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BEYOND THE HIT PROBLEM: MINIMAL PRESENTATIONS OF
ODD-PRIMARY STEENROD MODULES, WITH APPLICATION
TO CP(c0) AND BU

DAVID J. PENGELLEY anp FRANK WILLIAMS

(communicated by Donald M. Davis)

Abstract

We describe a minimal unstable module presentation over
the Steenrod algebra for the odd-primary cohomology of
infinite-dimensional complex projective space and apply it to
obtain a minimal algebra presentation for the cohomology of
the classifying space of the infinite unitary group. We also
show that there is a unique Steenrod module structure on any
unstable cyclic module that has dimension one in each complex
degree (half the topological degree) with a fixed alpha-number
(sum of ‘digits’) and is zero in other degrees.

1. Introduction

The projective spaces RP(c0) and C'P(o00) play a pivotal role in algebraic topol-
ogy, and have an amazing combination of features. As Eilenberg-MacLane spaces
they represent key cohomology groups. Contrastingly, in the past two decades we
have learned that their cohomologies are unstable injective modules over the Steen-
rod algebra A (at p = 2 for RP(c0), and at odd primes p for C P(co) when consid-
ering “complex” (i.e., evenly) graded modules) [1, 2, 6, 14]. This surprising feature
has been key to solving famous problems like the Segal and Sullivan conjectures.

We might even imagine that by now we understand their cohomologies
H*(RP(c0);F2) and H*(CP(00);F,) very well. As an algebra each is polynomial
on a single generator with A-action determined by extremely simple formulas. And
as an unstable A-algebra each is free on one generator. What could be simpler?

But how well do we understand their A-module structures, which are key to what
they actually tell us about other spaces? In exactly what way are these remarkable
A-modules built from generators and relations in order to produce all the amazing
properties of projective spaces delineated above? If we ask first for minimal A-
generators, this is the classical hit problem (i.e., which elements are not hit by
the A-action), and it is not hard to answer this. We shall describe a minimal set
of A-module generators {u(s)|s > 0} for H*(C'P(c0);F,). In fact, for each integer
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s = 0 the complex degree of the generator u(s) is the least integer d for which
a(d) = s. (Here, and throughout this paper, “complex degree” will refer to one-half
the topological degree, and the “alpha-number” of a nonnegative integer n, a(n),
will mean the sum of the p-ary digits of n.)

Going beyond the hit problem, the question of which A-relations are then nec-
essary among these minimal 4-generators in order to glue together precisely the
cohomology of projective space is extremely delicate. Pleasantly, we find that they
are not that great in number, are essentially unique, and can be written down
explicitly.

We accomplished this for H*(RP(oc0);F3) in [9], and will now do so for
H*(CP(x);F,) (with p odd), where the answer has some fascinating extra twists
but is still tractable. In so doing, we will analyze the cyclic subquotients of the A-
filtration of H*(CP(c0);F,) given by alpha-number of complex degree, and deter-
mine their minimal A-relations. The modules in this composition series are simple
modules in the category Z/lz’, /Nl of evenly graded unstable A-modules modulo nilpo-
tence described in [1, 5]. We also show that each of them is uniquely characterized
as a cyclic unstable A-module just by having dimension one in each even degree
with a fixed alpha-number for the complex degree, and dimension zero in all other
degrees. The generators of these cyclic modules are just the images in the filtered
quotients of the elements u(s).

There are considerable similarities between the odd-primary and the mod two
cases. However, there are differences that are quite interesting. The filtered quotients
in the mod two case are fairly well-known A-modules; i.e., they are isomorphic to
the free unstable modules on single generators ton—1_; in degree 2"~ — 1 subject
to the A-relations Sq2 ton1_, =0for 0 <k <n—3 [9]. In the odd-primary case,
since the Steenrod algebra is concentrated in complex degrees divisible by p — 1,
any A-module splits as a direct sum of p — 1 A-modules, each of these in degrees
with fixed residue mod (p — 1).

We shall see that the filtered quotients of H*(CP(c0);F,) are isomorphic to
certain modules M,, , on generators t,,n-1_; in (complex) degrees of the form
ap™~! — 1, where 1 < a < p— 1, with a — 1 labeling the mod (p — 1) residue sum-
mand, and n further reflecting the filtration by alpha-number within this summand.
If we let s = a(ap™ ! —1)=(a—1)+ (n—1)(p — 1), then ap"~! — 1 is the small-
est integer with alpha-number s. Hence the generator of M,, , is in the lowest degree
with its alpha-number. In this case the minimal A-relations include the expected
pr’ tapn-1-1 = 0 for 0 <k < n — 3, but also include either one or two additional
relations that depend on a. These modules M, , are quite interesting: Since they
have dimension one in degrees with alpha-number equal to that of ap®~! — 1, are
zero in other degrees, and this uniquely characterizes them as cyclic A-modules,
they may be regarded as basic building blocks of structures having to do with
alpha-number. Moreover, they are analogs to an interesting phenomenon at the
prime 2.

At p = 2, Franjou and Schwartz [3, 13, 14] considered the category V,—1/Vy—2.
(Vn—1 is the full subcategory of U /Nil, i.e., modulo nilpotence, with objects the
unstable A-modules of weight n — 1, i.e., trivial in degrees with alpha-number



Homology, Homotopy and Applications, vol. 9(2), 2007 365

greater than n — 1.) They showed that V,,_1/V,,_2 is equivalent to the category
of right modules over the group ring Fa [¥,,—1] on the symmetric group. The cyclic
unstable A-module we described above, on t9n-1_; with relations quktzn—171 =
for 0 < k < n — 3, is of dimension one in each degree with alpha-number n — 1, and
dimension zero in all other degrees, and thus corresponds under this equivalence of
categories to the unique nontrivial rank one module over Fy [%,,_1].

Our A-modules M,, , are odd-primary versions of these mod 2 A-modules, occu-
pying a similar spot in the odd-primary analogue (see [1, p. 395] and [5]) of the
theory in [3] of reduced unstable mod 2 A-modules. One of our theorems pro-
duces bases for the M,, , that show that they are reduced and have weight exactly
a=a(ap"t —1), ie, liein V), —V/,_; in the filtration of U, /Nil. Tt would be
interesting to find a direct proof, without using our basis theorem, that M,, , is
reduced and lies in V. Such information might lead to an alternate proof of some
of our results by invoking an odd-primary version of 2-primary results in [3].

Finally, in roughly the same way that our minimal A-presentation of
H*(RP(00);F3) led to a minimal unstable A-algebra presentation of the sym-
metric algebra H*(BO;F3) [9], our minimal unstable A-module presentation for
H*(CP();F,) will lead to a minimal unstable .A-algebra presentation of the sym-
metric algebra H*(BU;F,).

Many of our methods will be the same ones we used in [7, 9, 10] to determine
minimal relations for unstable A-modules and A-algebras. A fundamental element
of our computations is the odd-primary even topological Kudo-Araki-May algebra,
KC, whose definition and properties we developed in [11], and which is well-suited
to studying unstable A-modules. We summarize necessary ingredients from this
material in an appendix to the present paper.

In the following section we shall list the principal results of this paper.

2. Definitions and principal results

To set the stage, we work with coefficients in the field IF,, for p an odd prime.
We consider only evenly graded modules over the Steenrod algebra .4 (with no
Bocksteins), and generally use the complex degree (half the topological degree)
throughout to describe the grading. N.B: Every .A-module in this paper will be
assumed unstable without further mention.

The hit problem for H*(C'P(o0)) = F), [u] is easily solved. The formula for the
action of the Steenrod algebra

Pkum _ (m) um+(p—1)k
k

quickly yields

Proposition 2.1. A minimal set of A-module generators for H*(CP(c0)) is given
by the set

{u‘”’n_L1 |1<a<p-—1andn>1}.

As explained above, we can uniquely index these elements by the alpha-number of
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their degrees, as {u(s) | s = 0}, where s = afap" ' —1)=(a— 1)+ (n—1)(p—1),
and the degree ap™ ™' — 1 of each is the smallest integer with its alpha-number.

Our main theorem is the following, whose proof will occupy most of this paper.

