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Abstract
We use an interlaced inductive procedure reminiscent of the

integration process from traditional deformation theory to con-
struct a homotopy Lie-Rinehart resolution for the Lie-Rinehart
pair which arises as an exercise in Poisson reduction in the
context of the BFV construction of classical BRST cohomol-
ogy. We show that the associated homotopy Rinehart algebra
and the BRST algebra are isomorphic as graded commutative
algebras. In the irreducible case, the two have the same coho-
mology.

1. Introduction

In this paper, we utilize a strategy akin to the process of integration found in
traditional deformation theory (see, for example, [GS90]) to construct a homotopy
Lie-Rinehart resolution (KA/I^I/I2) for the Lie-Rinehart pair (A/1,1/12) that
appears in the BFV formulation of classical BRST cohomology. A Lie-Rinehart pair
is a couple (B, sg) which admits a structure analogous to that shared by the associa-
tive commutative algebra C°°(M) of smooth functions and the Lie algebra T(TM)
of smooth vector fields on a smooth manifold M. The term Lie-Rinehart pair is not
widely used. More often, sg has been called a (B, fe)-Lie algebra, [Rin63] [Pal61]
and [Her72]. More recently, Lie-Rinehart pairs have appeared as Lie algebroids (see
[dSW]).

An associative algebra A is a Poisson algebra if it admits a Lie bracket { , }
such that for any a £ A, the map {a, } is a graded derivation with respect to
the multiplication, i.e., {a,bc} = {a,b}c± b{a,c}. A multiplicative ideal 1 of a
Poisson algebra A is coisotropic if it is closed under the Poisson bracket on A.
Poisson reduction of a Poisson algebra A by a coisotropic ideal 1 is no more than
the observation that while the quotient A/l is not a Poisson algebra (unless 1 is a
Poisson ideal), the subset of X-invariant classes in A/l is again a Poisson algebra.
The X-invariant classes comprise the zeroth cohomology of the Rinehart complex R
for the Lie-Rinehart pair (A/1,1/12).
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Mathematicians and physicists (see, for exammple [Sta88], [KS87], [FHST89],
[HT92], [Kim92a], [Kim92b], [Sta92], [Kim93] and [Sta96]) recognized the clas-
sical analogue of the Batalin, Fradkin and Vilkovisky (BFV) construction of the
quantum BRST complex ([BV77], [BF83], [BV83] and [BV85]) as something
new and interesting because BRST cohomology performs Poisson reduction with-
out passing first to the quotient A/I. The BFV construction of the classical BRST
algebra (see, for example, [Kim93]) begins by replacing A/I with the Koszul-Tate
resolution [Tat57] and adjoins formal (ghost) variables to the Koszul-Tate resolu-
tion. They then exploit a graded Poisson bracket to construct a differential. Under
certain conditions, the BRST algebra (A, T>) is a cohomological model for the Rine-
hart complex of (A/l,l/l2).

In general, constructing cohomological models for the Rinehart complex (B,sg)
by the traditional homological means of replacing both B and sg with resolutions
fails unless the Lie-Rinehart structure of the pair (B,sg) is preserved. In [KjeOl],
we defined homotopy Lie-Rinehart pairs and the associated homotopy Rinehart
algebra in the context of coalgebras. We defined homotopy Lie-Rinehart resolutions
and presented conditions under which the associated homotopy Rinehart algebra is
a cohomological model for the Rinehart algebra of the resolved Lie-Rinehart pair.

Summary

The coalgebra setting is used throughout this paper. First, we revisit the defi-
nitions of the Lie algebras of subordinate derivation sources, resting coderivations
and shared Lie modules, which lie behind the coalgebra realizations of both ho-
motopy and non-homotopy Lie algebras, Lie algebra modules, Lie-Rinehart pairs
and Rinehart cohomology. We review homotopy Lie-Rinehart resolutions for Lie-
Rinehart pairs and the conditions under which the homotopy Rinehart algebra for
a homotopy Lie-Rinehart resolution is a model for the Rinehart cohomology com-
plex for a Lie-Rinehart pair (§2). Next, using an interlaced inductive process, we
construct a homotopy Lie-Rinehart resolution for the Lie-Rinehart pair in classical
BRST algebra (§3). One surprising result is that the homotopy Rinehart complex
associated with the homotopy Lie-Rinehart resolution is isomorphic to the BRST
algebra (§4).

