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THE GLUING PROBLEM DOES NOT FOLLOW FROM
HOMOLOGICAL PROPERTIES OF ∆p(G)

ASSAF LIBMAN

(communicated by J. P. C. Greenlees)

Abstract
Given a block b in kG where k is an algebraically closed field

of characteristic p, there are classes αQ ∈ H2(AutF (Q); k×),
constructed by Külshammer and Puig, where F is the fusion
system associated to b and Q is an F-centric subgroup. The glu-
ing problem in F has a solution if these classes are the restriction
of a class α ∈ H2(Fc; k×). Linckelmann showed that a solution
to the gluing problem gives rise to a reformulation of Alperin’s
weight conjecture. He then showed that the gluing problem has
a solution if for every finite group G, the equivariant Bredon
cohomology group H1

G(|∆p(G)|;A1) vanishes, where |∆p(G)| is
the simplicial complex of the non-trivial p-subgroups of G and
A1 is the coefficient functor G/H 7→ Hom(H, k×). The purpose
of this note is to show that this group does not vanish if G = Σp2

where p > 5.

1. Introduction

Given a functor M : C → Ab, where C is a small category, we will write H∗(C; M)
for the groups lim←−

∗
C M . When C has one object with a group G of automorphisms, a

functor M : C → Ab is the same thing as a G-module and H∗(G; M) ∼= lim←−
∗
C M .

Let us now fix a prime p and let F be the fusion system of a block b of a finite
group G. As usual, we will write Fc for the full subcategory generated by the F-
centric subgroups in F . Let k be an algebraically closed field of characteristic p.
In [8] Külshammer and Puig show that for every F-centric subgroup Q there is a
canonically chosen class αQ ∈ H2(AutF (Q); k×). We view AutF (Q) as a full subcat-
egory of Fc and say that the gluing problem has a solution in F if there exists a class
α ∈ H2(Fc; k×), where k× is the constant functor, such that the restriction α|AutF (Q)

is equal to αQ for all Q ∈ Fc.
Linckelmann showed in [10] that if the gluing problem has a solution in the fusion

systems of all blocks then Alperin’s weight conjecture is logically equivalent to a
relation between the number k(b) of complex representations of G associated to b by
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Knörr and Robinson [7] and the Euler characteristic of a certain cochain complex
built from the fusion system of b and the cohomology class α.

Let G be a finite group and C a finite G-poset. The (combinatorial) simplicial com-
plex associated to C, see [13, Chap. 3], is denoted S(C). The n-simplices are sequences
c0 � · · · � cn in C which we denote c. Face maps are inclusion of simplices. We view
S(C) as a topological space via the geometric realization. Clearly G acts on S(C)
whose orbit space is denoted [S(C)]. It is a CW-complex obtained as the geometric
realization of the simplicial set Nr(C)/G where Nr(−) is the nerve construction [3,
XI.2.1]. By abuse of notation, [S(C)] will also denote the poset of the cells of [S(C)]
ordered by inclusion.

As a special case consider the poset ∆p(G) of the non-trivial p-subgroups of a
finite group G. Note that the isotropy group of an n-simplex P = (P0 < · · · < Pn) in
S(∆p(G)) is

NG(P) = ∩n
i=0NG(Pi).

The objects of the poset [S(∆p(G))], viewed as a small category, are the G-conjugacy
classes [P] of the simplices of S(∆p(G)) and there is a unique morphism [Q]→ [P] if
the simplex Q is conjugate in G to a face of P. There is a functor
NG : [S(∆p(G))]→ Ab defined by Linckelmann in [9]

NG([P]) = Hom(NG(P), k×) = Hom(NG(P)ab, k×).