Theorem 2.2 (proven in Section 5). A minimal set of A-module relations on the
minimal module generators {u®™" "1 |1<a<p—1 andn =1} for H*(CP(x))
is given by the following equations:

For0<il<n-23,

'Ppl’u,apn_lfl _ ’Papn_z’Ppluapn_Qfl

and for a > 2,

(a— 1)7D(Pfa+1)p"72uapn7171 _ (P - l)pp”'lpp"2uap"21
2

a —

and
2 n—2 n-1_q

n—1 n— n—1 n—1
(a— 1)ypP"~ pr Ty T oL o gpp T e T a1
while for a =1
27);071—1+pn72ppn—2+pn73uapn71_1 _ PPTL71+Pn72+p7l73PPn72uapn71_1

A sketch of the proof is as follows. It is straightforward to check
Proposition 2.3. Our claimed set of relations is satisfied in H*(CP(c0)).
Proof. The proof is left to the reader. O

Thus the proof of the presentation will primarily involve showing that this set
of relations is sufficient, i.e., that H*(C'P(c0)) has the same graded rank as the
quotient M of the free (unstable) .A-module on generators in the specified degrees
by the sub-A-module generated by the set of relations. To analyze this, we shall
filter the two modules compatibly over A, in a fashion related to the alpha-number
of (complex) degree. We shall first describe a basis for each filtered quotient of
H*(CP(00)), using monomials from the Kudo-Araki-May algebra I applied to a
generating class. Although any element described using I can in principle also be
described using A (and vice-versa) by iterating the conversion formula

(—1)’ dju =PI Iy,

where u is a module class of (complex) degree ¢, in practice it seems that &, whose
algebra structure is dramatically different from that of A, is often much more trans-
parent for describing bases of unstable .4-modules. In this case, we will provide a
basis for H*(CP(c0)) expressed in terms of K-monomials we call “chosen”. Then
we show that these same chosen monomials produce a basis for the corresponding
filtered quotient of M, by showing that every element of M can be expressed in
terms of chosen monomials. This determination that chosen monomials suffice to
span M, based on its abstract defining relations, is the lengthy part of the proof.
We refer the reader to our appendix for a summary of relevant information about
K. Finally, the proof will also verify that the relations we give are all necessary.
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We begin the process of describing our “chosen” monomials in K with some
definitions. The fact that these particular monomials will have something special to
do with the alpha-number of degrees is not at all obvious, and will emerge in our
proofs.

Notation 2.4. For an integer j = >_ j;p!, in p-ary representation, we shall write
this representation as j = (..., ji, ..., Jo)-

Definition 2.5. A generator d; of K is called chosen if the p-ary digits of j are
nondecreasing from left to right; i.e.,if j = (..., 4, ..., jo), then jjr1 < j, for I > 0.

Definition 2.6. A 2-fold monomial d;d; € K is called chosen provided that d; and
d; are both chosen, that each digit of 7 is less than or equal to the corresponding
digit of j, and that if j; # p — 1, then i1 = 0 (in these circumstances the last
condition is equivalent to i < p*»U+TD+1 where v, is the exponent of p-divisibility).

Definition 2.7. An arbitrary monomial d; = d;,d;, - - - d;,, (for k > 0) is called cho-
sen provided that each d;, is chosen and for each [, 1 <! < k — 1, the monomial
d;,d;,+1 is chosen.

We also recall from the appendix the following definition in /C.

Definition 2.8. A monomial d; = d;,d;, ---d
for each I, i) < 4p41.

i 1s called admissible provided that

We recall that the admissibles are a basis for I, and note that every chosen mono-
mial is admissible. Also notice that the definition of chosen refers only to monomials
in IC, having nothing directly to do with the degree of a class of application in a
module.

We also recall here that a basis for the free unstable .4-module on a class in
degree m consists of applying all admissibles in A of (complex) excess less than or
equal to m, or, equivalently, admissibles d; € K with final index less than m.

We are almost ready to describe H*(C'P(c0)) in terms of the monomials we have
labeled as chosen.

Notation 2.9. Let FH*(CP(c0)) denote the direct sum of H?*(CP(c)) for all
k such that a(k) < s, where a(k) denotes the alpha-number of the integer k. One
can check from the equation at the beginning of this section that this is a filtration
by sub-.A-modules.

The subquotient module F;H*(CP(0))/Fs—1H*(CP(c0)) is concentrated in,
and of rank one, in precisely those (complex) degrees with alpha-number s. As we
noted above, if we write s = q(p — 1) + 7, where 0 < r < p — 2, then the smallest
degree with this alpha-number has p-ary representation (r,p —1,...,p — 1), and is
(r + 1)p? — 1, which is precisely the degree of a minimal .A-module generator already
noted above for H*(C'P(c0)). So there is a correspondence between the filtered
quotients and the minimal generators. It is not surprising that the quotients turn
out to be cyclic modules over A (equivalently K) on these generators. The important
content of the following theorem is the explicit systematic identification of a single
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chosen monomial in K representing a basis element for each degree with a given
alpha-number. The theorem does this by melding the definition of chosen monomials
in K with the unstable conditions of an A-module, obeyed by the cohomology of
any space, that if = is a class of complex degree m, then d;x =0 for ¢ > m, and
dmr = (=1)" x, so that d;z represents new elements only when i < m. For this
reason we make the following definition.

Definition 2.10. We call the application of a monomial d; to a class x of degree
m unstable if the right-hand factor d; of d; satisfies [ < m.

Theorem 2.11 (proven in Section 3). The filtered quotient

FH*(CP())/Fe 1 H*(CP(x)) ~ @) H>*(CP(0))
a(k)=s

has as a vector space basis the set of all unstable dyuTTVP =1 where d; is chosen.

Remark 2.12. In particular, this theorem tells us that the chosen monomials in £,
applied unstably to any element in a degree of the form ap™~! — 1 (for a < p — 1),
land in precisely one-to-one fashion in all degrees with the same alpha-number.
This will be true in any module; the theorem indicates that in H*(CP(c0)) they
all represent nonzero elements as well.

Now we define the abstract module we claim presents H*(C'P(c0)).

Notation 2.13. Let F' be the free A-module on abstract classes tq,n-1_1, for
1<a<p-1and n>1 (where subscripts indicate the complex degree of each
class, here and in the future). Let J be the sub-.A-module generated by the following
relations:

For0<li<n—3,

L n—2 1
PP tap”_lfl =P PP tap”_2717
and for a > 2,

(a—1)PE=arDr" 2y = (§ _ §> PP P gz
and
(a— 1)73”"_1771’"_21?,11,77,71,1 = aPpn_%pn_Qtapnfl,l,
while for a =1

2
tapn—1_1-

n—2

27)17n_1+p 7)pn—2den—3t _ Ppn_1+pn_2+pn_37)pn_

Define M to be the quotient A-module F/J.

apn—1—1

Next we wish to filter M in a fashion compatible with the filtration of
H*(CP(00)). We again use the correspondence between natural numbers s and the
smallest degree with s for its alpha-number, described by writing s = g(p — 1) +r
(for 0 < r < p — 2), yielding the smallest degree (r + D)p? — 1= (r,p—1,...,p—1)
with this alpha-number. Notice that the correspondence is monotonic.
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Notation 2.14. Let F, M denote the sub-A-module of M generated by all t’s
of degree less than or equal to the degree (r 4+ 1)p? — 1 with alpha-number s. Let
M., denote the cyclic subquotient module of this filtration with generator in degree
ap™~! —1 (obtained by letting r = a — 1 and ¢ = n — 1 determine s, and defining
Mpo = FsM/Fs_1 M).

As we did for H*(C'P(c0)), we now wish to analyze the filtered quotients M,, 4,
and ultimately to see that they agree with those of H*(CP(c0)).

Remark 2.15. We note that M,, , has a single A-generator t,,»-1_1, subject to the
following A-relations:
For0<l<n—-3,

l
Pp tapn7171 - O,

and for a > 2,

n—2

P(pia+1)p tapn7171 == O

and
n—2

(a — 1)7DP"L71/P[) tapn—l_l = G/Ppnil—i_pniztapn—l_l,
while for a = 1

27Dp”71+pn7273p"72+pn73t _ Pp7171+pn72+pn—3ppnf2t

apn—l_l ap"fl—l'

We define a map from F' to H*(CP(00)) by taking each t,,n-1_; to ue?" =1 By
Proposition 2.3, this map carries the submodule J to zero, so there is an induced
map M — H*(CP(o0)). This is the map we shall show is an isomorphism.

Remark 2.16. From our earlier results and discussion it is clear that this map is well-
defined, respects the filtrations on M and H*(CP(00)), and is an epimorphism.

Theorem 2.2 will result from seeing that this map induces A-isomorphisms on the
filtered quotients. This is ensured by the next theorem, whose proof occupies the
bulk of the paper, determining a basis for M, , analogous to that of Theorem 2.11
for the filtered quotients of H*(C'P(0)).

Theorem 2.17 (proven in Section 4). A vector space basis for M., o consists of the
set of all unstable drt,yn—1_1 where dy is chosen.

Corollary 2.18. From this theorem and Theorem 2.11, the map M — H*(CP(c0))
defined above induces isomorphisms

Mn,a = ‘FGM/ﬁQ—lM = sz*(CP(OO»/fG—lH*(CP(OO))

where s = « (ap”f1 - 1). In particular, M, o 1is therefore concentrated in degrees
with alpha-number s, and always has rank one there.

The presentation of H*(C'P(c0)) in Theorem 2.2 is now essentially immediate.
We make this explicit, and verify the minimality of the relations, in Section 5.

