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Abstract
The problems of classifying Hurewicz fibrations whose fibres

have just two non-zero homotopy groups and classifying 3-stage
Postnikov towers are substantially equivalent.

We investigate the case where the fibres have the homotopy
type of K(G,m)×K(H,n), for 1 < m < n. Our solution uses
a classifying space M∞, i.e. a mapping space whose under-
lying set consists of all null homotopic maps from individual
fibres of the path fibration PK(G,m+ 1) → K(G,m+ 1) to
the space K(H,n+ 1), and the group E(K(G,m)×K(H,n))
of based homotopy classes of based self-homotopy equivalences
of K(G,m)×K(H,n). If B is a given space, then a group
action

E(K(G,m)×K(H,n))× [B,M∞]0 → [B,M∞]0

is defined, and the orbit set [B,M∞]0 / E(K(G,m)×K(H,n))
is shown to classify the above fibrations over B up to fibrewise
homotopy type.

Our explicit definitions of the classifying spaces, together
with our computationally effective group actions, are advanta-
geous for computations and further developments. Two stable
range simplifications are given here, together with a classifica-
tion result for cases where B is a product of spheres.

Dedicated to L. Gaunce Lewis, Jr (1949–2006)

The author would like to express his appreciation of the advice, concerning this
paper, that was given by Gaunce Lewis. It included detailed comments concerning
the presentation and restructuring of the material, and a helpful suggestion con-
cerning future developments. This was done at a time when Gaunce was well aware
of the seriousness and immediacy of the health problems that he faced. It is but
one example of his helpfulness, kindness and generosity.

Received July 20, 2005, revised August 22, 2006; published on September 27, 2006.
2000 Mathematics Subject Classification: 55R15, 55R35, 55S45, 55P20.
Key words and phrases: Fibration, Postnikov System, classifying space, Eilenberg-MacLane space.
Copyright c© 2006, International Press. Permission to copy for private use granted.



Homology, Homotopy and Applications, vol. 8(2), 2006 134

1. Main Results

Let F andB be spaces. Then FHT(F : B) will denote the set of fibrewise homotopy
types (= fibre homotopy types) of Hurewicz fibrations over B with fibres homotopy
equivalent to F .

If K(G,m) is an Eilenberg–MacLane space with m > 0, and B is a space, then
there is an obvious group action

AutG× [B,K(G,m+ 1)]0 → [B,K(G,m+ 1)]0,

where the [−,−]0 notation refers to based homotopy classes of based maps. It has
long been known that if B has the homotopy type of a simply connected CW -
complex, then FHT(K(G,m) : B) is determined — via a canonical bijection — by
the orbit set

[B,K(G,m+ 1)]0/AutG ≈ Hm+1(B;G)/AutG.

(see Section 23 of [St] for an early version of the result, and 5.2.2 of [Ba] for a proof).

In this paper, we generalize that theorem to the case where the fibre is a prod-
uct of two Eilenberg–MacLane spaces. Our solution uses the classifying space M∞,
introduced on p.89 of [B1], with underlying set consisting of all null homotopic
maps from individual fibres of the path fibration p : PK(G,m+ 1) → K(G,m+ 1)
[S, Cor.2.8.8] to the space K(H,n+ 1). More details are given in Section 4.

If X and Y are spaces and y ∈ Y , then c(y) will be used to denote the constant
map from X to Y with value y. In particular, the basepoint of M∞ will be the
constant map c(e) : ΩK(G,m+ 1) → K(H,n+ 1), where Ω indicates a loop space
and e is the identity of K(H,n+ 1).

Let X be a based space. Then E(X) will denote the group of based homotopy
classes of based self-homotopy equivalences of X, with the operation of composition.

The group E(K(G,m)×K(H,n)) can be identified with the collection of all 2× 2
matrices of the form

(
θ 0

[ψ] φ

)
,

where θ ∈ AutG, φ ∈ AutH, ψ is a based map from K(G,m) to K(H,n), and [ψ]
the corresponding homotopy class in [K(G,m),K(H,n)]0 (see [R, Example 4.1]).
Multiplication within this group agrees with matrix multiplication and composition
of terms, in the expected sense (see also (2.7)).

If q : Y → B is a fibration and b ∈ B, then we will use Y |b to denote the fibre of
q over b.

A pointed space will be said to be well pointed if the inclusion of the basepoint
in the space satifies the homotopy extension property.

Proposition 1.1 (The Basic Group Action). Let m and n be integers such that
0 < m < n, G and H be Abelian groups, and B be a well pointed space. Then there
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is a group action

E(K(G,m)×K(H,n)) × [B,M∞]0 → [B,M∞]0

defined by the following procedure.
Let k : B →M∞ be a based map, and the map p∞ : M∞ → K(G,m+ 1) the obvi-

ous projection (see (4.1)). Then there is a useful based map k1 = p∞ ◦ k : B →
K(G,m+ 1). We note that if b∈B, then k(b) maps PK(G,m+1)|k1(b) to K(H,n+
1).

The automorphisms θ ∈ Aut(G) and φ ∈ Aut(H) induce associated homeomor-
phisms θ : K(G,m+ 1) → K(G,m+ 1) and φ : K(H,n+ 1) →K(H,n+ 1), respec-
tively. Then θ induces a homeomorphism

θx : PK(G,m+ 1)|x→ PK(G,m+ 1)|θ(x), θx(y) = θ ◦ y,
where x ∈ K(G,m+ 1) and y ∈ PK(G,m+ 1)|x. The map

φ ◦ k(b) ◦ θ−1
k1(b)

: PK(G,m+ 1)|θ(k1(b)) → K(H,n+ 1)

is an element of M∞.
We then have maps

B × {0} →M∞, (b, 0) 7→ φ ◦ k(b) ◦ θ−1
k1(b)

,

where b ∈ B, and

{b0} × I →M∞, (b0, t) 7→ (y 7→ (ψ(θ−1 ◦ y))(t)),
where b0 is the basepoint of B, t ∈ I, y ∈ K(G,m) = ΩK(G,m+ 1) ⊂ PK(G,m+
1) is viewed as a loop in K(G,m+ 1), and ψ is a based map K(G,m) → K(H,n).
We notice that these two maps into M∞ agree at (b0, 0), i.e. both take that point to
the constant map c(e) : ΩK(G,m+ 1) → K(H,n+ 1).

A single application of the homotopy extension property then determines — up
to based homotopy class — a based map

(
θ 0
ψ φ

)
· k : B = B × {1} → M∞.

The required group action is then induced by the rule
((

θ 0
ψ φ

)
, k

)
7→

(
θ 0
ψ φ

)
· k.

We define the three-stage Postnikov tower over B, τ(k1, k2), to consist of the
principal fibrations p1 : E1 → B and p2 : E2 → E1, determined by the k-invariants
k1 and k2, respectively.

We define t(k1, k2), the Postnikov fibration over B asssociated with τ(k1, k2), to
be the fibration p1 ◦ p2

The based map k : B →M∞ determines a Postnikov fibration t(k1, k2) over B,
where the first k-invariant is k1, as described in Proposition 1.1, and the second
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k-invariant k2 is specified by the rule

(b, y) 7→ k(b)(y),

where k1(b) = p(y). Thus k2 denotes a map from the second stage of the tower,
i.e. the pullback space B u PK(G,m+ 1) determined by k1 and p, to the space
K(H,n+ 1). Further details concerning k and t(k1, k2) are given in (4.2).

Now k is basepoint preserving, so k2|({b0} × ΩK(G,m+ 1)) is the constant map
with value the identity e of K(H,n+ 1). It follows that the fibration t(k1, k2) has
distinguished fibre K(G,m)×K(H,n) (see (2.7.7) of [B1]).

Theorem 1.2 (The Basic Classification Theorem). Let m and n be integers
such that 1 < m < n, and G and H be Abelian groups. Further the well pointed
space B has the homotopy type of a simply connected CW -complex, so B could be
any simply connected CW-complex.