Theorem 1.2 of [9] implies that the gluing problem in F has a solution if we can prove
that H1([S(∆p(K))];NK) = 0 for all K = AutF (Q)/Inn(Q) where Q is an F-centric
subgroup. Thus, if we can prove that H1([S(∆p(G))];NG) = 0 for all finite groups
G, then the gluing problem has a solution for all fusion systems. The purpose of this
note is to show that this programme, suggested by Linckelmann, is not feasible.

Theorem 1.1. Set G = Σp2 . If p > 5 then H1([S(∆p(G))];NG) 6= 0.

We remark that Σp2 appears as an outer F-automorphism group of Q = (Cp)p2

in the fusion system of the principal block of Cp o Σp2 . We also remark, without
proof, that Theorem 1.1 is valid for p = 3 but it fails if p = 2. For p = 2 one observes
that H∗

G(|Bp(G)|;H1) = 0, see equation (1), because H1 vanishes on all the orbits of
|Bp(G)|. For p = 3 one has to examine the exact sequence (3) more carefully than we
do in Propositions 4.2–4.4.

2. Subdivision categories and higher limits

Let G be a finite group. As in the introduction, if C is a finite G-poset, let S(C)
denote the associated G-simplicial complex and let [S(C)] denote its orbit space.
We will denote the set of n-simplices of S(C) by S(C)n. It is the set of the non-
degenerate n-simplices of Nr(C). Thus, the n-simplices of S(C) are sequences c of the
form c0 � · · · � cn in C. The faces of c are its non-empty subsequences.

The space [S(C)] is the geometric realization of the simplicial set Nr(C)/G whose
set of non-degenerate simplices is [S(C)]n = S(C)n/G which in turn, corresponds to
the set of n-cells of [S(C)]. We obtain a poset, abusively denoted [S(C)], whose objects
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are the G-orbits of the simplices of S(C) with an arrow [c′]→ [c] if c′ is in the orbit
of a face of c. The objects of [S(C)] will be referred to as “simplices”.

Given an n-simplex c0 � · · · � cn in S(C) where n > 1, we will write ∂ic for the
(n− 1)-simplex obtained by removing ci where 0 6 i 6 n. We obtain face maps

∂i : S(C)n → S(C)n−1 and [∂i] : [S(C)]n → [S(C)]n−1, (0 6 i 6 n)

where ∂i is G-equivariant and an n-simplex [c] in [S(C)] gives rise to a map of tran-

sitive G-sets [c]
[∂i]−−→ [∂ic].

Definition 2.1. Fix a commutative ring R. Let C be a finite G-poset and consider a
functor A : [S(C)]→ R -mod. Define a cochain complex C∗(A) as follows.

Cn(A) =
∏

[c]∈[S(C)]n
A([c]), and d : Cn−1(A)

Pn
j=0(−1)jdj

−−−−−−−−−−→ Cn(A).

The homomorphisms dj : Cn−1(A)→ Cn(A) are defined on the [c]-th component of
Cn(A), where [c] ∈ [S(C)]n, by the composition

Cn−1(A)
proj−−−−→ A([∂jc])

A([∂jc]¹[c])−−−−−−−−−→ A([c]).

Lemma 2.2 (cf. [10, Proposition 3.2]). With the notation of Definition 2.1, the coho-
mology groups of C∗(A) are isomorphic to H∗([S(C)];A).

Proof. For every n > 0 consider the projective functors Pn : [S(C)]→ Ab defined by

Pn =
⊕

[c]∈[S(C)]n
Z⊗Mor[S(C)]([c],−).

For every 0 6 j 6 n there are morphisms dj
n−1 : Pn → Pn−1 which are induced by

Yoneda’s lemma via the morphisms [∂jc]→ [c] for every [c] ∈ [S(C)]n. Define mor-
phisms dn−1 : Pn → Pn−1 by dn−1 =

∑n
j=0(−1)jdj

n−1. We claim that the resulting

· · · → Pn
dn−1−−−→ Pn−1 → . . .

d1−→ P1
d0−→ P0 → Z (denoted P• → Z)

is a projective resolution of the constant functor Z. Indeed, the evaluation of P•
at every object [x] ∈ [S(C)]n yields the chain complex C∗(∆n;Z) because the faces
of [x] in [S(C)] generate the standard simplex ∆n. Finally, by Yoneda’s Lemma
Hom(P•,A) = C∗(A) and its homology groups are isomorphic to lim←−

∗A.