We established above that the abstract modules M, , are cyclic unstable
A-modules that have dimension one in degrees with alpha-number equal to that
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of ap™ ™! — 1 and are zero in other degrees. Their importance is underscored by the
fact that this characterizes them uniquely:

Theorem 2.19 (proven in Section 6). Let ag > 1. Let M be a cyclic (unstable)
module over the Steenrod algebra A, p odd, such that dim(M;) =1 if a(l) = o and
dim(M;) = 0 if a(l) # . Then, as A-modules, M = M,, ., where a(ap™~! —1)
= Q.

We now move to our minimal presentation of H*(BU) as an unstable A-algebra.
Our intention is to identify a minimal sub-A-module (itself minimally presented
as an A-module) that generates H*(BU) as an A-algebra, form the free unstable
A-algebra on this module, and then impose a minimal set of .A-algebra relations to
obtain H*(BU).

Remark 2.20. There is a map S? A CP(c0)y+ — BU that induces an epimorphism
on integral cohomology. (Here C'P(c0)4 denotes the union of C'P(00) with a disjoint
basepoint.) The map classifies the virtual bundle (71 — 1) ® (9o U 0), where 77 and
N denote the canonical line bundles over S? = CP(1) and C'P(c0), respectively.
A computation using the Chern character verifies that this map induces the desired
epimorphism on integral cohomology. For details, see, e.g., the monograph [4, p. 73].
As all products vanish in the cohomology of S? A CP(00) since it is a suspension,
the induced map on indecomposables is an isomorphism. (An alternative way to see
that QH*(BU) is A-isomorphic to X2H*(CP(c0)) is via the mod p Wu formulas
in H*(BU); see [12, 15].)

Since the indecomposable quotient QH*(BU) is isomorphic as an .4-module to
the double (topological) suspension of H*(CP(o0)), then by Proposition 2.1 the set
of Chern classes {copn-1 |1 <a<p—1and n > 1} is a minimal set of A-algebra
generators for H*(BU). Hence up to algebra decomposables we will find in H*(BU)
the double suspension of the relations in the module M that minimally presents
H*(CP(00)). We list these analogous relations in H*(BU):

Remark 2.21. Since the relations in Theorem 2.2 were verified in Proposition 2.3 to
hold in H*(C'P(00)), we have the following relations in H*(BU):
For0<l<n—-3,

1 n—2 l
PP Capn—l = Pap 7)}7 Cap"72 + Dl (a, n, l),

and for a > 2,

n— - 1 n— n—
(a—1)PEatir™ e = (Z - 2)7?? PP Capn2 + Da(a,n)

and
(a— 1)731’"*1fpp"7zcapn_1 = app"*“rp"’QCapn_l + Ds(a,n),

while for a =1

n—1 n—2 n—2 n—3 n—1 n—2 n—3 n—2
opp" 4P T pp" T 4p Capn1 = PP +p" 0" pp Capn—1 + Da(a,n).
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Here Di(a,n,l),...,Dys(a,n) are decomposable polynomials in the elements
{PJCapk—l [1<a<p—1landk >1}
that may, in principle, be computed using the mod p Wu formulas [12, 15].

We shall prove that these form a minimal set of relations for H*(BU) as an
unstable algebra over the Steenrod algebra.

Since there are decomposables to contend with amongst the equations connect-
ing these Chern classes, we do not immediately impose A-module relations on our
abstract generators imitating the generating Chern classes.

Notation 2.22. Let A be the free (unstable) A-module on abstract classes 7,,n-1,
forl<a<p—1landn>1.

Let U(N) be the free unstable A-algebra on the A-module N (the odd-primary
analogue of [16, pp. 28-29]). Let Z be the A-ideal in U(N') generated by the following
relations:

For0<l<n-3,

l n—2 l
PP Typn-1 = PP PP 14m-2+ Di(a,n,l),

and for a > 2,

n— - 1 n—1 mn—
(a— 1)7>(pfa+1)p 27-apn,1 = (Z B 2>7>p PP 27-apn72 + Dy(a,n)

and

n—1 n—2 n—1 n—2
(a— )PP PP “rpnr =aP? P 1.1+ Ds(a,n),

while for a =1

n—2 n—1

n—1 n—2 n—3 L n—2 n—23 n—2
PPt P PPt AR e = PP TP PPt i+ Dy(a,n).

(Here Ds,...,D4 are the polynomials in the preceding remark with the Chern
classes cqpn—1 replaced by the elements 7,,--1.) Finally, let G =U(N)/Z, a quotient
A-algebra of U(N).

We define a map U(N) — H*(BU) by taking 7,,n—1 to the Chern class c¢gpn-1.
Since the ideal 7 is taken to zero by this map, we obtain a map ¢: G — H*(BU).
We shall check that the induced map Q¢ on indecomposable quotients is an iso-

morphism. Since H*(BU) is a polynomial algebra, we obtain our presentation for
H*(BU).

Theorem 2.23 (proven in Section 6). The map ¢: G — H*(BU) is an isomor-
phism of unstable A-algebras.

Theorem 2.24. Our presentation for H*(BU) is minimal, in the sense that the
module N injects into H*(BU) and our set of relations is minimal.

It is clear from previous results that our set of relations imposed on G is minimal,
so Theorem 2.24 is an immediate consequence of the following theorem, which shows
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that in H*(BU) there are no A-module relations among any Chern classes (even
though for injectivity of A/ we only need this for those in degrees ap™~1!).

Theorem 2.25 (proven in Section 6). Let R denote the free A-module on abstract
classes t,,, for m > 1. Then the map R — H*(BU) defined by taking each T, to
the corresponding Chern class ¢y, is a monomorphism.

3. Proof of Theorem 2.11

Fix the nonnegative integer s. Let ko be the smallest nonnegative integer for
which a(kg) = s. We shall define a bijection between the set of chosen monomials
d; ---d; with | < ko and a basis for @a(k)zs H?F(CP(c0)), by assigning to d; - - - d;
the element d; - - - dyjz*. Of course we will need to show that this assignment is valid,
nonzero, and creates a one-to-one correspondence between the chosen monomials
and the degrees k with a(k) = s.

We begin with a short calculation showing that the assignment always lands in
the correct degrees. Let d;d; - - - d; be a chosen monomial with I < kg. There exist a
(with 1 < a < p—1) and n such that

ko=ap" ' —1=(a—1,p—1,...,p—1).

Write ¢ = (ig—1,...,%0), where i;_; # 0 and ¢ < n. Since d;d; - - - d; is a chosen mono-
mial, then j,...,[ are of the form

j:(jh"'ajqflap_17"'ap_1)'

If k is the degree of d; - --djz*, then by iteration we have k of the form (see the
appendix to recall calculation of degrees involving )

k= (ks,...., kg, jg—1,p—1,...,p—1).
If we set m = pk — (p — 1)i, then m is the degree of d; - - - djx** and we calculate
m = (Mst1,--.,Mo)

=k 4+ (kg1 —ig-1)p? +[(p—1) —ig2+ Z‘qfl]qul
o [(p—1) —ig +i1]p + do.

An induction based on this formula yields the following lemma.

Lemma 3.1. If d;d; -- - d; is a chosen monomial with I < ko and m is the degree of
d; -+~ dyx®, then a(m) = s.

Next we will reverse this calculation, beginning solely with a degree m with
a(m) = s, and finding a chosen monomial d;d; - - - d; that produces a basis element
in H>™(CP(00)) when applied to z*0. The formulas above will be our guide. We
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note that in the formula for m we had
Zmr— (@=1)(p—1)+ig1>(g—1)(p-1),
and
Zmr =(g-Dp—-1)+ke1<glp-1).

This motivates us to define ¢ from m as follows:
Definition 3.2. Let ¢ > 0 be the least integer such that » 7 —omr <q(p—1).
With ¢ in hand we can continue to solve from the equations above for k and .

Definition 3.3. Let ¢ be as just defined, and set

p—1, for0<r<q—2;
ke =2 gmi—(a—1)(p—1), forr=qg-1
Myt1, for r > q.

=
Note that from the definition of ¢, for » > 0 we have 0 < k. < p — 1, and that for
0<r<qg—1wehave

O<mo+--+m,—r(p—1)<p-—1

Set
qg—1

i=Y mo+-+mp—rlp—1)p"

r=0
Note that if m = ap™~! — 1, then ¢ = kK = m, and that otherwise i < k.

Next we check that for the ¢ we have defined, ™ is actually in the image of d;.
In H*(CP(o0), we have, for any ¢ and k, the formula

diz® = (—1)i <k> gPk— (=1,
Using this, we compute that for our defined m, k, and 4,
m = pk — (p — 1)i and d;2* = (unit) - 2™,

Now we continue this prescription backwards to produce a chosen monomial
connecting z*0 to ™. We note that the digits of i are nondecreasing, so it is chosen.
Further, we note that if we start with k£ as just defined in place of m and iterate
the process to find a j by the same recipe we used to define i, we obtain

jr=p—1, forr <q—2
and
jq—l = Z-q—l + my > Z-q—l-

So, inductively, we can start with an integer m such that a(m) = s, and produce a
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chosen admissible d;d; - - - dy, with [ < kg, such that
2™ = (unit)d;d; - - - djz*,

where k is the least positive integer such that a(kg) = s. This shows that assigning
to a monomial d;d;---d; with [ < ko the element d;d; - - dyx®o is surjective from
the set of such monomials to a basis for @a(k):s H?¢(CP(c0)).