Then there is a canonical bijection:

[B,M∞]0/E(K(G,m)×K(H,n)) → FHT(K(G,m)×K(H,n) : B)

determined by the rule [[k]] → [t(k1, k2)]. Thus the orbit [[k]] of the based homotopy
class [k] of the based map k : B →M∞ corresponds to the fibrewise homotopy type
[t(k1, k2)] of the Postnikov fibration t(k1, k2) over B with distinguished fibre K×L.
The bijection is natural relative to B.

We recall that if p : X → B is a fibration with fibre of the homotopy type of
K(G,m)×K(H,n), then p has the fibrewise homotopy type of an associated Post-
nikov fibration over B. Hence FHT (K×L : B) can be interpreted either as previ-
ously, or as the set of FHTs of Postnikov fibrations over B with distinguished fibre
K(G,m)×K(H,n).

We now give a handier version of this theorem, at least for stable range situa-
tions. The essential difference is that the previous group action was defined using
composition of functions and the often harder to compute homotopy extension prop-
erty, whereas, in the following case, the action is more conveniently defined using
composition and pointwise addition of functions only.

Proposition 1.3 (The Second Group Action). Let m and n be integers such
that 0 < m < n, and G and H be Abelian groups. Then there is an explicit group
action

E(K(G,m+ 1)×K(H,n+ 1)) × [B,M∞]0 → [B,M∞]0

induced by the rule
((

θ 0
χ φ

)
, k

)
7→ (b 7→ φ ◦ k(b) ◦ θ−1

k1(b)
+ c(χk1(b))),

where θ ∈ AutG,φ ∈ AutH, χ : K(G,m+ 1) → K(H,n+ 1) and k : B →M∞ are
based maps, and b ∈ B. We note that the constant map c(χk1(b)), the composite φ ◦
k(b) ◦ θ−1

k1(b)
and their sum are all maps from PK(G,m+ 1)|θ(k1(b)) to K(H,n+ 1).

We will show in Section 6 that, under stable range conditions, this action is
equivalent to that of Proposition 1.1, leading to the following result.
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Theorem 1.4 (A Stable Range Classification Theorem). Let m and n be inte-
gers such that 1 < m < n < 2m, G and H be Abelian groups, and the well pointed
space B have the homotopy type of a simply connected CW -complex. Then there is
a canonical bijection

[B,M∞]0/E(K(G,m+ 1)×K(H,n+ 1)) → FHT(K(G,m)×K(H,n) : B)

determined by the rule [[k]] 7→ [t(k1, k2)]. Thus the based map k : B →M∞ is the
classifying map for the Postnikov fibration t(k1, k2) over B with distinguished fibre
K×L, [k] is the homotopy class of k, [[k]] the orbit of that homotopy class, and
[t(k1, k2)] the fibrewise homotopy type of t(k1, k2). The bijection is natural relative
to B.

Let θ∗ and φ∗ be the automorphisms of Hm+1(B;G) and Hn+1(B;H) that are
induced by the automorphisms θ and φ of their coefficient groups G and H, respec-
tively, and χ∗ : Hm+1(B;G) → Hn+1(B;H) be induced by the cohomology opera-
tion [χ]∈Hn+1(K(G,m+ 1);H).

Proposition 1.5 (The Third Group Action). Let m and n be integers such that
0 < m < n, and G and H be Abelian groups. Then there is a group action

E(K(G,m+ 1)×K(H,n+ 1)) × (Hm+1(B;G)⊕Hn+1(B;H))

→ (Hm+1(B;G)⊕Hn+1(B;H)),

determined by the rule

(〈θ, [χ], φ〉, κ, λ) 7→ (θ∗(κ), φ∗(λ) + χ∗(κ)),

where κ∈Hm+1(B;G) and λ ∈ Hn+1(B,H).

Theorem 1.6 (Another Stable Range Classification Theorem). Let G and
H be Abelian groups, m and n be integers, and the well pointed space B have the
homotopy type of a CW-complex. We will assume that 1 < m < n < 2m, and that
the connectivity of B is greater than n−m+ 1.

(i) The stable range assumptions ensure that the fibrations in question have the
fibrewise homotopy types of principal K(G,m)×K(H,n)–fibrations. So, in
this particular situation, FHT(K(G,m)×K(H,n) : B) can be interpreted in
three ways, i.e. as the set of fibrewise homotopy types of either Hurewicz fibra-
tions over B with fibres of the homotopy type of K×L, or Postnikov fibrations
over B with distinguished fibre K×L, or principal K×L-fibrations over B.

(ii) The group action of Proposition 1.5 determines an orbit set

(Hm+1(B;G)⊕Hn+1(B;H)) / E(K(G,m+ 1)×K(H,n+ 1)),

and there is a canonical bijection from this orbit set to FHT(K(G,m)×
K(H,n) : B) that is natural in B.

(iii) Let us assume that κ ∈ Hm+1(B;G) corresponds to [u] ∈ [B,K(G,m+ 1)]0

and λ ∈ Hn+1(B;H) corresponds to [v] ∈ [B,K(H,n+ 1)]0. Then the bijec-
tion of (ii) takes [(κ, λ)], the orbit of (κ, λ), to the fibrewise homotopy type of
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the principal K×L-fibration over B induced by the map

B → K(G,m+ 1)×K(H,n+ 1), b 7→ (u(b), v(b))

from the path fibration over K(G,m+ 1)×K(H,n+ 1).

2. Notations and other Preliminaries.

We work in the context of the category of compactly generated spaces or cg-
spaces [V].

2.1. If p : X → B and f : A→ B are maps, then there is an associated pullback
space A u (f)X. The associated projections will be written p∗f : A u (f)X → X
and f∗p : A u (f)X → A.

Let τ(k1, k2) be a Postnikov tower consisting of the principal fibrations p1 : E1 →
B and p2 : E2 → E1. Then E1 = B u (k1)PK,E2 = (B u (k1)PK) u (k2)PL, and p1

and p2 are the obvious projections.

2.2. Let M(X,Y ) and M0(X,Y ) denote the spaces of free and based maps from
X to Y , respectively, in each case carrying the cg-ified version of the compact
open topology. If (X,X ′) and (Y, Y ′) are topological pairs, then M(X,X ′; Y, Y ′)
will denote the corresponding mapping space. The path components of M(X,Y )
and M0(X,Y ) that contain a given map f will be denoted by M(X,Y ; f) and
M0(X,Y ; f), respectively.

2.3. Free and based homotopies will be denoted by ' and '0, respectively, and the
set of based homotopy classes of maps from X to Y by [X,Y ]0.

2.4. The spaces K(G,m+ 1),K(H,n+ 1),K(G,m) and K(H,n) will be abbrevi-
ated to K,L,K and L, respectively. Thus K = ΩK and L = ΩL. Often these spaces
require basepoints, in such cases their identities e will play that role.

2.5. The path fibrations overK and L will be denoted by p : PK → K and q : PL→
L, respectively.

2.6. If θ ∈ AutG, then θ : K → K and θ : K → K will be the associated induced
homeomorphisms. Then θ induces a homeomorphism θ∧ : PK → PK by covariant
composition. If φ ∈ AutH, then φ : L→ L, φ : L→ L and φ∧ : PL→ PL will denote
the analagous homeomorphisms for that case.

2.7. We will use the notations 〈θ, ψ, φ〉 and 〈y, z〉 to denote the matrices
(

θ 0
ψ φ

)
and

(
y
z

)
,

respectively, where θ ∈ AutG, φ ∈ AutH, ψ∈M0(K,L), y ∈ K, and z ∈ L. Matrix
multiplication, i.e. the rule

〈y, z〉 7→ 〈θ, ψ, φ〉 × 〈y, z〉 = 〈θ(y), ψ(y) + φ(z)〉,
determines a based self-homeomorphism of K×L.
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2.8. We will abbreviate the concept of fibrewise homotopy equivalence (or fibre
homotopy equivalence) to FHE. Let h be an FHE between fibrations with distin-
guished fibres K×L. Then h|(K×L) is a self-homotopy equivalence of K×L, and
necessarily determines a unique matrix 〈 θ, [ψ], φ 〉, by restriction to the distinguished
fibres (see the discussion before Proposition 1.1). Such an h will be referred to as a
(θ, ψ, φ)FHE.