3. Bredon cohomology

Throughout this section a space means a simplicial set. Let G be a finite group.
A coefficient functor M for G is a contravariant functor {G-sets} → Ab which turns
coproducts of G-sets into products of abelian groups. By applying M to the sets of
simplices of a G-space X, one obtains a cosimplicial abelian groupM(X). The cochain
complex associated toM(X) is denoted C∗(X;M), see [15, 8.2]. Its homology groups
are called the Bredon cohomology groups H∗

G(X;M), see e.g., [5, §4]. Note that
Cn(X;M) =

∏
[x]⊆XM([x]) where the product runs through the orbits of the n-

simplices of X.
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If Y is a G-subspace of X then there is a canonical short exact sequence of cochain
complexes

0→ C∗G(X, Y ;M)→ C∗G(X;M)→ C∗G(Y ;M)→ 0

which defines the relative cohomology groups H∗
G(X, Y ;M) together with the usual

long exact sequences. Bredon cohomology is an equivariant cohomology theory, cf. [4].
In particular it turns G-homotopy equivalences into isomorphisms and if X is a union
of subspaces Y1 ∪ Y2, one has the usual Mayer Vietoris sequence.

The normalized cochain complex NC∗(X;M) is a sub-complex of C∗(X;M)
defined by

NCn(X; M) =
n−1⋂

i=0

(
Ker(Cn(X;M) si

−→ Cn−1(X;M))
)
,

where si are the codegeneracy maps of the cosimplicial group M(X). If [x] is the
orbit of a simplex in X and si is a degeneracy operator of X, it is easy to check that
si : [x]→ [six] is an isomorphism of transitive G-sets and in particular
M([x]) =M([six]). It easily follows that NCn(X;M) =

∏
[x]⊆XM([x]) where [x]

runs through the orbits of the non-degenerate n-simplices of X.
It is well known that the inclusion of NC∗(X;M) in C∗(X;M) is a homology

equivalence. See [15, 8.3].
Recall that the Borel construction of a G-space U is U ×G EG where EG is a

contractible space on which G acts freely. If U = G/K then U ×G EG = BK is the
classifying space of K.

Definition 3.1. Fix a finite group G, an abelian group A and an integer n > 0.
Define a coefficient functor Hn for G by Hn(U) = Hn(U ×G EG; A). Observe that
Hn(G/K) = Hn(K; A) where A has the trivial action of K.

Definition 3.2. Let C be a finite G-poset and let M be a coefficient system. The
underlying set of every object [c] of [S(C)] is a transitive G-set and we define a functor
AM : [S(C)]→ Ab by

AM([c]) =M([c]).

If [c′] is a face of [c], we define AM([c′]→ [c]) by applying M to the map [c]→ [c′]
of transitive G-sets.

By inspection of Definition 2.1, C∗(AM) ∼= NC∗G(|C|;M) and the next result fol-
lows from Lemma 2.2. It has been observed by SÃlominska [12, p. 116] and by others
e.g., Grodal in [6, Theorem 7.3], Linckelmann [10, Proposition 3.5] and Dwyer in [5].

Lemma 3.3. Let C be a finite G-poset and letM be a coefficient functor for G. With
the notation of Definition 3.2, H∗([S(C)];AM) ∼= H∗

G(|C|;M).