It remains only to see that there is a unique such monomial for each degree m
with a(m) = s. But it is clear from our displayed formulas that began this section
that if we start with a chosen monomial d;d; - - - d; with [ < kg, and consider only the
degree m of the element d;d; - - - dyz*0, then apply our backwards algorithm above
to find a new value for 4, that the algorithm produces the same value for ¢ that we
began with in the chosen monomial.

Summing up, we have shown that the set of elements d;d; - - - d;z*o | ranging over
the chosen monomials d;d; - - -d; with [ < kg, forms a basis for

P E*(CP(x)).

a(k)=s

This proves Theorem 2.11.

4. Proof of Theorem 2.17

From Theorem 2.11 and the remark following it, the map of filtered quotients
from M,, , to the corresponding filtered quotient of H*(C P(c0)) provides a nonzero
representation of all the chosen unstable monomials on z®"  ~! in H *(CP(x)),
with exactly one chosen in each degree with the same alpha-number as ap™~! — 1,
and none elsewhere. Thus to prove that the chosen monomials applied unstably to
the generator of M,, , provide a basis for the module, we need only show that they
span M, ,. Our strategy will be to show that each admissible monomial that applies
unstably to the generator u,, of M, , can be expressed in M, , as a multiple
of a chosen unstable monomial on u,,. Here m = ap™~! — 1 is the degree of the
generator, with 1 <a <p—1.

We will frequently and often without mention use the Adem relations in the
Steenrod algebra:

papb — Z (_1)a+t ((p 1) (-t - 1>7)a+b—trpt7

" a—pt

with P! in complex degree (p—1)t. We will also often use without mention the
fact that the initial relations in M,, , (in Remark 2.15) clearly make any terms
Plu,, =0 for 0 < t < p"~2. The other relation in M,, , involving a single Steenrod
operation will be used in the proof for length one monomials, and the relations
involving 2-fold monomials will be used in Lemmas 4.19 and 4.21.

4.1. Length one monomials
We shall prove Theorem 2.17 in stages. We note that the set of monomials d ju,,
in M,, , is filtered by the length of J = (j1,....jr), djum =dj, ---d; wp. In this
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subsection we shall deal with monomials of length one. Our first stage is the following
lemma.

Lemma 4.1. Fiz n and a. In the module M,, o, with generator u,, in complex
degree ap™ ! — 1, if d; is unchosen, then dju,, = 0.

Proof. By definition, d; is chosen if the digits of j are nondecreasing. That is, if we
write

j = (jnfla o 7j0);

then this says that j,_1 < --- < jo. Now write Ptu,, = (—1)j djup,. We shall call
Py, chosen if d; is chosen. Now

deg(um) =(a—1,p—1,...,p—1).
So for Ptu,, to be chosen, we need, writing

t=(tn_1,....to)
=(@—1~jp-1,p=1=jGn-2....p— 1= jo),
that
th1tp—aZ2ty o2ty 32- 2t

Thus if P*u,, is unchosen, we must have t,_1 < t,,_a — (p—a)ort, <t._q for some
1<r<n-2. ‘

The requirement that PP u,, = 0 for 0 < i < n — 3 yields immediately that P*u,,
=0 for all 0 <t < p" 2, i.e., when t,_1 = t,_o = 0. Further, if ¢,_; = 0, then the
requirement that Pp—a+1p" %y — () tells us that Ptu,, = 0 for all ¢ such that
(p—a+1)p~2<t<pr L.

Henceforth assume that either ¢,,_1 or ¢,_s is nonzero. We shall induct on the
degree of Plu,,. Fix a value of t and suppose that all unchosen P*u,, = 0 for s < t.

Case 1. Suppose Plu,, is unchosen and that there is an 1 < r < n — 2 for which
t, < t.—1. (Note that this must happen if @ = 1.) Then one can check that Pt—r"u,,
is unchosen and in lower topological degree than P!u,,, so we may assume induc-
tively that P*P"w,, = 0. Suppose there exists a least integer 0 < s < r — 2 such
that t, # 0. Then P* P u,, is unchosen and

0=PP PPy, = (unit) P a,, .
So, without loss of generality, we may assume that t,._o = --- =ty = 0. We have
0= ,Pprfptiprum = *(tr—l - tr)Ptum~

If @ = 1, then this is the only possible case; this completes the proof when a = 1.

Case 2. Suppose that t,,—1 < t,_2 — (p — a). (Then a > 1.) Without loss of gen-
erality, as above, we may take t,,_3 = --- =to = 0,s0 that t = t,,_1p" ' + t,,_op™ 2.
Noting that in this case Ppn7273t_pn72um = (tn—2)PUy,, we may assume that t,,_o
=tpn_1+ (p—a)+ 1. When ¢,,_; = 0, we have that P'u,, = 0 is one of the defining
relations for our module.
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There remains only to consider ¢,,_1 > 0. Using Adem relations, we get the fol-
lowing formulas, using the inductive hypothesis on degree to eliminate needing to
write down many terms:

n 1

PP = —(p— a+ 1) Pluy, + PP

1 n—2

Ppn—l_,’_pn—ZPt_pnf —p Uy = (p _ a)(p — tn72)7)tum
R A

f_pn—2_pn—3 n—2 ,n-3
+ pt—p " pp P
P e fp™ T T e b2 oS o2 S
P P Uy, = —P P U,
i Ptﬁpn—Qi_“ipn—s—lPpn—2+_“+pn—s—1um
for 3<s<n—1,
and
n—1 p— 71’71_..._ — p— /”’72_..._ — n—2
pr*T +otptlpt—p P 1Um — _pt—p p—lpp™ "+ +p+1um
. _on—1 _n=l_
Since P*™P" u,, through PP P~1y,, are unchosen and of lower topolog-

ical degree than Ptu,,, then inductively they are zero. We have a matrix equation
MX = 0, where

“(p—a+1) 1 0 0 0 0 0]
p—a)(p—tn—2) —(P—th—2+1) 1 0O 0 0 O
0 0 -1 1 0 0 0
0 0 0 -1 0 0 0

M = . )

0 0 0 0 -1 1 0
0 0 0 0 -1 1

I 0 0 0 0 0 0 -1 |

and
_ Pru,, :

n—2 n—2

Pl=pr PP Ty,

X=| s

=S =2 on—s
S R TI

n—2

Ptop" T mp=lpp" T dptly,

This matrix is nonsingular since its determinant modp is (—a+ 1 —t, ) (—1)",
which is nonzero since t,_1 > 0. Hence all entries of X are zero. In particular
Ptu,, = 0. O
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4.2. Length two monomials

The proof for length one monomials proceeded by induction on topological degree.
The remainder of the proof that the chosen monomials span M, , will continue
this way. Within each topological degree we also order the admissible unstable
monomials on u,, as follows:

Definition 4.2. If d; and d; are admissibles that are unstable and in the same
topological degree when applied to u,,, then we define dju,, to be lower in order
than dju,, provided that d; has shorter length than d;. Further, if they have the
same length, then we define dju,, to be lower in order than dju,, provided that I
is lower than J in lexicographical ordering, starting from the left.

Remark 4.3. Note that our ordering is only defined for admissible monomials that
are unstable when applied to wu,, (i.e., their final subscript is less than m). If an
admissible is not unstable when applied to u,,, then it will collapse to zero or to an
admissible unstable monomial of shorter length when applied to ..

Remark 4.4. Although our ordering is only defined for admissible monomials, note
that a K-Adem relation (see appendix) applied to an inadmissible always produces
admissible terms of lower lexicographic order than the inadmissible. We may use
this without mention in calculations.

Remark 4.5. In a fixed topological and length degree, the admissible unstable mono-
mials applied to u,, are finite in number.

Inductive Assumption. Assume inductively that in topological degrees less than
a given one, every unchosen admissible unstable monomial dru,, of M,, , is a sum
of admissible monomials of lower order than itself. (Hence, in those lower degrees,
M., o has the chosen unstable monomials on u,, as a basis and is isomorphic to the
corresponding filtered quotient of H*(C'P(0)).)

We proceed to the proof of the theorem for length-two unstable admissibles on
U, in the given degree. We shall fix an unstable admissible d;d;u,, and inductively
assume also, within its topological degree, that every unchosen unstable admissible
drdu,y, of lower order than d;d;u,, is a sum of admissibles of lesser order than itself.
Our goal will be to show that if d;d; is unchosen, then d;d;u,, is a sum of 2-fold
(or 1-fold) admissibles of lower order than itself.