We have omitted all sign arguments from the proofs in this paper, as they are
not generally instructive. All vector spaces, algebras and coalgebras in this paper
are over a field k of characteristic zero. All tensor products are over k and all maps
are at least fc-linear or fc-multilinear.

Note that sg is the suspension of the Lie algebra g, i.e., all elements of g are
assigned degree zero and hence, all elements of sg have degree 1. Throughout this
paper, we will identify all Lie algebras (and strongly homotopy Lie algebras) with
their suspensions. At first, this identification will be explicit; later, when we work
with I/I2 and 'Kx/x2 > w e will hide the suspension.
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2. Necessary Background

Review of Chavalley-Eilenberg and Rinehart cohomologies
For any Lie algebra sg and sg-module B, an n-multilinear function /„ : (sg)xra —¥

B is alternating if fn(sxi,...,sxi,sxi+i,...,sxn) = —fn(sxi,...,sxi+i,sxi,...,sxn).
The Chevalley-Eilenberg complex is the set of all alternating multilinear functions
Altk(sg,'B), graded by n, and equipped with a degree +1 differential SCE •
Aiq(sg,B) -»• Aiq+1(sg,B) given by

> fn(sX0, • • - , SXi, ••- , SXn)

i=0

-^2(-iy+3~1 fn([sXi, SXj], SX0, ..., SXi, — ,'SXj, ••-, SXn),

i<j

_ (1)
where sxu indicates that sxu should be omitted. The map to is the sg-module action
of sg on B. Any element b G B is considered an element of A/£°(sg,B). The image
of b under 5CE is defined by setting 5cEb(sx) = ui(sx <S> b). When B is an algebra,
the Chevalley-Eilenberg complex is a differential graded commutative algebra. For
/„ and gm in Altk(sg,B), the product /„ — gm is given by

(fn w 9m)(sXi,...,SXn+m) = J ^ fn{sXa(i), ..., SXa(n})gm(sXa(n+1), ..., SXa(n+m) ) .

unshuffles

An (n,m)—unshuffle is any permutation a in the symmetric group S r a + m such that

<r(l) < • • • < <r(n) and a(n + 1) < • • • < a(n + m),

first a hand second a hand

where a(j) is the element of the set {1,. . . , n + m} moved to the j t h position under
a. The differential 5CE acts as a derivation with respect to this multiplication.
The cohomology of this complex with respect to 5CE is the Chevalley-Eilenberg
cohomology of g with coefficients in B [CE48].

Definition 2 .1 . [Rin63] Let B is an algebra and sg be a Lie algebra, both modules
over an algebra A over a field k of characteristic zero and modules over each other.
We denote the leffB-module action JJL on sg by fj,(a<S>sa) := asa. Letui : sg<8>B —»•
B (or, alternatively, ui : sg —¥ Der(B)y) denote the sg-module action on B . The pair
(B, sg) is a Lie-Rinehart pair, provided the Lie-Rinehart relations (LRa) and (LRb)
are satisfied for all a, b e B and sx, sy e sg:

LRa: ui(asx <S> b) = a • ui(sx <S> b), where • indicates the multiplication on B.
LRb: [sx, asy] = a[sx, sy] + to(sx <8> a)sy.

Suppose (B,sg) is a Lie-Rinehart pair and the alternating function /„ is B-
multilinear, i.e., fn(a\sxi,...,ansxn) = a\ • • • anfn(sx\,...,sxn). Because the Lie
action map ui maps sg into the derivations of B and as a result of the Lie-Rinehart
relations, the image of /„ under the Chevalley-Eilenberg differential SCE is again
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B-multilinear, despite the fact that the bracket is not B-multilinear. The Rine-
hart algebra R = AltB(sg,'B) with differential 5R = SCE is a subcomplex of the
Chevalley-Eilenberg algebra and the cohomology with respect to 5R is the Rinehart
cohomology of SQ with coefficients in B [Rin63].

Coalgebras and Subcoalgebras
A graded coassociative coalgebra is a pair (C,A), where C is a graded module

over k together with a 0-degree coassociative comultiplication A : C —¥ C <g> C. A
function / with degree | / | = r is a coderivation on C if ( / <g> 1 + 1 <g> / )A = A / . The
set of all coderivations on a coalgebra C, denoted Coder(C), is a graded Lie algebra
under the graded commutator bracket, that is to say, [/,g] = fg — (—l)\fWg\gf for
all / and g e Coder(C), where | / | and \g\ are the degrees of / and g.