4. Proof of Theorem 1.1

Set G = Σp2 and let C denote the poset ∆p(G) of the non-trivial p-subgroups of
G. First we observe that Hom(K, A) = H1(K; A) for any finite group K and any
abelian group A. Thus, the functor NG : [S(C)]→ Ab defined in the introduction is
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canonically isomorphic to AH1 as defined in 3.2 and in 3.1 with A = k× where k
is an algebraically closed field of characteristic p. In light of Lemma 3.3 we need
to prove that H1

G(|∆p(G)|;H1) 6= 0. Consider the G-subposet Bp(G) of the non-
trivial radical p-subgroups of G, namely the non-trivial p-subgroup P 6 G such that
NG(P )/P contains no non-trivial normal p-subgroup. It is well known that the inclu-
sion |Bp(G)| ⊆ |∆p(G)| is a G-homotopy equivalence, see e.g., [2, Proposition 6.6.5].
Therefore, it remains to prove that

H1
G(|Bp(G)|;H1) 6= 0. (1)

The radical p-subgroups of the symmetric groups were classified by Alperin and
Fong in [1]. In G = Σp2 they form the following conjugacy classes:

(R1) The conjugacy class of the Sylow p-subgroup V1,1
def= Cp o Cp 6 Σp2 . Its normal-

izer is V1,1 o (GL1(p)×GL1(p)) with the diagonal action of GL1(p) on the base
group (Cp)p and the usual action of the second GL1(p) on Cp at the top.

(R2) The conjugacy class of the subgroup V2 = Cp × Cp embedded in Σp2 via its
action on itself by translation. Its normalizer is V2 oGL2(p).

(R3) For every k = 1, . . . , p the conjugacy class of the subgroup V1
×k which is iso-

morphic to Cp
×k as a subgroup of Σp

×k 6 Σp2 . The normalizer of V ×k
1 is

((
V1 oGL1(p)

) o Σk

)
× Σp(p−k).

Definition 4.1. Consider the following subposets of Bp(G).

1. Let D1 be the subposet consisting of the conjugacy class of V1,1 and the conju-
gacy classes of V1, V1

×2, . . . , V1
×p.

2. Let V1 be the subposet consisting of the conjugacy classes of V1, V1
×2, . . . , V1

×p.
3. Let D2 be the subposet consisting of the conjugacy classes of V1,1 and V2.
4. Let D3 be the subposet consisting of the conjugacy class of V1,1.

Observe that V2 is a transitive subgroup of Σp2 so it cannot be conjugate to a
subgroup of V ×k

1 whose orbits have cardinality p. Also, V2 acts freely so it cannot
contain a conjugate of V ×k

1 since the latter do not act freely on the underlying set of
p2 elements. We see that up to conjugacy Bp(G) has the form

[V1] < [V ×2
1 ] < . . . [V ×p

1 ] < [V1,1] > [V2]

and it follows that

|Bp(G)| = |D1| ∪ |D2|, and |D3| = |D1| ∩ |D2|. (2)

The Mayer Vietoris sequence gives an exact sequence

· · · → H0
G(|D1|;H1)⊕H0

G(|D2|;H1)→ H0
G(|D3|;H1)→ H1

G(|Bp(G)|;H1)→ . . . (3)

For what follows, it will be convenient to denote

L = Hom(GL1(p), k×) ∼= F×p .

Proposition 4.2. H0
G(|D3|;H1) ∼= L× L and H∗>1

G (|D3|;H1) = 0.
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Proposition 4.3. H0
G(|D2|;H1) ∼= L and H∗>1

G (|D2|;H1) = 0.

Proposition 4.4. H0
G(|D1|;H1) ∼= C2 and H∗>1

G (|D1|;H1) = 0.

Propositions 4.2–4.4 together with the exact sequence (3) immediately imply (1)
because by hypothesis p > 5, whence |L| > 4.

Recall that k has characteristic p. Therefore the kernel of any group homomorphism
H → k× contains the commutator subgroup of H and any p-subgroup of H. We will
use this fact repeatedly.