In what follows we will make use of a stronger than usual form of FHE, that
applies to fibrations with identical distinguished fibres. Two such fibrations, over
the same pointed base space, will be said to be 1FHE if there is an FHE between
them whose restriction to those fibres is homotopic to the identity on that space.
Equivalently, if the base space is well pointed, we can require that there exists an
FHE whose restriction to the distinguished fibres is the identity on that space (see
[B1, (2.4.6)]). We will denote the set of 1-fibrewise homotopy types of fibrations over
B with distinguished fibres F by 1FHT(F : B).

We notice that a 1FHE, between fibrations with distinguished fibres K×L, is an
example of a (1, 0, 1)FHE.

The following standard results will be quoted repeatedly in what follows.

2.9. Let A0 ⊂ A be a cofibration, and K,L : A× I →W be homotopies that extend
a given map N : (A× {0}) ∪ (A0 × I) →W . Then K|A× {1} ' L|A× {1} relative
to A0 × {1}, i.e. this last homotopy extends the homotopy

A0 × I →W, (a, t) 7→ N(a, 1),

where a ∈ A0 and t ∈ I (this is immediate from [W, Ch.1, Thm.7.18], with B of
that result taken to be a point).

2.10. Let r : Z → B be a fibration andH : A× I → B be a homotopy from f to g. It
is well known that there is an FHE h : A u (f)Z → A u (g)Z over A [S, Thm.2.8.14].

3. Group Actions on Sets of Postnikov Fibrations

In this section, we introduce group actions of AutH, AutG and [K,L]0 on
1FHT(K × L,B), and blend them together to produce the action of E(K×L) refer-
red to in Proposition 1.1. The proofs of the Lemmas used are removed to Section 9.

Let φ ∈ AutH and the Postnikov fibration t(k1, k2) be over B and have distin-
guished fibre K×L. Then we can define an associated Postnikov fibration over B,
as follows:

3.1. φ · t(k1, k2) = t(k1, φ ◦ k2)

If follows via [B1, 2.7.7] that φ · t(k1, k2) also has distinguished fibre K×L.

Lemma 3.2. (i) There is a group action

AutH × 1FHT(K×L : B) → 1FHT(K×L : B),

(φ, [t(k1, k2)]) 7→ [φ · t(k1, k2)], where φ ∈ AutH and the Postnikov fibration
t(k1, k2) is over B and has distinguished fibre K×L.
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(ii) There is a (1, 0, φ)FHE from t(k1, k2) to φ · t(k1, k2), i.e. the homeomorphism

Φ = Φ(φ) : (B u (k1)PK) u (k2)PL → (B u (k1)PK) u (φ ◦ k2)PL,

with Φ(b, y, z) = (b, y, φ∧(z)), for (b, y, z) ∈ (B u (k1)PK) u (k2)PL.

Let θ ∈ Aut(G) and t(k1, k2) be a Postnikov fibration over B with distinguished
fibre K×L. We notice that there is a homeomorphism

1 u θ∧ : B u (k1)PK → B u (θ ◦ k1)PK,

with inverse 1 u θ−1
∧ . Then we can define an associated Postnikov fibration, again

over B with distinguished fibre K×L, i.e.

3.3. θ · t(k1, k2) = t(θ ◦ k1, k2 ◦ (1 u θ−1
∧ ))

Lemma 3.4. (i) There is a group action

AutG× 1FHT(K×L : B) → 1FHT(K×L : B),

(θ, [t(k1, k2)]) 7→ [θ · t(k1, k2)], where θ ∈ AutG and the Postnikov fibration
t(k1, k2) is over B and has distinguished fibre K×L.

(ii) There is a (θ, 0, 1)FHE from t(k1, k2) to θ · t(k1, k2), i.e. the homeomorphism

Θ=Θ(θ) : (B u (k1)PK) u (k2)PL→ (B u (θ ◦ k1)PK) u (k2 ◦ (1 u θ−1
∧ ))PL,

(b, y, z) 7→ (b, θ∧(y), z), for (b, y, z) ∈ (B u (k1)PK) u (k2)PL.

We will now consider the action of a third group whose elements appear in
several different guises. It is standard, of course, that Hn(K;H) can be identified
with [K,L ]0. Viewing L as ΩL, we can interpret the members of the above group
— or, to be more precise, the maps that make up the aforementioned members —
in several different ways.

Lemma 3.5. (i) There are bijections between the sets of:

(a) based maps ψ : K → L,

(b) maps ψ1 : (K × I, (K × {0, 1}) ∪ ({e} × I)) → (L, {e}), and

(c) maps ψ2 : I →M0(K,L; c(e)) such that ψ2(0) = ψ2(1) = c(e).

determined by the rule ψ(z)(t) = ψ1(z, t) = ψ2(t)(z), where z ∈ K and t ∈ I.
(ii) The above carries over to homotopy classes. Thus there are bijective corre-

spondences [ψ] ↔ [ψ1] ↔ [ψ2], where [−] denotes homotopy class, in each case
defined in the sense appropriate to the maps in question.

Let ψ : K → L be a based map, and t(k1, k2) a Postnikov fibration over B with
distinguished fibre K×L. It follows, via the cofibration property for {b0} ×K ⊂
B u (k1)PK (see [B1, 2.4.4 and 2.4.8]) that there is a homotopy

3.6. S = S(k1, k2, ψ) : (B u (k1)PK)× I → L

that extends the second k-invariant k2 : (B u (k1)PK)× {0} = (B u (k1)PK) → L
as well as the homotopy ψ1 : {b0} ×K × I ∼= K × I → L. Let ψ · k2 : E1 → L be
determined by the rule (ψ · k2)(b, y) = S(b, y, 1), where k1(b) = p(y). We define an
associated Postnikov fibration, i.e.
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3.7. ψ · t(k1, k2) = t(k1, ψ · k2),

which again is over B and has distinguished fibre K×L. Then (ψ · k2)(b0, y) =
S(b0, y, 1) = ψ1(b0, y, 1) = e. So (ψ · k2)({b0} ×K) = e and it follows [B1, (2.7.7)]
that ψ · t(k1, k2) also has distinguished fibre K×L.

The map ψ · k2 is not uniquely determined, but the homotopy class [ψ] · [k2] =
[ψ · k2] in [(B u (k1)PK), {b0} ×K; L, e] is so defined (see (2.9)). It follows, via the
relative version of (2.10), that t(k1, ψ · k2) is unique up to 1FHT.

Lemma 3.8. (i) There is a group action

[K, L ]0 × 1FHT(K×L : B) → 1FHT(K×L : B),

defined by ([ψ], [t(k1, k2)]) 7→ [ψ · t(k1, k2)].
(ii) Let t(k1, k2) be a Postnikov fibration over B with distinguished fibre K×L,

and ψ ∈M0(K,L). Then there is a (1, ψ, 1)FHE from t(k1, k2) to ψ · t(k1, k2),
i.e.

Ψ = Ψ(ψ) : (B u (k1)PK) u (k2)PL→ (B u (k1)PK) u (ψ · k2)PL.

We are almost ready to blend together the actions of AutG, AutH and [K, L ]0

on 1FHT(K×L : B). We must first, however, determine the extent to which these
actions commute with each other.