Definition 4.6. If d; is chosen, let i(j) denote the largest 7 for which d;d; is chosen.

Remark 4.7. Suppose that r is an integer for which j; =p —1 for [ < r and that
jr #p—1. Then

5(1)2(07507]T7p_15ap_1)

Remark 4.8. A very useful formula in the Kudo-Araki-May algebra is the following,
for i < j:

did; = dpj_(p—1)idi + Z (*1)t_1 (

t>1

-G —-i-t)—1

pt >di—ptdj+t~

For ¢ < j this is simply a rewriting of the Adem relation for the inadmissible
dpj—(p—1)idi (see appendix), but it switches the element d; between appearance on
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the right and left in a 2-fold monomial, and extracts an expression for the admissible
of highest order in the relation.

This allows us to prove immediately that a large class of unchosen admissibles
are sums of chosens.

Lemma 4.9. If the admissible d;d; is unchosen, and either i < i(j), or d; or d; is
unchosen, then d;dju,, can be expressed as a sum of lower order terms.

Proof. Checking the requirements of the definition for chosenness, we see that if
i <i(j), then the only way d;d; can be unchosen is for either d; or d; to be unchosen;
thus by the preceding remark and the result above for 1-folds, the lemma follows. [

So we only need to consider cases in which

e the monomial d;d; is admissible, j < m, and

e both d; and d; are chosen, and

e the index i > i(j).

Our general strategy now is to find d;d;juy, in the image of a Steenrod operation
from a lesser topological degree, and to apply the inductive assumptions to see that
it is a sum of terms of lower order than itself. The numerous cases that will need
individual consideration stem from the fact that the Steenrod operation required
depends on the p-ary representations of ¢ and j. In particular, for the rest of the
proof we will let r denote the greatest integer for whiché; = j; =p—1for 0 <l < r.
We note that if r =n — 1 (r =n — 2 if a = 1), then d;d;ju,, is automatically chosen,
so we may also assume henceforth that

e the index r satisfies 0 <r < n — 2.

The lemmas in the rest of this section have as their common goal to show that

if d;d; is unchosen and satisfies the four bulleted restrictions above, then d;d;u,,
can be expressed as a sum of lower order terms. We thus combine the bullets as a
set of common hypotheses for all lemmas that follow, and together the succeeding
lemmas will cover all possibilities for the p-ary representations of ¢ and j subject to
these hypotheses.
Common hypotheses for all succeeding lemmas: We assume that d;d; is
admissible and unchosen, j < m, both d; and d; are chosen, and i > i(j). Also, with
r denoting the greatest integer for which i; = j; =p — 1 for 0 <1 < r, we assume
that 0 <r<n—2.

Before beginning to cover particular cases, we pause for two preparatory lemmas
for showing that many types of terms in M, , are actually zero by climbing up
inductively from lower degrees in which we already know that M,, , is zero. These
two lemmas do not depend on the common hypotheses.

Lemma 4.10. Suppose that a(|didjum,|) = a(m). Then for 0 <1< r—1,
ol|didyim] — (p — p) < a(m).

Hence, by the inductive assumption, all terms in degree |d;djum,|— (p — 1)p in
M, o are zero.
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Proof. We have

\didjum| = p*(m — j) +p(j —i) +i
= (k..o k0, p—1,...,p—1).

The result follows immediately. O

Lemma 4.11. Let 0 < s < p*. For any q >0, P%®"** is in the right ideal of A
generated by {P*, PP, ... ,Ppkfl},

Proof. This is presumably well-known. It follows immediately from the Adem rela-
tions. O

Notice how these two lemmas can work together to show that a term is zero. If
a(|didjum|) = a(m), and if we can see that d;d;u,, is in the image of P +s where
0<s<pFandk <r (ie., it is in the image of P! where [ Z 0 (mod p")), then it is
in the image of zero.

Now we begin covering particular cases of the form of the p-ary representations
of ¢ and j. Throughout we will continue frequently to use Adem relations on inad-
missibles without explicit mention, as well as the basic relations in M,, , that Plu,,
=0 for 0 <t < p"~2, the fact that 1-folds are of lower order than 2-folds, and our
result already proven for 1-folds.

Lemma 4.12. Along with the common hypotheses above, suppose that j,. # i,. Then
d;djum can be expressed as a sum of lower order terms.

Proof.
Part 1. We have

1= (Z‘n—la"'air—‘rlairap* 13"'7277 1)
=Ip" + (i, +1)p" -1,

j = (jn—17"'3j7"+13j’l“?p7 17"'7p7 1)
=Jp"™ 4 (G + Dp" - 1,

and

Then
At = (—=1)? PPy,

where § = (A — J)p"™ — (j. + 1)p".
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Further,
] = (p— 1)6 +m
=Np™™ 4+ (4, + 1)p" — 1.
Subtracting ¢, we get
¥ =Mp™ + (jr —ir)p",
so that
didjUy, = (—1)i+j PYPouy,.
We compute:

PP digpr (djug) = (—1) 7 PEIPI=PT (Poy,,)
pr71
— (_1)1+]+1 Z (_1)t+1
t=0

_ 7+1 . _. _ ,,._ _
_((p 1)[Mp +p(31 ptzr Lp" — ] 1)7)’7—757315 (Poun)

r—1

p
= —(jr — ip)didjum + Z €rdiypid; U, for some ¢, € F,.
t=1

For 1 <t <p"~!'—1,dj_tup, is unchosen, and hence zero. The remaining two parts
of the proof will analyze the orders of d;; prd;_pr—1up, and PpTdi+pdeUm.

Part 2. Note that

r—1

ditprdj_pr—1tim = (_1)i+j prr pote U,
We aim to hit this with PP from
7)"/—21)7'*17)6+p7'*1um _ (_1)i+j+1 di+pr+pr—1dj_pr71um.
Now
i+ p P T = (i1, sty i +2,0,p— 1,0, p— 1)

(with possible abuse of notation since i, + 2 may not be a valid digit), and

j _pT71 = (.jn—la s 7j7'+17j7'7p - 27p - 1) sy D — 1) .
Write K = (in—1,.-,%41,% +2). The only possible chosen 2-fold in the topo-
logical degree of d; i ,ripr—1d;_pr—1Upm IS diqprypr—1_gprdj_pr—14 gpr—1Um, ie., if
dj_pr—14 Kp7~71y'm1 is chosen. Since K > 3, we can compute that the image of ;chis
term under PP is of lower order than d;d;u,,. Thus the image under P?"  of
d;yprypr—1d;_pr—1Up is of lower order than d;d;u,,.
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We compute

pr T pr=20""  potp

r—1

_ itj+1
Um = (—1) di_,_prdj,prqum
itj
+ (—1) di+pr+prfldj_pr71_pr72um
+ terms that are zero since d;_,r—1_suyp, is
unchosen for values of ¢ between 0 and p” 2.

Iterating this analysis creates a downward induction which allows us to conclude
that diqprdj_pr—1Up is a sum of terms of lower order than d;d;u,,.

Part 3. Finally we consider d;;,rd;juy,. It is unchosen, so it is the sum of lower
order terms. What can they be? Well,

Z+pr = (in—la"'air-‘rl)’ir—i_ 1ap_ 1a"'7p_ 1)
(as above, i, + 1 might not be a valid digit), and
.j = (.jn—17"'7.j7‘+17j7‘ap_ la"'vp_ 1)

For 0 < t < p"™', ditpr—ptdj1 is unchosen (since d;j4+ is unchosen); thus diiprd;tm,
is a sum of terms of order lower than d;d;,r—1un,. Hence by calculation similar to
Part 1, Pprdiﬂ,rdjum is the sum of terms of order lower than d;d;uy,. O

Lemma 4.13. AZOILg with the common hypotheses, suppose that i, = j,., and either
Jr#Ep—2, or i >1i(j+p"). Then d;dju, can be expressed as a sum of terms of
lower order than itself.

Proof. As above, write
i=Ip" + (i, + 1)p" — 1,
j=Jp" "+ G+ " 1,
and

m=Ap"t1 — 1.

As above, we may write

did;jum = (1) PIPu,,,
where

§=(A=D)p"™ = (G +1)p"
and

v =Mp™ 4 (e — i )p'
We compute
PP did e, = (—1) T PRyt piety,
= lower order terms + (—1)7*" dPP"PA=DP =Gy,

= lower order terms + (j, + 1)d;d;jum.
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So, since i, = j,, by the definition of » we have j, # p — 1. Hence d;d;u,, is equal
to a unit multiple of Ppr+ld,;dj+prum plus lower order terms.
Now consider PprﬁdiderpTum. We have

j +pr = (jnfla cee 7j7‘+17j7‘ + 17p - 17 Y 2 1)
If ¢ > i(j + p"), then inductively d;djipruy, is a sum of terms of lower order than
itself and hence, using basic module relations and Adem relations, Pprﬂdidjﬂ,rum
is a sum of terms of lower order than d;d;uy,.
So the only values of i to consider are i(j) < i < i(j + p") and j, # p — 2. Here,
we have j,. # i,, so the preceding lemma applies. O

Remark 4.14. At this point, the cases still to check are those in which i, = j,. =
p—2and i <i(j+p").