Proof of Proposition 4.2. Since D3 is a single orbit of G with isotropy group NG(V1,1)
it follows from (R1) that H∗

G(|D3|;H1) = Hom(NG(V1,1), k×) = L× L.

Proof of Proposition 4.3. Since |Bp(G)| is G-equivalent to |∆p(G)|, Symond’s reso-
lution of Webb’s conjecture in [14] shows that the orbit space |Bp(G)|/G is con-
tractible. But (2) shows that |Bp(G)|/G = (|D1|/G) ∨ (|D2|/G). It follows that the
CW-complex |D2|/G, namely [S(D2)], is contractible and since it is 1-dimensional
with two 0-simplices [V2] and [V1,1], the poset [S(D2)] must have the form

[V2] → [V2 < V1,1] ← [V1,1].

Now, V2 6 V1,1 = Cp o Cp is generated by the copy of Cp at the top and the diagonal
copy of Cp in the base group Cp × · · · × Cp which is the centre of V1,1. One easily
deduces from (R1) and (R2) that NG(V2 < V1,1)/NV1,1(V2) ∼= GL1(p)2 as a diagonal
subgroup of GL2(p). With the notation of Definition 3.2 we have

AH1([V2 < V1,1]) ∼= Hom(GL1(p)2, k×) ∼= AH1([V1,1]),

and AH1([V2]) = Hom(GL2(p), k×) ∼= L because GL2(p)ab = F×p . By Lemma 3.3, the
groups H∗

G(|D2|;H1) are isomorphic to H∗([S(D2)];AH1), namely to the derived func-

tors of the diagram L
∆−→ L× L

id←−−−−− L× L. This completes the proof.

Lemma 4.5. The inclusion V1 ⊆ D1, see Definition 4.1, induces a G-equivariant
homotopy equivalence |V1| → |D1|.
Proof. Given a subgroup P of G let δ1(P ) denote the subgroup of P generated by
all the permutations g ∈ P whose support contains at most p elements. Observe
that δ1 is invariant under conjugation, namely δ1(gPg−1) = gδ1(P )g−1. By inspec-
tion δ1(V1

×k) = V1
×k and δ1(V1,1) = V1

×p. We obtain a G-equivariant morphism of
posets δ1 : D1 → V1. Clearly, |δ1| ◦ i

|D1|
|V1| = Id|V1|. The inclusions δ1(P ) 6 P give a G-

equivariant homotopy i
|D1|
|V1| ◦ |δ1| ' Id|D1|, cf. [11, 1.3]. The result follows.

We leave the following result as an easy exercise for the reader.

Lemma 4.6. Let K be a finite group, fix an integer n > 1 and set Gn = K o Σn. Then
(Gn)ab ∼= Kab × (Σn)ab. The restriction of Gn → (Gn)ab to any one of the factors K
of Kn 6 Gn is the canonical projection K → Kab and the restriction of Gn → (Gn)ab
to Σn is the projection onto (Σn)ab.

If n,m > 1 then Gn ×Gm 6 Gn+m. The resulting (Gn)ab × (Gm)ab → (Gn+m)ab
is induced by the fold map Kab ×Kab → Kab and by (Σn)ab × (Σm)ab → (Σn+m)ab.
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Notation 4.7. The following non-standard description of the (n− 1)-simplex ∆n−1

will be used throughout. The r-simplices of ∆n−1 are sequences i0 < · · · < ir where
1 6 i0, . . . , ir 6 n. Face maps are obtained by inclusion of sequences. (The usual con-
vention is 0 6 i0, . . . , ir 6 n− 1.)

