ERRATUM TO 'CATEGORY OF A_{∞} -CATEGORIES' ## VOLODYMYR LYUBASHENKO (communicated by Jim Stasheff) ## Abstract The erroneous statement (HHA 5 (2003), no. 1, 1–48) that the collection of unital A_{∞} -categories, all A_{∞} -functors, and all A_{∞} -transformations (resp. equivalence classes of natural A_{∞} -transformations) form a \mathcal{K} -2-category $\mathcal{K}^u A_{\infty}$ (resp. ordinary 2-category $^u A_{\infty}$) is corrected as follows. All 2-category axioms are satisfied, except that $1_e \cdot f$ does not necessarily equal 1_{ef} for all composable 1-morphisms e, f. The axiom $e \cdot 1_f = 1_{ef}$ does hold. The mistake does not affect results on invertible 2-morphisms and quasi-invertible 1-morphisms in $^u A_{\infty}$. Let $\mathcal{V} = (\mathcal{V}, \otimes, c, \mathbf{1})$ be a symmetric monoidal category. Besides the notions of a 1-unital 2-unital \mathcal{V} -2-category (Definition A.1) and a 1-unital non-2-unital \mathcal{V} -2-category (a 2-category enriched in \mathcal{V} which has unit 1-morphisms, but does not have unit 2-morphisms) (Definition A.2) the article [**Lyu03**] should contain the following intermediate notion: **Definition A.3** (1-unital left-2-unital \mathcal{V} -2-category). A 1-unital left-2-unital \mathcal{V} -2-category consists of a 1-unital non-2-unital \mathcal{V} -2-category \mathfrak{A} plus a morphism $1_f: \mathbb{1} \to \mathfrak{A}(\mathcal{A}, \mathcal{B})(f, f)$ for any 1-morphism $f: \mathcal{A} \to \mathcal{B}$, which is a two-sided unit with respect to vertical composition of 2-morphisms m_2 , such that $$e \cdot 1_f \equiv \left(\mathcal{D} \xrightarrow{e} \mathcal{A} \xrightarrow{\frac{f}{\downarrow 1_f}} \mathcal{B} \right) = 1_{ef}$$ (1) for all composable 1-morphisms e, f. Moreover, if $$1_f \cdot k \equiv \left(\mathcal{A} \xrightarrow{\frac{f}{\psi 1_f}} \mathcal{B} \xrightarrow{k} \mathcal{C} \right) = 1_{fk} \tag{2}$$ for all composable 1-morphisms f, k, such $\mathfrak A$ is the same as a 1-unital 2-unital $\mathcal V$ -2-category. Let $\mathcal K$ denote the homotopy category of the differential graded category of complexes of k-modules, k being a commutative ring with a unit. Morphisms of $\mathcal K$ are chain maps modulo homotopy. It is correctly stated in [Lyu03] that the collection Received June 10, 2007; published on August 8, 2007. 2000 Mathematics Subject Classification: 18D05, 18D20, 18G55, 57T30. Key words and phrases: A_{∞} -categories, A_{∞} -functors, A_{∞} -transformations, unit A_{∞} -transformation, 2-category. Copyright © 2007, International Press. Permission to copy for private use granted. of all A_{∞} -categories, all A_{∞} -functors and all A_{∞} -transformations (resp. equivalence classes of natural A_{∞} -transformations) is a 1-unital non-2-unital \mathcal{K} -2-category $\mathcal{K}A_{\infty}$ (resp. 1-unital non-2-unital 2-category A_{∞}). It is correctly stated there that the collection of unital A_{∞} -categories, unital A_{∞} -functors and all A_{∞} -transformations (resp. equivalence classes of natural A_{∞} -transformations) is a 1-unital 2-unital \mathcal{K} -2-category $\mathcal{K}A_{\infty}^u$ (resp. ordinary 2-category A_{∞}^u). However, it is claimed incorrectly in Corollaries 7.11, 7.12 [ibid.] that the latter property holds also for the collection of unital A_{∞} -categories, all A_{∞} -functors, and all A_{∞} -transformations (resp. equivalence classes of natural A_{∞} -transformations). The correct statement is that the stated collection constitutes a 1-unital left-2-unital \mathcal{K} -2-category \mathcal{K}^uA_{∞} (resp. 1-unital left-2-unital 2-category uA_{∞}). Fortunately, the notions of an invertible 2-morphism, of a 1-morphism which is an equivalence, etc. make sense in uA_{∞} . All other results of [Lyu03] which concern uA_{∞} remain valid. For instance, if \mathcal{B} , \mathcal{C} are unital uA_{∞} -categories, uA_{∞} is an isomorphism of uA_{∞} -functors and uA_{∞} is unital, then uA_{∞} is unital as well. The proof of property (1) for all A_{∞} -functors $e: \mathcal{D} \to \mathcal{A}$, $f: \mathcal{A} \to \mathcal{B}$ with unital A_{∞} -category \mathcal{B} consists of the line $e \cdot 1_f = e \cdot (f\mathbf{i}^{\mathcal{B}})s^{-1} = (ef\mathbf{i}^{\mathcal{B}})s^{-1} = 1_{ef}$, where $\mathbf{i}^{\mathcal{B}}: \mathrm{id}_{\mathcal{B}} \to \mathrm{id}_{\mathcal{B}}: \mathcal{B} \to \mathcal{B}$ is the unit A_{∞} -transformation. For any A_{∞} -functor $f: \mathcal{A} \to \mathcal{B}$ and a unital A_{∞} -functor $k: \mathcal{B} \to \mathcal{C}$, property (2) follows from the chain maps $$1_f \cdot k = (f\mathbf{i}^{\mathcal{B}} s^{-1}) \cdot k = (f\mathbf{i}^{\mathcal{B}} k) s^{-1} \colon \mathbb{k} \to (A_{\infty}(\mathcal{A}, \mathcal{C})(fk, fk), m_1),$$ $$1_{fk} = (fk\mathbf{i}^{\mathcal{C}}) s^{-1} \colon \mathbb{k} \to (A_{\infty}(\mathcal{A}, \mathcal{C})(fk, fk), m_1)$$ being equal in \mathcal{K} . In fact, these cycles are homologous, since $\mathbf{i}^{\mathcal{B}}k \equiv k\mathbf{i}^{\mathcal{C}}$ implies $f\mathbf{i}^{\mathcal{B}}k \equiv fk\mathbf{i}^{\mathcal{C}}$. The erroneous statement was also referred to (but not used in any reasoning) after Corollary 5.6 of [LO06]. Other articles on the subject are not influenced by the mistake described here. ## References [Lyu03] V. V. Lyubashenko, Category of A_{∞} -categories, Homology, Homotopy Appl. 5 (2003), no. 1, 1–48, math.CT/0210047. [LO06] V. V. Lyubashenko and S. A. Ovsienko, A construction of quotient A_{∞} -categories, *Homology, Homotopy Appl.* 8 (2006), no. 2, 157–203, math.CT/0211037. Volodymyr Lyubashenko lub@imath.kiev.ua http://math.ksu.edu/~lub/ Institute of Mathematics, NASU 3 Tereshchenkivska St. Kyiv-4, 01601 MSP Ukraine This article is available at http://intlpress.com/HHA/v9/n2/a6