Lemma 3.9. Let θ, θ′∈AutG, φ, φ′∈ AutH, ψ, ψ′∈M0(K, L) and t(k1, k2) be a
Postnikov fibration over B that has distinguished fibre K×L. Then:
(i) φ′ · (φ · t(k1, k2)) is 1FHE to (φ′ ◦ φ) · t(k1, k2),
(ii) θ′ · (θ · t(k1, k2)) is 1FHE to (θ′ ◦ θ) · t(k1, k2),
(iii) ψ′ · (ψ · t(k1, k2)) is 1FHE to (ψ′ + ψ) · t(k1, k2),
(iv) θ · (φ · t(k1, k2)) is 1FHE to φ · (θ · t(k1, k2)),
(v) ψ · (θ · t(k1, k2)) is 1FHE to θ · ((ψ ◦ θ) · t(k1, k2)), and
(vi) φ · (ψ · t(k1, k2)) is 1FHE to (φ ◦ ψ) · (φ · t(k1, k2)).

Let θ ∈ AutG,ψ ∈M0(K,L), φ ∈ AutH, and t(k1, k2) be a Postnikov fibration
over B with distinguished fibre K×L. We define

3.10. 〈θ, ψ, φ〉 · t(k1, k2) = θ · (ψ · (φ · t(k1, k2))).

The actions of Aut(G), Aut(H), and [K,L]0 all preserve both the base space B
and the property of having distinguished fibre K×L, hence the Postnikov fibration
〈θ, ψ, φ〉 · t(k1, k2) also has these same properties.

Proposition 3.11. (i) There is a group action

E(K×L)× 1FHT(K×L : B) → 1FHT(K×L : B)
(〈θ, [ψ], φ〉, [t(k1, k2)]) 7→ [〈θ, ψ, φ〉 · t(k1, k2)],

where 〈θ, [ψ], φ〉 ∈ E(K×L) and t(k1, k2) is a Postnikov fibration over B with
distinguished fibre K×L.
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(ii) If t(k1, k2) is a Postnikov fibration over B with distinguished fibre K×L, then
there is a (θ, ψ, φ)FHE from t(k1, k2) to 〈θ, ψ, φ〉 · t(k1, k2).

(iii) Let t(k1, k2) and t(`1, `2) be Postnikov fibrations over B, each with distin-
guished fibre K×L. Then t(k1, k2) is FHE to t(`1, `2) if and only if there exists
θ∈AutG, ψ∈M0(K,L), and φ ∈ AutH such that 〈θ, ψ, φ〉 · t(k1, k2) is 1FHE
to t(`1, `2).

Proof. (i) Let θ, θ′ ∈ AutG,φ, φ′ ∈ AutH and ψ,ψ′ ∈M0(K,L), with 〈θ, ψ, φ〉 and
〈θ′, ψ′, φ′〉 denoting the associated 2× 2 matrices, and t(k1, k2) be a Postnikov fibra-
tion of the required type. Then it follows from Lemma 3.9 that the following fibra-
tions are 1FHE :
(a) 〈θ′, ψ′, φ′〉 · (〈θ, ψ, φ〉 · t(k1, k2)),
(b) θ′ · ψ′ · φ′ · θ · ψ · φ · t(k1, k2) by 3.10,
(c) θ′ · ψ′ · θ · φ′ · ψ · φ · t(k1, k2) by (iv) of 3.9,
(d) θ′ · θ · (ψ′ ◦ θ) · (φ′ ◦ ψ) · φ′ · φ · t(k2, k2) by 3.9 (v) and (vi) ,
(e) (θ′ ◦ θ) · (ψ′ ◦ θ + φ

′ ◦ ψ) · (φ′ ◦ φ) · t(k1, k2) by 3.9(i), (ii) and (iii), and
(f) 〈θ′ ◦ θ, ψ′ ◦ θ + φ′ ◦ ψ, φ′ ◦ φ〉 · t(k1, k2) by 3.10.

Now 〈θ′, ψ′, φ′〉 × 〈θ, ψ, φ〉 = 〈θ′ ◦ θ, ψ′ ◦ θ + φ′ ◦ ψ, φ′ · φ〉, so we do have an
action.

(ii) There are (θ, 0, 1), (1, ψ, 1) and (1, 0, φ)FHEs, i.e. Θ from ψ · φ · t(k1, k2) to
θ · ψ · φ · t(k1, k2), Ψ from φ · t(k1, k2) to ψ · φ · t(k1, k2), and Φ from t(k1, k2) to
φ · t(k1, k2) (see parts (ii) of Lemmas 3.4, 3.8 and 3.2, respectively). Multiplying
matrices

〈θ, 0, 1〉 × 〈1, ψ, 1〉 × 〈1, 0, φ〉 = 〈θ, ψ, φ〉,
so Θ ◦Ψ ◦ Φ: t(k1, k2) → 〈θ, ψ, φ〉 · t(k1, k2) is a (θ, ψ, φ)FHE.

(iii) The “if” condition is immediate from the data and (ii). Now an FHE from
t(k1, k2) to t(`1, `2) is a (θ, ψ, φ)FHE, for suitable choices of θ∈AutG, ψ∈M0(K,L)
and φ ∈ AutH (see (2.8)). The result follows after applying (ii) to t(k1, k2).

Theorem 3.12 (Preliminary Classification Theorem). Let m and n be inte-
gers such that 0 < m < n, G and H be Abelian groups, and B be a well pointed
space. Then there is a bijection:

1FHT(K×L : B)/E(K×L) → FHT(K×L : B)

determined by the rule [[t(k1, k2)]] 7→ [t(k1, k2)]. Thus if t(k1, k2) is a Postnikov
fibration over B with distinguished fibre K×L, the orbit [[t(k1, k2)]] of the 1FHT
class of t(k1, k2) corresponds to the FHT class [t(k1, k2)] of t(k1, k2). The bijection
is natural relative to B.

Proof. This is immediate from (iii) of Proposition 3.11.

4. Classifying Spaces and Exponential Laws

The next part of our main argument requires the use of the fibred or freerange
mapping space M∞, and a fibred or freerange exponential law. We give a few basic
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ideas concerning these concepts here; the reader can find more information in [B1]
and [B3].

4.1. Classifying Spaces.

We define the set M∞ as the set of null homotopic maps from individual fibres of
p to L, i.e.

⋃
x∈KM(PK|x, L; c(e)). The function p∞ : M∞ → K is the projection

that takes maps PK|x→ L to x, where x ∈ K.
We topologize M∞ with the cg-ification of the topology that has subbasis con-

sisting of all sets of maps of the forms:

(i) p−1
∞ (U), where U is open in K, and

(ii) W (C, V ) =
⋃
x∈K{f ∈M(PK|x, L; c(e))|f(C ∩ (PK|x)) ⊂ V },

where C is compact in PK and V is open in L. Then p∞ is obviously continuous,
in fact it is a fibration (see (M3) of [B1, p.90]).

The distinguished fibre of p∞ isM(K,L; c(e)) (see (M4) of [B1, p.90]). We will use
i∞ : M(K,L; c(e)) →M∞ to denote the corresponding inclusion map. The constant
map c(e) : K → L will be taken as basepoint for both M(K,L; c(e)) and M∞.

4.2. A Fibred Exponential Law and Classifying Maps.

Let B be a pointed weak Hausdorff space (see [B1, p.91]), and k1 : B → K be a
fixed pointed map. The following rule is (M6) of [B1, p.90].
There is a bijective correspondence between:

(i) the set of pointed maps k : B →M∞ such that p∞ ◦ k = k1, and
(ii) the set of maps k2 : B u (k1)PK → L, extending c(e) : {b0} ×K → L,

determined by the rule

k(b)(y) = k2(b, y), where k1(b) = p(y).

If we allow k1 to vary through M0(B,M∞), we obtain a bijective correspondence
between

(i) the set of based maps k : B →M∞, and
(ii) the set of Postnikov fibrations over B with distinguished fibres K×L

determined by the rule k 7→ t(p∞ ◦ k, k2), where k2 is determined by k as specified
previously.

In that situation the map k will be referred to as the classifying map for t(k1, k2).