Proof of Proposition 4.4. In light of Lemma 4.5 and Lemma 3.3, we must prove that
H∗

G([S(V1)];AH1) ∼= C2.
The high transitivity of the symmetric groups and the description of NG(V ×k

1 ) in
(R3) imply that every r-simplex of S(V1) is conjugate in G to a simplex of the form
V ×i0

1 < · · · < V ×ir
1 where 1 6 i0 < · · · < ir 6 p. With the notation of 4.7 we see that

[S(V1)] = ∆p−1.
For any group K let K̂ denote the abelian group Hom(K, k×). Let N denote the

normalizer of Cp in Σp. Thus, N = Cp oGL1(p) and observe that GL1(p) 6 Σp is
generated by an odd permutation, in fact a cycle of even length (p is odd). Set

L = N̂ = Hom(N, k×) = Hom(GL1(p), k×) ∼= Cp−1.

Consider the following functor Φ: (∆p−1)op → {Groups}. On objects

Φ(i0 < · · · < ir) =
( r∏

t=0

N o Σit−it−1

)× Σp2−irp, (by convention i−1 = 0).

For an r-simplex i and for 0 6 j 6 r, the effect of Φ(i)→ Ψ(∂ji) is induced by the
inclusions

(N o Σij−ij−1)× (N o Σij+1−ij ) 6 (N o Σij+1−ij−1) if 0 6 j < r
(N o Σir−ir−1)× Σp(p−ir) 6 Σp(p−ir−1) if j = r.

Inspection of (R3) shows that AH1 = Φ̂, namely AH1 = Hom(Φ, k×). Having identi-
fied [S(V1)] with ∆p−1, it remains to prove that

H∗(∆p−1; Φ̂) ∼= C2. (4)

Consider the following functor Ψ: ∆p−1 → Ab defined by

Ψ(i0 < · · · < ir) =
( r∏

t=0

N o Σit−it−1

)× (N o Σp−ir ), (by convention i−1 = 0).

It is a subfunctor of Φ via the inclusions N o Σp−ir 6 Σp(p−ir). We obtain a morphism
of functors Φ̂→ Ψ̂ of abelian groups. Our goal now is to prove that it is a monomor-
phism and to calculate its cokernel. Fix an r-simplex i = (i0 < · · · < ir) in ∆p−1 and
consider Φ̂(i)→ Ψ̂(i). Note that (Σn)ab = C2 if n > 2 and that if H 6 Σn contains
an odd permutation then Hab → (Σn)ab is surjective.

Case (a). If ir = p then Σp2−irp and N o Σp−ir are the trivial group and therefore
Φ̂(i)→ Ψ̂(i) is an isomorphism.

Case (b). If ir = p− 1 then N o Σp−ir = N and Σp(p−ir) = Σp. Since N = Cp o
Cp−1 contains an odd permutation, by applying Hom(−, k×) to the inclusion N 6 Σp

we obtain the monomorphism C2 → L and therefore Φ̂(i)→ Ψ̂(i) is injective with
cokernel L/C2.

Case (c). Assume that ir 6 p− 2. The inclusion of Np−ir 6 Σp(p−ir) contains odd
permutations. Since p is odd, also the diagonal inclusion Σp−ir 6 Σp(p−ir) contains
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odd permutations. By Lemma 4.6 the induced map Σ̂p(p−ir) → ̂N o Σp−ir
is the diag-

onal inclusion C2 → L⊕ C2 into C2 ⊕ C2. It follows that Φ̂(i)→ Ψ̂(i) is injective with
cokernel L.

We obtain a short exact sequence of functors ∆p−1 → Ab

0→ Φ̂→ Ψ̂→ Γ→ 0, (5)

where the functor Γ has the form

Γ(i) =





0 if ir = p

L/C2 if ir = p− 1
L if ir 6 p− 2.

By Lemma 4.6, Γ(j)→ Γ(i) are induced by the quotient maps L→ L/C2 → 0.
Let Γ′, Γ′′ : ∆p−1 → Ab be the functors defined for objects i = (i0 < · · · < ir) by

Γ′(i) =

{
L if 1 6 ir 6 p− 1
0 if ir = p

Γ′′(i) =

{
C2 if ir = p− 1
0 if ir 6= p− 1.