We will work with the tensor coalgebra Tc(sV) = ®(sV) , where sV is the
suspension a graded module V over a fc-algebra A, where k is a field of characteristic
0. We will let sv[i t 0 n] denote the element svi <8> • • • <8> svn G (sV)®n. The internal
graded action p£ of the symmetric group Sra on (sV)®n is given by a • (sv^i t 0 „]) =
Kid(a)s?V[i t 0 n] for all n, a e £„ and su[i t 0 „] e (sV)®". The symbol siV[i t 0 n]

is shorthand for st;CT(i) <S> • • • <S> sva(n), where a(i) is the element of the ordered
set {l,...,k} which moves to the ith position under a. The factor Kid(c) is the
sign produced by rearranging the sv^s into the a order, following the Koszul sign
convention, which states that exchanging two objects of homogeneous degrees p
and q (whether elements or maps) introduces a factor of (—l)pq. The action pA =
{pA}^=1 of {T,n}^=1 on Tc(sV) is defined in the obvious way. The /3A-invariant
subcoalgebra is well-known as the graded commutative coalgebra f\(sV) and is
generated by elements of the form

^2 K id(^)s^[l to n],

which we will denote by svb t 0 ny The coassociative comultiplication on /\(sV) is
given by

n

}) = E E K '<^) (SVP[1 to i]) ® («<y+l to „]) •
io

to n}
i=o .

(j.n-j)

where it is understood that the second sum is over all (j, n — j)-unshuffles.

Shared Lie modules, Subordinate and resting coderivations
Three algebraic objects are vital for what follows. The graded Lie algebra

Coder^{f\{sV)) is generated by the set of coderivations ln on /\(sV), each of which
rests on a specific subordinate coderivation mn in the Lie algebra Coder^{f\{sV) <g>
W). For a graded commutative algebra W, the Lie algebra Coder{^(f\(sV) <S> W) is
generated by the set of all coderivations mn, each of which is both subordinate to a
specific resting coderivation ln and a W -derivation source. Finally, the graded com-
mutative algebra Homw (f\(sV), /\(sV)<8> W) is generated by the set of all VF-linear
maps /„ from f\(sV) into f\(sV) <S> W. This algebra admits a shared Lie module
structure over both Coder{^(/\(sV) ® W) and Coder{^(/\(sV)). We review what
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the terms subordinate coderivation, W-derivation source, resting coderivation and
shared Lie module mean. For a more detailed development, see [KjeOl].

We extend any map ln : (sV)An -»• sV to a coderivation on the coalgebra /\(sV)
by setting

ln(8V[l to *]) = J2 Kid(^)^(«<[l to „]) A SVp[n+l to *]• (2)
p

(n,k—n)

Definition 2.2. A map mn on f\(sV) <g> W is an /ra-subordinate coderivation if
the degree ofmn and ln agree and mn, as the extension of a map mn : (sV)An~1 <g>
W -»• W as a coderivation on /\(sV) <g> W, is defined on (sV)k <E> W by setting
mn(sv(l t 0 k]®w)= Inisv^ t 0 k]) (g) w +

K id(mn; svA
{1 t 0 k_n+1]) • svA

{1 t 0 k_n+1] ® mn(svA
[k_n+2 t 0

(k-n+l,n-l)

(3)
when k ̂  n — 1 and setting mn = 0 when k < n — 1.

The set of all subordinate coderivations Codev(/\(sV) ® W) forms a graded Lie
algebra under the graded commutator bracket. The bracket respects subordination,
that is to say, if rrn and rrij are /; and /^-subordinate coderivations respectively,
then [mi,m,j] is a coderivation subordinate to [h,lj]-

Definition 2.3. An ln-subordinate map mn is a VF-derivation source if for every
sv[i to n-i] ?n (sV)An~1, the map mn(sv?l t0 ra_1i ® ( )) : W -»• W is a graded
derivation on W.

The subset of all ^-derivation sources in Codev(/\(sV) ® W) forms a graded
Lie subalgebra denoted by Codevw(f\(sV) ® W). The subset of all coderivations
ln G Codev(/\(sV)) which admit a subordinate ^-derivation source mn forms a
graded Lie subalgebra which we will denote by Coderw(f\(sV)).