4.3. Universal Postnikov Fibrations.

The maps p∞ : M∞ → K and p : PK → K determine a pullback space M∞ u
(p∞)PK, and there is an associated evaluation map

e∞ : M∞ u (p∞)PK → L, (f, y) 7→ f(y),

where p∞(f) = p(y). We recall, from (M9) of [B1, p.90], that the Postnikov fibration
t(p∞, e∞) is universal amongst Postnikov fibrations. Thus, for each t(k1, k2) over B
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with distinguished fibreK×L, t(k1, k2) = k∗t(p∞, e∞), and so the rule k 7→ t(k1, k2)
can alternatively be defined as k 7→ k∗t(p∞, e∞).

4.4. A 1FHT Classification Theorem.

Let m and n be integers with 1 < m < n, G and H be Abelian groups, and B be
a well pointed space having the homotopy type of a simply connected CW-complex.
Then [B1, Theorem 7.5] asserts that there is a bijection

[B,M∞]0 → 1FHT(K×L : B),

determined by the rule [k] → [t(k1, k2)] of (4.2).
The Postnikov fibration t(p∞, e∞) is universal amongst Postnikov fibrations over

B with distinguished fibre K×L, in the sense that the rule [k] 7→ [k∗t(p∞, e∞)]
defines the last bijection.

5. The Basic FHT Classification Theorem

In this section, we use (4.4) to replace the orbit set 1FHT(K×L : B)/E(K×L)
of Theorem 3.12 by a more computable orbit set [B,M∞]0/E(K×L).

If k ∈M0(B,M∞), we recall that k(b) : PK|k1(b) → L and then define φ · k ∈
M0(B,M∞) by

5.1. (φ · k)(b) = φ ◦ k(b) : PK|k1(b) → L where b ∈ B.

Lemma 5.2. (i) There is a group action

AutH × [B,M∞]0 → [B,M∞]0, (φ, [k]) 7→ [φ · k],
where φ ∈ AutH and k ∈M0(B,M∞).

(ii) Let t(k1, k2) be a Postnikov fibration over B with distinguished fibre K×L
and φ ∈ Aut(H). Then t(k1, k2) is classified by k if and only if φ · t(k1, k2) is
classified by φ · k.

Proof. (i) (φ1 · (φ2 · k))(b) = φ1 ◦ (φ2 ◦ k(b)) = (φ1 ◦ φ2) ◦ k(b) = (φ1 ◦ φ2) ◦ k(b) =
((φ1 ◦ φ2) · k)(b). Hence φ1 · (φ2 · k) = (φ1 ◦ φ2) · k.

(ii) If t(k1, k2) is classified by k, then the Postnikov fibration φ · t(k1, k2) has sec-
ond k-invariant φ ◦ k2, and (φ ◦ k2)(b, y) = φ(k(b)(y)) = (φ · k)(b)(y), where (b, y) ∈
B u (k1)PK. Further, p∞ ◦ (φ · k) = k1, and so φ · t(k1, k2) is classified by φ · k. The
argument is reversible, so the proof is complete.

If θ∈AutG, then there is a based homeomorphism θ−1
∧ :PK→PK over θ−1 : K →

K (2.6). So, if x ∈ K, we then have a homeomorphism θ−1
∧ |(PK|θ(x)) : PK|θ(x) →

PK|x. If k ∈M0(B,M∞), then k1 = p∞ ◦ k ∈M0(B,K), and we can define θ · k ∈
M0(B,M∞) by

5.3. (θ · k)(b) = k(b) ◦ (θ−1
k1(b)

|(PK|(θ ◦ k1)(b))).
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Lemma 5.4. (i) There is a group action

AutG× [B,M∞]0 → [B,M∞]0, (θ, [k]) 7→ [θ · k],
where θ ∈ AutG and k ∈M0(B,M∞).

(ii) Let t(k1, k2) be a Postnikov fibration over B with distinguished fibre K×L and
θ ∈ Aut(G). Then t(k1, k2) is classified by k if and only if θ · t(k1, k2) is clas-
sified by θ · k.

Proof. (i) (θ1 · (θ2 · k))(b)
= (θ2 · k)(b) ◦ (θ1)−1

∧ |(PK|(θ1 ◦ θ2 ◦ k1)(b))

= (k(b) ◦ (θ2)−1
∧ |(PK|(θ2 ◦ k1)(b))) ◦ ((θ1)−1

∧ |PK|((θ1 ◦ θ2 ◦ k1)(b)))

= k(b) ◦ (θ1 ◦ θ2)−1
∧ |(PK|((θ1 ◦ θ2 ◦ k1)(b)))

= ((θ1 · θ2) · k)(b).
Hence θ1 · (θ2 · k) = (θ1 ◦ θ2) · k.
(ii) Let us assume that k classifies t(k1, k2). Then (θ · k)(b)(y) = k(b)θ−1

∧ (y) =
k2(b, θ−1

∧ (y)) = k2(1 u θ−1
∧ )(b, y). Also (θ · k)(b) : PK|θk1(b) → L, so p∞ ◦ (θ · k) =

θ ◦ k1. Hence θ · k classifies t(θ ◦ k1, k2 ◦ (1 u θ−1
∧ )) = θ · t(k1, k2).

Let ψ ∈M0(K, L) and k ∈M0(B, M∞). Identifying B with B × {0} and I
with {b0} × I, we can consider ψ2 to be a map {b0} × I →M0(K,L; c(e)) and
k ∈M0(B × {0},M∞). Now both k and ψ2 take the value c(e) at (b0, 0), so the
non-degeneracy of {b0} ⊂ B [B1, (2.4.8)] allows us to apply the homotopy extension
property. We obtain a homotopy

5.5. T = T (k, ψ) : B × I →M∞

that extends both k and i∞ ◦ ψ2 (see (4.1) for i∞). Restricting T to B = B × {1},
we define a based map

5.6. ψ · k : B →M∞, (ψ · k)(b) = T (b, 1), where b ∈ B.

As with ψ · k2, the map ψ · k is not uniquely determined, but it is unique up to
based homotopy.

Lemma 5.7. (i) There is a group action

[K,L ]0 × [B,M∞]0 → [B,M∞]0, ([ψ], [k]) 7→ [ψ · k].
(ii) Let t(k1, k2) be a Postnikov fibration over B with distinguished fibre K×L, and

ψ ∈M0((K,L). Then t(k1, k2) is classified by k if and only if ψ · t(k1, k2) is
classified by ψ · k.

Proof. (i) This is similar to the proof of Proposition 3.8(i), which has been removed
to Section 9.

(ii) The composition of k1 and the projection π : B × I → B determines a homo-
topy k1 ◦ π : B × I → K. Pulling p : PK → K back over this homotopy defines (B ×
I) u (k1 ◦ π)PK. Identifying this pullback space with (B u (k1)PK)× I, and apply-
ing the fibred exponential law to S of (3.6), we obtain a homotopy S< : B × I →M∞
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that agrees with T on B × {0}, i.e. both start at k : B × {0} = B →M∞. It follows
via (2.9) that the classifying map for t(k1, ψ · k2), i.e. S<|B × {1}, is based homo-
topic to ψ · k. The above argument is reversible, so the proof is complete.

We are now ready to specify the action of E(K × L) on [B,M∞]0 that determines
the orbit set used in our basic classification theorem.

If k ∈M0(B,B∞), then we define

5.8. 〈θ, ψ, φ〉 · k = θ · (ψ · (φ · k)) ∈M0(B,M∞).

It follows from (ii) of Lemmas 5.2, 5.4 and 5.7, that 〈θ, ψ, φ〉 · k is unique up to
based homotopy.

Proposition 5.9. (i) There is a group action

E(K×L)× [B,M∞]0 → [B,M∞]0, (〈θ, [ψ], φ〉, [k]) 7→ [〈θ, ψ, φ〉 · k]

(ii) Let t(k1, k2) be a Postnikov fibration over B with distinguished fibre K×L.
The actions of Propositions 3.11(i) and 5.9(i) agree in the sense that t(k1, k2)
is classified by k if, and only if, 〈θ, ψ, φ〉 · t(k1, k2) is classified by 〈θ, ψ, φ〉 · k.

