the long exact sequence associated to (5), the proof of (4), whence the proof of this proposition, will be complete if we prove that $H^*(\Delta^{p-1}; \widehat{\Psi}) \cong L \oplus C_2$ (cohomology concentrated in degree 0).

Set $K = N \wr \Sigma_p$ and let it act on the poset Ω of the non-empty subsets of $\{1, \ldots, p\}$ via the projection onto Σ_p . One easily checks that $[S(\Omega)] = \Delta^{p-1}$ and that, by choosing appropriate representatives, the isotropy groups of the r-simplices of $S(\Omega)$ are

$$\text{Iso}_K(i_0 < \dots < i_r) = \Psi(i_0 < \dots < i_r).$$

Thus, if \mathcal{H}_K^1 is the coefficient functor for K defined in 3.1 with $A = k^{\times}$, we see that $C^*(\widehat{\Psi}) \cong C^*(\mathcal{A}_{\mathcal{H}_{k}^1})$, whence by Lemma 3.3,

$$H^*(\Delta^{p-1}; \widehat{\Psi}) \cong H^*([S(\Omega)]; \mathcal{A}_{\mathcal{H}_K^1}) \cong H_K^*(|\Omega|; \mathcal{H}_K^1).$$

Now, $|\Omega|$ is K-equivalent to a point because $\{1,\ldots,p\}$ is a maximal element of Ω fixed by K. Therefore $H_K^*(|\Omega|;\mathcal{H}_K^1) \cong \mathcal{H}_K^1(\mathrm{pt}) = \widehat{N \wr \Sigma_p} = L \oplus C_2$ by Lemma 4.6. This completes the proof.

References

- [1] J. L. Alperin, P. Fong, Weights for symmetric and general linear groups. J. Algebra 131 (1990), no. 1, 2–22.
- [2] D. J. Benson, Representations and cohomology. II. Cohomology of groups and modules. Cambridge Studies in Advanced Mathematics, 31. Cambridge University Press, Cambridge, 1991.
- [3] A. K. Bousfield, D. M. Kan, Homotopy limits, completions and localizations. Lecture Notes in Mathematics, Vol. 304. Springer-Verlag, Berlin-New York, 1972.
- [4] Glen E. Bredon, Equivariant cohomology theories. Lecture Notes in Mathematics, No. 34. Springer-Verlag, Berlin-New York 1967
- [5] W. G. Dwyer, Sharp homology decompositions for classifying spaces of finite groups. Group representations: cohomology, group actions and topology (Seattle, WA, 1996), 197–220, Proc. Sympos. Pure Math., 63, Amer. Math. Soc., Providence, RI, 1998.
- [6] Jesper Grodal, Higher limits via subgroup complexes. Ann. of Math. (2) 155 (2002), no. 2, 405–457.
- [7] Reinhard Knörr, Geoffrey R. Robinson, Some remarks on a conjecture of Alperin. J. London Math. Soc. (2) 39 (1989), no. 1, 48–60.

- [8] Burkhard Külshammer, Lluís Puig, Extensions of nilpotent blocks. Invent. Math. 102 (1990), no. 1, 17–71.
- [9] Markus Linckelmann, On $H^*(\mathcal{C}; k^{\times})$ for fusion systems. Homology, Homotopy and Applications 11(1), 203–218.
- [10] Markus Linckelmann, Alperin's weight conjecture in terms of equivariant Bredon cohomology. Math. Z. 250 (2005), no. 3, 495–513.
- [11] Daniel Quillen, Homotopy properties of the poset of nontrivial *p*-subgroups of a group. *Adv. in Math.* **28** (1978), no. 2, 101–128.
- [12] Jolanta Słomińska, Some spectral sequences in Bredon cohomology. Cahiers Topologie Géom. Différentielle Catég. 33 (1992), no. 2, 99–133.
- [13] Edwin H. Spanier, Algebraic topology. McGraw-Hill Book Co., New York-Toronto, Ont.-London 1966
- [14] Peter Symonds, The orbit space of the *p*-subgroup complex is contractible. *Comment. Math. Helv.* **73** (1998), no. 3, 400–405.
- [15] Weibel, Charles A. An introduction to homological algebra. Cambridge Studies in Advanced Mathematics, 38. Cambridge University Press, Cambridge, 1994.

Assaf Libman a.libman@abdn.ac.uk

Mathematics Department, University of Aberdeen, Fraser Noble building, King's College, Aberdeen, AB24 3UE, U.K.