Face maps i ⊆ j induce either the identity or the trivial homomorphisms Γ′(i)→ Γ′(j)
and Γ′′(i)→ Γ′′(j). We get a short exact sequence of functors

0→ Γ′′ → Γ′ → Γ→ 0.

We view ∆p−2 as the (p− 1)st face of ∆p−1, that is, ∆p−2 consist of the simplices
i = (i0 < · · · < ir) of ∆p−1 with ir 6 p− 1. Similarly ∆p−3 is the (p− 2)nd face of
∆p−2. Thus, ∆p−3 is the subcomplex of ∆p−1 of the simplices i with ir 6 p− 2. At
this point we should recall that p > 5.

By inspection of Definition 2.1 we see that C∗(Γ′′) is isomorphic to the cochain
complex C∗(∆p−2, ∆p−3; C2) of the relative simplicial complex (∆p−2, ∆p−3). Since
p > 5, the contractibility of the standard simplices and Lemma 2.2 imply that

H∗(∆p−1; Γ′′) ∼= H∗(∆p−2, ∆p−3; C2) = 0.

The acyclicity of Γ′′ now shows that Γ′ → Γ induces an isomorphism

H∗(∆p−1; Γ′)
∼=−→ H∗(∆p−1; Γ). (6)

By Lemma 4.6 we see that Ψ̂ : ∆p−1 → Ab has the following form

Ψ̂(i0 < · · · < ir) =
( r∏

t=0

L× Σ̂it−it−1

)×
{

0 if ir = p

L× Σ̂p−ir if ir < p.

We obtain a constant subfunctor Ψ′(i) = L of Ψ̂ via the diagonal inclusion and it is
easy to check that the following square commutes

Ψ′ //

²²

Ψ̂

²²
Γ′ // Γ.

By inspection of Definition 2.1, there are isomorphisms C∗(Ψ′) ∼= C∗(∆p−1; L) and
C∗(Γ′) ∼= C∗(∆p−2; L). The map Ψ′ → Γ′ gives rise to the map of cochain complexes
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induced by ∆p−2 ⊆ ∆p−1. We deduce from Lemma 2.2 and the contractibility of the
standard simplices that Ψ′ → Γ′ induces an isomorphism

H∗(∆p−1; Ψ′)
∼=−→ H∗(∆p−1; Γ′) ∼=

{
L if ∗ = 0
0 if ∗ = 0.

(7)

The commutative square above, together with (6) and (7) imply that Ψ̂→ Γ induces
an epimorphism H∗(∆p−1; Ψ̂)→ H∗(∆p−1; Γ). By (6) and (7) and the long exact
sequence associated to (5), the proof of (4), whence the proof of this proposition,
will be complete if we prove that H∗(∆p−1; Ψ̂) ∼= L⊕ C2 (cohomology concentrated
in degree 0).

Set K = N o Σp and let it act on the poset Ω of the non-empty subsets of {1, . . . , p}
via the projection onto Σp. One easily checks that [S(Ω)] = ∆p−1 and that, by choos-
ing appropriate representatives, the isotropy groups of the r-simplices of S(Ω) are

IsoK(i0 < · · · < ir) = Ψ(i0 < · · · < ir).

Thus, if H1
K is the coefficient functor for K defined in 3.1 with A = k×, we see that

C∗(Ψ̂) ∼= C∗(AH1
K

), whence by Lemma 3.3,

H∗(∆p−1; Ψ̂) ∼= H∗([S(Ω)];AH1
K

) ∼= H∗
K(|Ω|;H1

K).

Now, |Ω| is K-equivalent to a point because {1, . . . , p} is a maximal element of Ω
fixed by K. Therefore H∗

K(|Ω|;H1
K) ∼= H1

K(pt) = N̂ o Σp = L⊕ C2 by Lemma 4.6.
This completes the proof.
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