Proof. We will prove (ii) first. Let us consider:

(a) t(k1, k2) is classified by k,
(b) φ · t(k1, k2) is classified by φ · k,
(c) ψ · φ · t(k1, k2) is classified by ψ · φ · k, and
(d) θ · ψ · φ · t(k1, k2) is classified by θ · ψ · φ · k.

Then (a) ⇔ (b) by Lemma 5.2(ii), (b) ⇔ (c) by Lemma 5.7(ii), and (c) ⇔ (d) by
Lemma 5.4(ii). Hence (ii) is verified.

(i) We have just seen that the function of (i) agrees with the group action of
Proposition 3.11(i). It follows that the function of (i) is a group action.

Proposition 1.1 is a reformulated version of Proposition 5.9(i), in that we use
an alternative description of the group action. With the Proposition 1.1 approach
the action is slightly easier to describe in elementary notation. In particular, we do
not need to introduce additional terminology concerning maps, produced via the
homotopy extension property.

Proof of Proposition 1.1. Let θ∈AutG, φ∈Aut(H), ψ∈M0(K,L), and t(k1, k2) be
the Postnikov fibration corresponding to k ∈M0(B,M∞), We know by Proposition
3.9(v) that ψ · (θ · t(k1, k2)) is 1FHE to θ · ((ψ ◦ θ) · t(k1, k2)). Applying the fibred
exponential law (4.2), it follows that the corresponding based maps, B →M∞, i.e.
ψ · (θ · k) and θ · ((ψ ◦ θ) · k), are based homotopic. Replacing ψ by ψ ◦ θ−1

and k
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by ψ · k, we obtain:

(ψ ◦ θ−1
) · (θ · (φ · k)) '0 θ · (ψ · (φ · k)).

It follows that the rule

(〈θ, [ψ], φ〉, [k]) 7→ [(ψ ◦ θ−1
) · (θ · (φ · k)]

is an alternative description of group action of Proposition 5.9. It is in this alterna-
tive form that the action is described in Proposition 1.1.

Proof of the Basic Classification Theorem 1.2. We see by (ii) of Proposition 5.9
that the bijection

[B,M∞]0 → 1FHT(K×L : B), [k] 7→ [t(k1, k2)]

(see 4.4) is equivariant relative to the actions of Propositions 5.9 and 3.11. Hence
there is an induced bijection between the two orbit sets corresponding to these
actions. The result follows via Theorem 3.12.

6. A Stable Range Version of the FHT Classification Theorem

We now show that in situations where ψ can be delooped, i.e. where there is a
χ ∈M0(K,L) such that Ωχ '0 ψ, then 〈θ, ψ, φ〉 · k is specified using only compo-
sition and pointwise addition of functions. This enables us to use such a χ to give
formulae defining both the homotopy T of (5.5) and the corresponding group action
on [B,M∞]0.

Let χ : K → L be a based map, and t(k1, k2) a Postnikov fibration over B and
with distinguished fibre K×L. We define the map k1 u p : B u (k1)PK → K by
(k1 u p)(b, y) = k1(b) = p(y), where (b, y) ∈ B u PK, and

6.1. χ · k2 = k2 + χ ◦ (k1 u p) ∈ M(B u (k1)PK, {b0} ×K;L, e),

where + denotes pointwise addition relative to L.
If k : B →M∞ is the based classifying map for t(k1, k2), then we define χ · k ∈

M0(B,M∞) by

6.2. (χ · k)(b) = k(b) + c(χk1(b)).

In this definition k(b) and c(χk1(b)) are both maps PK|k1(b) → L, and the + refers
to pointwise addition. The function χ · k is continuous because it corresponds to
χ · k2 via the fibred exponential law (4.2).
If ψ = Ωχ ∈M0(K,L), the homotopy

6.3. S : (B u (k1)PK)× I → L, S(b, y, t) = k2(b, y) + χy(t)

meets the specifications of (3.6), i.e. relative to k2 and ψ1.

Recalling that (B u (k1)PK)× I ∼= (B × I) u (k1 ◦ π)PK by the rule (b, y, t) 7→
(b, t, y), as explained in the proof of Lemma 5.7(ii), we see that S determines a
map (B × I) u (k1 ◦ π)PK → L, (b, t, y) 7→ k2(b, y) + χy(t). Then (4.2) determines
a map
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6.4. T : B × I →M∞, T (b, t ) = k(b) + εb,t,

where b ∈ B, t ∈ I, and k(b) and εb,t are in M(PK|k1(b), L; c(e)), with εb,t(y) =
χy(t).

Thus T (b, t)(y) = k(b)(y) + εb,t(y) = k2(b, y) + χy(t). Further, T extends k and
ψ2.

Hence T meets the requirements of the homotopy of (5.5), and can be used to
define ψ · k. Thus if k1(b) = y(1)

(ψ · k)(b)(y) = T (b, 1)(y)
= k(b)(y) + εb,1(y)
= k(b)(y) + χy(1)
= k(b)(y) + χk1(b).

Hence (ψ · k)(b) = k(b) + c(χk1(b)) = χ · k(b). So if ψ = Ωχ, then ψ · k = χ · k. It
follows, by (2.9), that

6.5. ψ ∈M0(K,L) and ψ '0 Ωχ =⇒ ψ · k '0 χ · k.
Let θ ∈ AutG, χ ∈M0(K,L), φ ∈ AutH and k ∈M0(B,M∞). Then we define

6.6. 〈θ, χ, φ〉 · k = θ · (χ · (φ · k)) ∈ M0(B,M∞).

So it follows by (5.8), (6.5) and (6.6) that

6.7. ψ ∈M0(K,L) and ψ '0 Ωχ =⇒ 〈θ, χ, φ〉 · k '0 〈θ, ψ, φ〉 · k.
We recall the cohomology suspension function [MT, p.139]

Hn+1(K;H) → Hn(K;H)

which, in homotopy theoretic terms, is the covariant looping function

Ω∗ : [K,L]0 → [K,L ]0, [χ] 7→ [Ωχ].

There is also an associated function

Λ∗ : E(K × L) → E(K × L), Λ∗(〈θ, [χ], φ〉) = 〈θ, [Ωχ], φ〉.

It is well known that if n < 2m, then Ω∗ is an isomorphism (see [MT, Prop.4,
p.152]), and follows easily that Λ∗ is also an isomorphism.

Proposition 6.8. (i) If 0 < m < n < 2m, then there is a group action:

α : E(K × L)× [B,M∞]0 → [B,M∞]0, (〈θ, [χ], φ〉, [k]) 7→ [〈θ, χ, φ〉 · k].
(ii) If β denotes the action of Proposition 5.9(i), then α = β ◦ (Λ∗ × 1).

Proof. (ii) follows by (6.7), and (i) is a consequence of (ii)

Proof of Proposition 1.3. This result is just (i) of Proposition 6.8, but with the
formula describing the action spelled out in more detail.

Proof of the Stable Range Classification Theorem 1.4. The two orbit sets
[B,M∞]0/E(K × L) of Theorem 1.2 and [B,M∞]0/E(K × L) of Theorem 1.4 agree
(see Proposition 6.8(ii) and use the fact that Λ∗ is an isomorphism). The result
follows immediately from Theorem 1.2.
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7. The Principal Fibration Case

7.1. Let X,Y and Z be spaces, and f : X → Y and g : Y → Z be maps. Then we
will use the notation

≺ f, g Â : X → Y × Z for the map x 7→ (f(x), g(x)).