Lemma 4.15. Along with the common hypotheses, suppose that r < n — 3. Suppose
also that there is an integer s such thatr < s<n—2and jyj=p—2 fors>1l>r,
and that js #p — 2. Then d;d;ju, can be expressed as a sum of lower order terms.

Proof. We may write

R A ¥ e R
and
m= Ap*tt — 1.
Then
djty, = (—=1)? Pouy,,
where

§= (A= D)™ = (s +1)p° +p*

We compute

Pps+1didj+psum = lower order terms + d; PP d;j 4 ps .
Further calculation with the Adem relations gives

diP? djypetim = (s + 2)didum;

whence

’PPSJrldiderps U, = (Js + 2)didju, + lower order terms.
What about d;d;,s7 Well,

j+0°=Un-1,--»js+Lip—2,...,0—=2,p—1,....p—1),

s0 i(j + p*) = i(j). Hence d;d;4psun, is unchosen. It is in lower topological degree,

so it is a sum of terms of lower order than itself. Hence ’Ppsﬂdidjﬂ,s Uy, 1S @ sum of
terms of lower order than d;d;uy,. O

Lemma 4.16. Along with the common hypotheses, suppose that r < n — 3. Also
suppose that i(j +p") =i > i(j). Suppose that i, =p—2, that j. =+ = jp_o =
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p—2, and that j,—1 # a —1. Then d;dju,, can be expressed as a sum of lower
order terms.

Proof. We have, using the basic module relations,

pr" didj4pn—1Umy = {terms of lower order than d;d;} + diPpn_lde’,pnflum

and
j:(jn—17p727"'5p725p7la"'vpil)'

By our inductive assumption, M, , is isomorphic to the corresponding filtered
quotient of H*(CP(c0)) in topological degrees below that of d;d;u,,. Hence we may
calculate ,Ppnildj_’_pnfl U, in H*(CP(00)), where we label the generator 2. We have

. -1
PP i = (—1) (P (p—1)j—p"+p" M\
pnfl j +pn71

and

where M = pm — (p — 1) j. We calculate that (pm*(p’;yjlp"*pn_l) = jn_1 + 2, that

( m ) _ (_l)n—r—l( a—1 )7 and that (T) = (—1)"_T_1(a71). So

j+pn_1 Jn—1+1 Jn—1
PP did;ypn—1Up, = (a unit) - d;id;u, + lower order terms.
Since d;d,; 4 ,n—1 is unchosen, we have by the inductive assumption that d;d; ,n—1tm,
is a scalar multiple of the chosen in its degree, namely d;_pr+1d;pn—14prtm. Hence

Ppndidj+pn71um is a multiple of Ppndi_pr#»ldj_i'_pnfl_;’_prum which we may check,
using the inductive assumption, is the sum of terms of lower order than d;d;u,,. O

Lemma 4.17. Along with the common hypotheses, suppose that r <n — 3. Also
suppose that i(j+p") =i >i(j), and i, =p—2, and that j, = --=j, o=
p—2, that j,—1 =a—1, and that i,41 #p=2. Then d;dju,, can be expressed
as a sum of lower order terms.

Proof. We have

i=1(0,...0,%p41,p—2,p—1,...,p—1)
= (ipp1 +)p" ™ —p" =1

and
j=(a-1,p—2,....p—2,p—1,...,p—1).
So
did iy = (=1)" PYPou,,,
where

7= (a+1)p" " = (ipy1 + 1p!
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and
S=p" P 4+p" P+
We have
i+p=(0,... i+ 1L,p—2,p—1,...,p—1).
Consider d;y,r+1d;Up,. There is a chosen monomial in this degree; it is d;d;prtm,.

Using the inductive assumption, we compute that

-1
digpr+1djtim = ( :

——— )d;d i pr Uy,
2r+1+1) dter

We now compute (—1)iJerrl PP on both sides of this equation. On the left-hand
side, using the Adem relations, we obtain

4741 r+1 r+1 o+l
(1) PPl edjug, = PP PYTPT Py,

= —(ip1+ )P P un,
r—1
r—1 s r—1 s
+ Zﬁspv—p R I LRSS S S T
s=0

for scalars k5. The terms in the summation can be shown to be zero by Lemmas 4.10
and 4.11 (note that d;_pr+1dj1p,r is chosen, so a(|d;d;jum,|) = a(m) for applying
Lemma 4.10). So we have

(—1)i+j+1 Pp7'+1di+pr+1djum = — (—1)i+j (ir+1 + 1)didjum.
Next, we have, again using the Adem relations, that
(1) PP Gyt = PP PP POy
= —(ipg1 + 2P PPy, 4+ PP,
= (—1)l+j (_(ir+1 + 2)di_pr+1dj+prum + dzdjum) .

41

So

-1
_(7:1'-1—1 + 1)dzd]um = (

ZH—F]_) (—(ir+1 + 2)di_pr+1 j+pT Um + dldjum) .

Since i1 # 0 or p— 2, (i,41 + 1)? # 1. Hence we see that d;dju,y, is a multiple of
d;_pr+1djyprity,, a lower order term. O

Lemma 4.18. Along with the common hypotheses, suppose that 0 < r <n — 3, and
i(j+p") =i>i(j). Also suppose that i, = j,, that j, =+ = j,_o=p—2, that
Jn—1=a—1, and that i,41 =p — 2. Then d;dju,, can be expressed as a sum of
lower order terms.
Proof. We have

1=(0,...0,p—2,p—2,p—1,...,p—1)
and

j:(a_17p_2aap_27p_177p_1)
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So
did iy, = (=1)" PYPOu,,,
where
v=(a+1)p" Tt —p T4 pt
and
S=p" 24 p" By
We have

i+pr+2 = (Ovvlvp_27p_27p_1aap_1)
Consider d;ypr+2d;up,. There is a chosen monomial in this degree; it is
di_pr+l dj+pr+l+prum.

By the inductive assumptiqzrl, diyprr2djum = Kd;_pre1dj 4 pri1 4 pritiy, for some K €
F,. We now compute PP on both sides of this equation. On the left-hand side,

we use the hypothesis that 7 < n — 3 and Lemmas 4.10 (note that d;_,r+1d;j4,r is
chosen, so a(|d;djum,|) = a(m)) and 4.11 to obtain

r+2 4741 r+2 T2
PP dy e djug, = (—1) PP py T poy,

=2(=1)" PYPou,,
= 2didjum.

On the right-hand side, pr d;_pr+1djypra1 4 pr Uy, consists of terms of lower order
than didjum. L]

Lemma 4.19. Along with the common hypotheses, suppose that r =mn —3, and
i(j+p") =i>i(j). Suppose also that i, = j., that j. = - = j,_o=p—2, that
Jn—1=a—1, and that i,41 =p —2. Then d;d;u,, can be expressed as a sum of
lower order terms.
Proof. We have

j:(a_lap_zap_27p_laap_1)
and

i=0,p—2,p—2,p—1,...,p—1).

If @ = 1, then the conclusion is an immediate consequence of one of the defining
relations for our module. So let a > 1.
Begin by noting that there is a chosen in the degree of d;d;u,,. It is

di_pn—z j+pn—3um.

Hence the alpha-number of this degree is a(m), so we may use Lemmas 4.10 and
4.11. Now consider d; i ,n—1d;u,,. Inductively it is a multiple of the chosen in this
topological degree, which is a 1-fold, d;_pn—2up,. We may then compute, as in the



Homology, Homotopy and Applications, vol. 9(2), 2007 386

preceding lemmas, that Ppnfldﬁpnﬂdjum is of order lower than d;d;u,,. We also
compute

n—1 441 n—1 _ n—1, n—2 n—2, n-—3
PP dy g1 djuy, = (—1)H T pptplam et ApT Rpp e,

= —(a — 1) dydjuy, + (—1) T par" I pt I
We shall show that the second term on the right is of order lower than d;d;uy,.
We have
n—3

n—1 n—1 n—2 n—3 n—1 n—2
pr" T pla=1)p" " p2p" T 4p Uy, = a PP P2 TP U,

n—1__n-3 n—2 n—3
a — 2 +2
PPt P2,

n—1 n—3 n—4 n—2 n—3 n—4
a - -2 2 +2 +2
+ 2pop P p" T p2p P P,

n—1_o, n—4 n—2, n—-3 n—4
4 par 2p p2p +p" " +p U

B QPapn—l7p'n,—27)3pn—2+pn—3um.