It is standard that principal K×L-fibrations over B are classified up to equivariant
FHE by maps B → K × L (see [B2, Thm.5.8 and Prop.5.9]). Thus p× q : PK ×
PL→ K × L is universal amongst such principal fibrations. If k1 ∈M0(B,K) and
k∧2 ∈M0(B,L), then the classifying map

≺k1, k
∧
2 Â : B → K × L

corresponds to the principal fibration≺k1, k
∧
2 Â∗ (p× q). Interpreted as a Postnikov

fibration, this fibration is t(k1, k
∧
2 ◦ ((k1)∗p)), with classifying map

B → M∞, b 7→ c(k∧2 (b)) : PK|k1(b) → L.

7.2. It is explained in (M1) of [B1, p.89] that there is a based embedding

j∞ : K ×L → M∞, (x, w) 7→ c(w) : PK|x→ L,

where x∈K and w ∈ L, that is fibrewise over K.

We now relate j∞ to the universal fibration t(p∞, e∞) of (4.3).

Proposition 7.3 (Properties of j∞). (i) The induced fibration (j∞)∗t(p∞, e∞)
is — to within a canonical homeomorphism of its total space — the principal
K×L-fibration p× q : PK × PL→ K × L

(ii) Then j∞ ◦ ≺k1, k
∧
2 Â is the classifying map — in the sense of (4.3) — for

the principal fibration ≺ k1, k
∧
2 Â∗ (p× q).

(iii) Let t(k1, k2) be a Postnikov fibration over B with distinguished fibre K×L, and
associated classifying map k. Then t(k1, k2) is a principal fibration if and only
if k factors through j∞, i.e. if and only if there exists a map f : B → K × L
such that j∞ ◦ f = k.

Proof. (i) Viewing the induced fibration as a Postnikov fibration E2 → E1 → K ×
L, E1 is obtained by pulling back p : PK → K over p∞ ◦ j∞, i.e. over the projection
K × L→ K. Hence the principal K - fibration E1 → K × L is p× 1L : PK × L→
K × L.

Then E2 is obtained by pulling back the path fibration q : PL→ L over the
projection PK × L→ L. Hence the principal L - fibration E2 → E1 may be taken
to be the map 1PK × q : PK × PL→ PK × L. The result follows.

(ii) This follows from (i) by elementary properties of pullbacks.
(iii)⇒ If t(k1, k2) is a principal fibration then, for some choice of f ∈M0(B,K ×

L), t(k1, k2) = f∗(p× q) = f∗j∗∞t(p∞, e∞) = (j∞ ◦ f)∗t(p∞, e∞). Now k1 and k2

determine k uniquely, so k = j∞ ◦ f , and k factors through k∞.
⇐ t(k1, k2) = k∗t(p∞, e∞) = f∗j∗∞t(p∞, e∞) = f∗(p× q). So t(k1, k2) is the pull-
back of a principal fibration, and hence is itself principal.
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Let D,W and X be pointed spaces and g : W → X be a pointed map. Then there
is a covariantly induced function g∗ : [D,W ]0 → [D,X]0, g∗([f ]) = [g ◦ f ].

Lemma 7.4. Let D have the pointed homotopy type of a pointed CW-complex
and connectivity greater than or equal to some positive integer n. If g induces
isomorphisms of homotopy groups in dimensions > n, then the induced function
g∗ : [D,W ]0 → [D,X]0 is a bijection.

Proof. This is a slight variation of the corresponding result where g is a weak
homotopy equivalence [S, Cor.7.6.23].

Proposition 7.5. Let 1 < m < n < 2m, and B have connectivity greater than n−
m+ 1. Then the induced function (j∞)∗ : [B,K × L]0 → [B,M∞]0 is a bijection.

Proof. πi(M0(K,L; c(e))) ≈ [K,ΩiL]0 (utilizing repeated applications of the expo-
nential law for cg-spaces) ≈ [K,K(H,n+ 1− i)]0 ≈ Hn+1−i(K;H). This is 0 if
n+ 1− i < m, i.e. if i > n−m+ 1.

If N is a CW-complex, with distinguished point n0, then the based map v =
v(N) : M(N,L; c(e)) → L, that evaluates at n0, is a fibration (the proof follows
easily via the expononential law for cg-spaces [V, Thm.3.6]).

Now K has the homotopy type of a CW-complex N , so the analogue of v for K,
i.e. v(K) : M(K,L; c(e)) → L, is a quasi-fibration with essentially the same exact
homotopy sequence as v(N). Further, v(K) has a section j0 : L→M(K,L; c(e)),
with j0(w)(y) = w, where y ∈ K and w ∈ L, and its distinguished fibre is
M0(K,L; c(e))).

Inserting known zero values of πi(M0(K,L; c(e)) into the exact homotopy se-
quence for v(K), we see that πi(v) : πi(M(K,L; c(e))) → πi(L) is an isomorphism
for i > n−m+ 1. Now πi(j0) is a right inverse to πi(v), so πi(j0) is an isomorphism
for the same range of values.

The map j∞ (see 7.2) is a fibrewise map from the projection K × L→ K to
the fibration p∞ : M∞ → K. Its restriction to the distinguished fibre {e} × L = L
is j0. It follows, via the associated exact homotopy ladder and the five-lemma, that
πi(j∞) : πi(K × L) → πi(M∞) is an isomorphism for i > n−m+ 1. Hence (j∞)∗ is
a bijection for the specified range of values of i (Lemma 7.4).

Proof of Proposition 1.5. There is a group action

E(K × L)× [B,K × L]0 → [B,K × L]0

defined by composition. The action of Proposition 1.5 is just the cohomology inter-
pretation of that action.

Proof of the Stable Range Classification Theorem 1.6. (i) We have to verify that
the Hurewicz fibration case is equivalent to the principal fibration case, and this
follows immediately from (2.10), Proposition 7.3(ii) and Proposition 7.5.

(ii) The function (j∞)∗ is equivariant relative to the group actions described in
the proof of Proposition 1.5 and in Proposition 6.8(i). Then Proposition 7.5 ensures
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that the function induced by j∞, i.e.

[B,K × L]0/E(K × L) → [B,M∞]0/E(K × L, )

is a bijection.
The result follows if we compose the last bijection with that of Theorem 1.4, and

reinterpret [B,K × L]0/E(K × L) in terms of cohomology.
(iii) The orbit of (κ, λ) ∈ Hm+1(B;G)⊕Hn+1(B;H) corresponds to the orbit of

the homotopy class of 〈u, v〉 in [B,K × L]0. This in turn corresponds via Proposi-
tion 7.5 to the orbit of the homotopy class of j∞ ◦ 〈u, v〉 in [B,M∞]0, which then cor-
responds via Theorem 1.4 to the fibrewise homotopy type of (j∞ ◦ 〈u, v〉)∗t(p∞, e∞).
We know via Proposition 7.3(ii) that this is the orbit of 〈u, v〉∗(p× q) as required.

8. Examples

Example 8.1. If H = 0, then K(H,n) can be a one point space, and M∞ ∼= K (see
(M2) of [B1, p.89]). Hence

[B,M∞]0/E(K(G,m)×K(0, n)) ≈ Hm+1(B;G)/AutG,

so we have retrieved the classification theorem for fibrations whose fibres have a
single non-zero homotopy group.

Example 8.2. If G = 0, then K(G,m) can be a one point space, and M∞ ∼= L (see
(M2) of [B1, p.89]). Hence

[B,M∞]0/E(K(0,m)×K(H,n)) ≈ Hm+1(B;H)/AutH,

and we have again retrieved the classification theorem for fibrations whose fibres
have a single non-zero homotopy group.

Example 8.3. We use Theorem 1.6 to compute the set FHT(K(G,m)×K(H,n) :
St × Su), where m, n, t and u are positive integers with 0 < m < n < min(2m,
m+ t− 2).

(i) If t < u, the above set of fibrewise homotopy types is in bijective correspon-
dence with:

(a) (G/Aut G)× (H/Aut H) if m = t− 1 and n = u− 1.

(b) G/Aut G if m = t− 1 < n < 2t− 3, but n 6= u− 1,
or m = u− 1 < n < t+ u− 3, or
m = t+ u− 1 < n < 2t+ u− 3.

(c) H/Aut H if t−1
2 < m < t− 1 = n, or

max
(
u−1

2 , u− t+ 1
)
< m < u− 1 = n,

but m 6= t− 1, or
u+ 1 < m < t+ u− 1 = n.

(d) 0 if m,n /∈ {t− 1, u− 1, t+ u− 1}.



Homology, Homotopy and Applications, vol. 8(2), 2006 152

(ii) If t = u, the above set of fibrewise homotopy types is in bijective correspondence
with:

(a) (G⊕G)/Aut G if m = t− 1 < n < 2t− 3.

(b) G/Aut G if m = 2t− 1 < n < 3t− 3.

(c) (H ⊕H)/Aut H if t−1
2 < m < t− 1 = n.

(d) H/Aut H if t+ 1 < m < 2t− 1 = n.

(e) 0 if m,n /∈ {t− 1, 2t− 1}.
(iii) The cases where the classifying set has a single element, i.e. (i)(d) and (ii)(e),
are independent of the n < min(2m,m+ t− 2) assumption.

The actions of G and H on G⊕G and H ⊕H, respectively, are the diagonal
actions. Thus, in the former case, the rule is defined by (θ, u, v) 7→ (θ(u), θ(v)),
where θ ∈ Aut(G), and u, v ∈ G.

9. Proofs for Section 3

Proof of Lemma 3.2. (i) If φ and φ′ ∈ AutH, then

φ′ · (φ · t(k1, k2)) = φ′ · (t(k1, φ ◦ k2))
= t(k1, φ

′ ◦ φ ◦ k2)
= t(k1, (φ′ ◦ φ) ◦ k2)
= (φ′ ◦ φ) · t(k1, k2).

(ii) The fibrewise map Φ(φ) is a homeomorphism, since it has an inverse Φ(φ−1),
and so is certainly a FHE. Also the restriction of Φ(φ) to the distinguished fibre
{b0} ×K × L, or equivalently K×L, is 1× φ : K×L→ K×L, as required.

Proof of Lemma 3.4. This argument is parallel to that of Lemma 3.2, and uses
routine properties of pullbacks. The verification of (i) depends on the facts that
postcomposition with θ and precomposition by θ−1

∧ both depend covariantly on θ.
The fibrewise map Θ(θ) of (ii) is a homeomorphism, since it has inverse Θ(θ−1). The
restriction of Θ(θ) to the distinguished fibre {b0} ×K × L = K × L is θ × 1: K ×
L→ K × L, as required.

Proof of Lemma 3.5. The results of (i) follow via the exponential law for cg-spaces.
Thus ψ1 may be determined from ψ by applying that law once, and ψ2 derives
from ψ1 by applying it again. The results of (ii) are obtained if we apply similar
procedures to a based homotopy K × I → L.

Proof of Lemma 3.8. (i) Let ψ and ψ′ ∈M0(K,L). Defining ψ′ · (ψ · k2) involves
applying the cofibration property twice to k2, first using ψ1 and then ψ′1.
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However if we define ψ1 + (ψ′)1 : K × I → L by

(ψ1 + (ψ′)1)(y, t) =
{
ψ1(y, 2t) t 6 1/2
(ψ′)1(y, 2t− 1) t > 1/2,

then a single application of the cofibration property using k2 and ψ1 + (ψ′)1 =
(ψ + ψ′)1 yields a member of the same homotopy class (E1, {b0} ×K) → (L, {e})
(see (2.9)). Hence ψ′ · (ψ · t(k1, k2)) and (ψ + ψ′) · t(k1, k2) have the same 1FHT,
and it follows that we are dealing with a group action.

(ii)(a) We consider a Postnikov fibration t(k1, k2), with associated principal
fibrations p1: E1 → B and p2 : E2 → E1, and apply the argument of (2.10), with
r : Z → B taken as q : PL→ L,A = E1, H = S(k1, k2, ψ) of (3.6), f = k2 and g =
ψ · k2. There is a specific procedure for computing liftings over path fibrations (see
[S, Cor.2.8.8]) and so, after following through the details, we obtain a homotopy
R : E2 × I → PL with restriction R1 : E2 → PL, where

R1(b, y, z)(t) =
{
z(2t) t 6 1/2
S(b, y, 2t− 1) t > 1/2,

b ∈ B, y ∈ PK, z ∈ PL, and (b, y, z) ∈ E2. We must also consider the Postnikov
fibration t(k1, ψ · k2), with principal fibrations p1 : E1 → B as before, and pψ2 : Eψ2 →
E1, where Eψ2 = E1 u (ψ · k2)PL and pψ2 = (ψ · k2)∗(q).

Then, using Ψ = Ψ(ψ) to denote the corresponding FHE h, we have

Ψ: E2 → Eψ2 , (b, y, z) 7→ (b, y, R1(b, y, z)).

(b) Now t(k1, k2)−1{b0} = {b0}×K×L = t(k1, ψ · k2)−1{b0} (see (3.7)), hence
the restriction over {b0} of the FHE Ψ is (essentially) a self-homotopy equivalence
of K×L→ K×L.

(c) The restriction of R1 over {b0} is essentially

R1|({b0}×K ×L) : K×L→ L, (y, z) 7→ R1(b0, y, z) = z + S(b0, y,−),

where {b0} × K × L is equated with K × L, and + is the operation on L.
Now S : E1×I → L extends ψ1 : {b0} ×K × I = K × I → L, so S(b0, y,−) =

ψ1(y,−) ∈ L. Hence ψ1(y,−)(t) = ψ1(y, t) = ψ(y)(t), where y ∈ K, t ∈ I, and so
ψ1(y,−) = ψ(y). So we have shown that if y ∈ K and z ∈ L, then R1(y, z) = z +
ψ(y).

(d) Hence Ψ: E1 → Eψ1 restricted over b0 ∈ B is

K×L→ K×L, (y, z) 7→ (y, z + ψ(y)).

Now 〈1, ψ, 1〉 × 〈y, z〉 = 〈y, ψ(y) + z〉, so the homotopy commutativity of the oper-
ation on L ensures that Ψ is a (1, ψ, 1)-FHE.

Proof of Lemma 3.9. Parts (i), (ii) and (iii) are contained in parts (i) of Lemmas
3.2, 3.4, and 3.8, respectively. The proofs of (i) and (iii) are spelled out in the proofs
of Lemmas 3.2 and 3.8. We verify the most difficult of the remaining three cases,
i.e. (v), and leave the others to the reader.

We notice that ψ · (k2 ◦ (1 u θ−1
∧ )) and ((ψ ◦ θ) · k2) ◦ (1 u θ−1

∧ ) are both termi-
nating maps of homotopies that extend the same map, i.e. both are restrictions
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to (B u (θ ◦ k1)PK)× {1} of homotopies (B u (θ ◦ k1)PK)× I → L, both of which
extend both k2 ◦ (1 u θ−1

∧ ) : (B u (θ ◦ k1)PK)× {0} → L and ψ1 : {b0} ×K × I →
L. It follows, via (2.9), that these homotopy extensions are homotopic via a homo-
topy that extends the constant homotopy {b0} ×K × I → L with value e ∈ L.

Each of these terminating maps induces the “E2 → E1” fibration of a specific
Postnikov fibration, in both cases with E1 = B u (θ ◦ k1)PK. It follows by the rel-
ative version of (2.10) that there is an FHE, between these fibrations, that restricts
to the identity over {b0} ×K. Hence this FHE is a 1FHE between the corresponding
Postnikov fibrations “E2 → B”.

So ψ · (θ · t(k1, k2)) = ψ · t(θ ◦ k1, k2 ◦ (1 u θ−1
∧ )) which is 1FHE to

t(θ ◦ k1, ((ψ ◦ θ) · k2) ◦ (1 u θ−1
∧ ))) = θ · t(k1, (ψ ◦ θ) · k2) = θ · ((ψ ◦ θ) · t(k1, k2)).
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