The left side is of lower order for the same reason that Ppnfldwrpnfldjum was
above. The third and fourth terms on the right are zero by Lemmas 4.10 and 4.11.
Further, note that

|d1djum| = (a'aLp_ 27p_ 2ap_ 17--~7p_ 1)7

n—1 n—3 n—2 n—3 n—1 n—2 n—2, n—3 L.
so the terms PoP"  —3P" " P2T 2" Ty and Per” TIPT TP3PT TP Ty ie in
degrees with lesser alpha-number and hence are zero by the inductive assumption.
We compute that

n—3 1

n—1_q n—3 n—2 n—3 n—
0 = p2r" " par st TRt A2, pap

+ terms that are zero by Lemmas 4.10 and 4.11.

_,n—3 n—2 n—3
P 7321) +2p U

If p=3, P3" "+P" 4, is unchosen. For p # 3, a calculation similar to the preced-

ing one shows that

n—2 n

n—1_o n—2 n—2 n—3 n—1__ -2 n—2 n—3
papr 3p" T p3pTT TP Uy, = PP prT 3Pt U

0=P*
+ terms that are zero by Lemma 4.10 and 4.11. O

Remark 4.20. We have now completed all cases in which 0 <r<n—3ora=1.

Lemma 4.21. Along with the common hypotheses, suppose that r =n —2 and
a>1, that ip_9 = jn_2 =p—2, and that jo,_1 =a—1. Then ip,_1 # 0, and

. o j+1

zn_ldidjum = (—1) adi,pnqum,
s0 didjum can be expressed as a sum of lower order terms.
Proof. We have

1= (in—lvp727p71,“'ap7 1)
= (i1 + p" 1 —p" 7 =1
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and
j=(a-Lp-2,p—1,...,p—1)
=ap" Tt —p" Tt -1
We have
didjum = (_1)”]' p(a—in,l)pn*lppnfzum
and

i—1 4 n—1 n—2
difpn’lum = (_1)1 P(a In-)P"T AP Um

Set k = a — i,_1. Then we are to prove that
(a _ k)'PkPnil'Ppnizum _ a'Pkpnilernizum,

Notice that i, # 0 by unchosenness, and i,,_1 < a — 1 by admissibility, so we are
considering 1 < k <a—1.

For k = 1, this equation is one of the defining relations for our module. Inductively
assume that the relation holds for a fixed value of k. We shall apply PP" " o both
sides of the equation and use Adem relations. On the left-hand side,

n—2

PPk T Ty = (k4 1) PRI "y

+ 'P(k+1)pn_l7pn_37)pn_2+pn_3u

m

n—17pn—2tp2pn—2

+ 2pk+lp U,

On the right-hand side,
Ppnflpkpnfl+pn72u7n _ kp(k+1)pnfl+pn,72u7n + ’]D(k+1)Pn717)pn72um
We shall prove that

n—3 n—2

o,
PP U,

n

fp(k-‘rl)p"’l—p"’g‘zpp"’2+p wy, =0 = fp(k+1)p"71—p

Granting this, we compute

(a — k)(k + 1)yPEFOR"pp" ™y qp e "Ry
+ aP(kH)pn_len_Qum.
Combining terms, simplifying, and cancelling &k, which is nonzero mod p, we obtain
our goal:

(a—k— 1)77(k+1)pn7173pn72um = aPHHP" Ry

n—1_

Next, we note that P*+1p PrpP" P4 Py = 0 by Lemmas 4.10 and 4.11
(which apply in this degree because there is the chosen 1-fold d;_pn-1u,, here).

Finally, consider P*+Dp" " =p" > p2" %y, Well,

n—2 n—1__mn

y —2 n—2
LA T

+ terms that are zero by Lemmas 4.10 and 4.11.

P2 P plktl)p" T =3p" 2 p2pt 2 p(k+)p

The left-hand side is zero by alpha-number. This completes the proof of the lemma.
O
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Lemma 4.22. Along with the common hypotheses, suppose that r =n —2 and
a>1, and let i, = j, = p— 2. Suppose that j,—1 <a—1. Then d;d;ju,, can be
expressed as a sum of lower order terms.

Proof. We have
1= (in—17p_27p_17"'5p_1)
— (infl + 1)pn—l _pn—2 _ 1

and
j: (jn—17p_27p_1,~--;p_1)
= (jnfl + 1) pn71 - pn72 -1
Define

k=(a—-1,p—2,p—1,...,p—1)

n—1 n7271

= ap p

By the previous lemma, there is a unit A such that Adju,, = d;i,n-1dpuy, and
a unit B such that d;dpu, = Bd;,_,n-1up. So, using the preceding lemma and
Remark 4.8, we compute

Adidjum = didjqrpn—l dkum

= dl-_,'_p(j_,,_pn—l_i)didkum + E thi_ptdj_;,_pn—l_i_tdkum.
1<t<i/p

Now for each term in this sum, d; pn—144dyu,, is unchosen and in lower topological
degree than d;d;u,,; hence inductively it can be expressed using terms of lower order
than itself. But from our result for 1-folds, the only d with index larger than k that
can act nontrivially on wy, is dp,, S0 d;j4pn—14,dpuy, collapses to a 1-fold; thus each
term d;_p¢d; 1 pn—14dipuy, can be expressed as a sum of admissibles of lower order
than d;d;um,. So we may continue with

Adidjum = diyp(j4pr—1—i)didgUy, + lower order terms than d;djum,
= Bdiy p(j4pr—1—i)di_pn—1um + lower order terms than d;d;un,
= Bd;_,n1d;pn—2Upm + lower order terms than d;d;u,,

= lower order terms than d;d;uy,. O

4.3. Higher-fold monomials

We now move to the proof for three- and higher-folds. In this part, we consider
d;d;didru.,, admissible and unchosen, with L possibly empty, and with the last
subscript of the entire monomial less than m. The goal is to show that d;d;drdrunm,
can be expressed as a sum of lower order terms.

Assume inductively that every unchosen admissible of length degree less than
that of d;d;didr, when applied to u,,, can be expressed in terms of lower order
terms than itself. From our previous steps, we may assume that d;dyd; is chosen.
Hence d;d; is unchosen.
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Lemma 4.23. Under these hypotheses, did;didrum is a sum of lower order terms.

Proof. Let the symbol = represent congruence modulo terms of order lower than
d;d;dydy, applied to u,,. Using Adem relations (especially Remark 4.8 in both direc-
tions of the equality, and recalling that Adem relations on inadmissibles always
reduce lexicographic order) and the inductive assumption, we obtain (where all
monomial terms below have length no greater than that of d;d;drdr).

did;did g = didjy o jypdiditm + Y erdid;_pdiodpity,, for some g € F,
t>0
= didjt (k—j)pdidrim
= dit(j+ (k- g)p—ijpdidi AL Um
+ Z Nsdi—psdjt(k—j)p+sdjdrUm, for some n, € I,
s>0
= di (4 (k—j)p—iypdidjdLtm

= dit (4 (k—j)p—i)p ° Z (terms of order lower than d;d;drum,)

= dit(j+(k—j)p—i)p ° Z K'dy Z dar, tm

i <i
+ didj+(k—j)p . Z )\/dj/ Z de,um
J'<j
+ d;d;dy, - Z W' dprtty,, for scalars k', N, and p'.

P’ lower order than L

All terms in this summation can be expressed in terms of admissibles of order lower
than d;d;drd;, applied to up,. O

This completes the proof of Theorem 2.17.

5. Proof of Theorem 2.2

Proof of Theorem 2.2. Since the filtered A-map defined in the first section from
M to H*(CP(c0)) induces isomorphisms on the filtered quotients (Corollary to
Theorem 2.17), the map takes M isomorphically onto H*(C'P(0)).

Minimality of the relations in the presentation will follow from minimality of
the induced relations in the filtered quotients M,, , stated in Remark 2.15. While
nonredundancy of the relations in M,, , involving PP and PP" PP’ is obvious
because they never occur on the right side of an Adem relation, the others are not
as easy. But they will all succumb to reduction to a small value of n, as follows.

The Verschiebung V: A — A is a Hopf algebra map with V (P*) = P*/? for all k,
and it is easy to check that, due to the instability requirement, V induces a nontrivial
homomorphism V: M,, , — M, _1 , satisfying V(xtapna_l) = V(x)typn—2_4 for all
x € A. Tterating V can confirm the nontriviality of all our relations.
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For instance, for a > 2, the element 73(1’_“"'1)1’”7275@1,"71_1 iterates to
praﬂtap,l € Ms,.

But My, has no lower degree relation than Pp"”ltap_l = 0, which involves an
unstable admissible basis element, since a > 2.

When a = l,zwe can iterate V on the given special relation to its lowest full
incarnation 2PP “’HPpupz_l = PP “’PPHUPz_l in M3 ;. In M3 the only other
generating relation is Plupz_l. We thus study the two terms of this lowest special
relation as elements in the quotient of the free unstable module on wu,:_; by only
the single relation Plu,2_;. In fact we can choose to project these terms yet further
to the free unstable module on u,1 of degree p + 1, subject to Plu,i1 = 0, since
there is a natural epimorphism from the free unstable module on u,>_; to the one
on 1. There PP HPHIPPy, 1 is zero, since PP TPTLPP has excess 2p 4 1. On
the other hand, ’Pp2+p73p+1up+1 is nonzero there, as the reader may easily verify:
using the admissible basis for A, one finds by direct calculation and the unstable
admissible basis for the free module on wu,,; that the submodule APlupH of the
free module contains no element with ’Pp2+p73p+1up+1 as a term. Thus the special
relation cannot hold in M3 1, so all the a = 1 special relations are nonredundant. [

6. Proofs of Theorems 2.19, 2.23, and 2.25

We begin this section by proving our uniqueness theorem for cyclic modules.

Proof of Theorem 2.19. We shall begin by checking that the defining relations for
M, q are satisfied in M. Let u € M,pn-1_1 be nonzero. We have

ag=(n—-1)(p-1)+(a-1),
since
ap" ' —1=(a—-1,p—1,...,p—1).
The next larger integer with its alpha-number is
(aap - 27p7 17' - P = 1) = (a+ l)pn71 7pn72 -1
Hence PPy = 0,for0<t<n—3.
Let a > 1. We have
PE=at D" 2y — g g (@ — 1) — 1,

whose alpha-number is (n —2) (p — 1) +a — 1. So PP=a+Dp" %y — (. In this case
it remains to check the third relation.

Begin by noting that par” Py = 0, by unstability. The degree of this term is
ap™ + (p — 1) p"~2 — 1. The next smaller integer having alpha-number «y is ap™ — p.
So by Lemma 4.11, Par” Py is the only possible nonzero admissible in its
degree (note there are no possible nonzero admissibles of greater length in this
degree). Since the alpha-number is «g, it is nonzero. Let 0 < I < a — 2. We shall

n—1 n—2

induct on [. Assume that [P@=DP"""Pr" %y = gpla=Dp" 4"y, (this is true for
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I =0 from above; note that this induction goes downward in topological degree).
As in the proof of Lemma 4.21, under the hypotheses of the present theorem, the
Adem relations yield

2

.
PPy

n—1 n—1

pr" T plasl=1p" "Ry (g — ] — 1yplambe" T e Ry plaip

and

PprI Pt T PRy = (g — pyplam eIty
The second equation, and the fact that Ppar” T Pty s nonzero from above,
shows us inductively that in these degrees, left action by PP"" is a (nonzero)
isomorphism. We compute:

2

'Ppn71(a’])(a_l_l)p7l71+pn72u - (l + 1),P(a_l_1)pn717)pn— u

n—2

=ala—1- 1)73(“_”””71'*'1’ u
+ aP(a_l)pn71Pp7L72u - (l + 1)(a _ Z)P(a_l)pnflppnf u
n—1 n—2

=(a—-1- 1)(a73(a_l)p' +p

2

u— l”P(a_l)pnfl”P’)nﬁu) =0.
Hence

a'P(aflfl)pnil+pn72u B (l n 1)73(&7171)1)7;717)#172’“ c ker'PﬂLil _ O;

SO
2

w= (14 1)Plet=rpr" Sy,

Taking | = a — 2, we obtain the desired relation.
Now take a = 1. We compute, using Lemma 4.11, that

n—1 n—2

Cpr(a—l—l)p +p

'P(pfz)pn_2’Ppn_1+pn_2ppn_2+pn_3u _ 7Ppn_1+(p71)pn_27)pn_2+pn_3u

and that

P(p_z)pn72Ppn—1+pn72+pn737)pn72

u— _2,Ppn71+(p_1)pn72tppn72+pn73u'

As above, this yields

n—1 n—2 n—3 n—2 n—1 n—2 n—2 n—3
ppt AP TPt Tppt T, —opp tP TppT TPy,

)

as desired, provided we know that PE-2p" " g acting on the left as a monomor-
phism between these degrees. This follows by checking, from the basic relations
and Lemma 4.11, that PP" +@=Dp">pr"*+" %y ig the only possible nonzero
admissible in its degree, and thus is nonzero by the hypothesis of the theorem.

In all cases, the defining relations for M,, , are satisfied in M. Hence taking
tapn—1-1 to u defines an A-module map M,, , — M. Since M is cyclic, this map is
surjective. By Theorems 2.11 (and its remark), 2.17, and the hypothesis on M, it
must be an isomorphism. O

We next give the proof of the presentation for H*(BU).

Proof of Theorem 2.23. Recall the A-algebra map ¢: G — H*(BU) defined by tak-
ing 7,,n-1 to the Chern class c,pn-1. By the definition of G, the following relations
are satisfied in the indecomposable quotient QG:
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For0<l<n-3,
PP rgnr = P P,
and for a > 2,
(a — 1)yP@-atr" 2 r = (Z ) ;) vz
and
(a— 1)PP7L71PPVL72Tapn71 = aPpnfl'*'p"dTapnq,
while for a =1

opr"” Tp

2
Ta

"‘27)p"_2+p"_37_apn_1 — pp" T " T " T J—

Since the analogous relations define the double (topological) suspension X2 M,
there is a surjection of .A-modules 7: X2M — QG given by taking E2tapnfl_1 to
Tapn—1. By Theorem 2.2 and Remark 2.20 the map ¥*M — QH*(BU) given by
taking Eztapn7171 to ¢gpn—1 is an isomorphism. Hence the induced A-module map
Qo: QG — QH*(BU) is an isomorphism. Since H*(BU) is a free commutative

algebra, this guarantees that the algebra map ¢ is an isomorphism. O
Finally, we prove that there are no A-relations amongst Chern classes.

Proof of Theorem 2.25. Since the symmetric algebra is an A-subalgebra of the poly-
nomial algebra on variables {x;} of complex degree one, we shall work in the poly-
nomial algebra. Identifying the Chern class ¢,, with the m-th elementary symmetric
polynomial in the variables {z;}, we see that ¢, has a term z; ---z,, as a sum-
mand. Applying any element of K to this term results in a polynomial having all
summands of the form aaz®? - 22" o €F ». By symmetry, at least one of these
terms satisfies the inequalities e; > --- > e,,. We call a monomial of this form a
basic monomial. For such a term, if 1 <1 < e + 1, let r; be the number of occur-
rences of p°1~+1 as an exponent in 2¢ - -2P"™ . Then we shall refer to the tuple
(r1,72,...,7e,+1) as the type of 22" --- 2P"™  We say that a tuple (m1,...,m,) has
higher order than a tuple (ni,...,n;) provided that a > b, or if a =b, provided
that it is greater in lexicographic order, ordering from the left. Let d; = d;, -- - d;,,
Jjs < m, be an admissible monomial in K. Then direct calculation reveals that djc,,
has a basic monomial summand whose type is (m — js,js — Js—1,---,J2 — J1,J1)-
One can check that this term has the highest order of all basic monomials occurring
in djcp,. Since we can recover m and J from this type, this proves that the free
module R injects into H*(BU). O

7. Appendix: The Kudo-Araki-May algebra

We recall here just the bare essentials about X needed to understand the proofs
in this paper. We refer the reader to [11] for much more extensive information about

K.
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The odd-primary (even) topological Kudo-Araki-May algebra K is the F-
bialgebra (with identity) generated by elements {d;: ¢ > 0} subject to homogeneous
(Adem) relations

_ pi—i ((P=1)(1—37)—1 L.
didj = zl: (_1) (pl i (p _ 1)] di+pj7pldl for all 4,5 > 0,

with coproduct ¢ determined by the formula

$(di) =Y dr @ di.
t=0

It is bigraded by length and complex topological degrees (|d;| = (p — 1)i), which
behave skew-additively under multiplication: |zy| = |z| 4+ p |y|. Moreover, K is finite
in each bidegree. A monomial d;, - - - d; is called admissible provided that i; < --- <
in. The admissible monomials provide a vector space basis for K.

The F,-cohomology of any space concentrated in even dimensions is an unstable
algebra over the Steenrod algebra A with no Bocksteins, and there is a correspon-
dence between unstable A-algebras and unstable KC-algebras, completely determined
by iterating the conversion formulae:

(—1)j djug = Pq_juq, where u, is a cohomology class of (complex) degree q.

Since the degree of the element is involved in the conversion, and this changes as
operations are composed, the algebra structures of A4 and C are very different, and
the skew additivity of the bigrading in IC reflects this. Note for use in calculation
that since P?77 has complex degree (p — 1) (¢ — j), the complex degree of dju, is
pq — (p—1)j. More generally, for a monomial d; = d;,d;, ---d;, € K of length [,
degrees in a K-module and in /C itself are related by

|drug| = plq — |ds|.

The requirements for an unstable K-algebra, corresponding to the nature and
requirements of an unstable A-algebra, are: On any element x; of complex degree [,

diz; = (—1)l zy, djz; =0forj>1, anddox; = af.

Finally, and used in our proofs, the K-algebra structure obeys the (Cartan) for-
mula according to the coproduct ¢ in K:

di(zy) = Z di(w)di—+(y)-
=0
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