We can extend any map /„ : (sV)An —¥ W to function from f\(sV) into f\(sV) ®
W by setting /„ = 0 for k < n and, for k ̂  n, setting fn(sv£ t0 fci) =

J2 Kid(a) Kid(/r»; «^[1 to k-n])SVa[l to fc-n] ® /n(s^[fc-n+l to *])• (4)
{k-n,n)

The set of all such maps is denoted by Hom(f\(sV), f\(sV) ® W). The algebra
structure on W extends to a graded commutative algebra structure on f\(sV) ®
W, which provides Rom(f\(sV), f\(sV) ® W) with a cup product. If /„ and gs

are maps in Hom(/\(sV), f\(sV) ® W). Then /„ ̂ ~- gs is given by setting (/„ -—-
9e)(sVA

 t 0 n+s]) =

J2 K idW Kid(<?*; SVA
{1 t 0 n ] ) / n ( s^ [ 1 t 0 n]) • 5«(««P[n+l to „+»])

(n%)

on (sy)Ara+s, where • represents the the multiplication on W (henceforth, the • will
be suppressed). The map /„ -—- gs is then extended to all of f\(sV) as in equation
(4).
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If the graded module sV is a module over the graded commutative algebra W,
then /\(sV) is a module over the tensor algebra TW. We will follow our general
convention and denote wisvi A • • • A wnsvn by wsv^ t0 ny The unraveling map

V : f\(sV)-t W <8> f\(sV)

t 0 n ] (->• u([ l to n ] ) ^ t 0 n ] <g> su[i t 0 „],

where u([l to n]) is the sign produced when moving the Wi's past the SVJ'S. The
map U respects the coalgebra structure of /\(sV).

Definition 2.4. A map fn : (sV)An ->• W is W-linear if

fn(lVSvfc to n]) = U([l tO n]) K i d(/n ; Wji to n])W[l to n]/r*O[l to n])-

Likewise, a map mn : (sV)An~1 ® W —¥ W is VF-linear «/

u([l t o n - 1]) K id(mn; w{1 t 0 n_i])wji t 0 n-i]mn(su(i to n-i]

For a map mra : (sy)7^™"1 ®W^tW,we define the V-extension map m^
(sV)An ->• y by setting

to n]) = YJ Kid^mniiVSV^ to n_i] ® Wp(n)).SVp(n).

(n-1,1)

Definition 2.5. Gwen a W-linear, W-derivation source mn e Coderw(/\(sy) ®
W) W/MC/J «S subordinate to ln e Coderw(/\(sy)), tAe map /„ is said to rest on mn

if ln(wsv(l t 0 n]) =

U([l tO n]) K i d ( / n ; Wji to n])W[l to n]'n(sU[i t 0 n ] ) + me
n(w.SV^ to „])•

The subset of Codevw(/\(sV)) of all coderivations lp which rest on VF-linear W-
derivation sources mp forms Coder{^(/\(sV)). Similarly, the subset of
Coderw(/\(sV) <g> W) consisting of all WMinear ^-derivation sources mp subor-
dinate to maps lp, which in turn rest on mp, forms Coder{^(/\(sV) <S> W).

Suppose mp e Coder{^(f\(sV) <S> W) is subordinate to lp e Coder(/\(sV)). Re-
markably, the map

(mp, ) : Homw(/\(sV), /\(sV) ®W) ^ Homw(/\(Sy), f\(sV) ® W),

given by setting

<mP, /n> = mp/n - Kid(mp; fn)fnlp

on (sl /)Ara+p~1 and extending (mp, fn) to all of /\(sV) as in equation (4) is well-
defined [KjeOl]. This map exposes the shared Lie module structure on
H.omw(/\(sV), /\(sV) <g> W) [KjeOl]. In a sense, it is simultaneously a Lie-module
over both CoderJ£(A(sV) ® W) and Coder^(A(sy)) in that {{murrij}, ) =
{m,i,{mj, )) — Kid(mj;mj) (mj, (mj, )). The map (mp, ) acts as a derivation
with respect to the cup product.
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Homotopy (and non-homotopy) Lie algebras and their modules
Strongly homotopy Lie algebras (shLie algebras) first appeared implicitly in

[Sul77] and explicitly in [SS] in the context of deformation theory. A concise in-
troduction to shLie algebras is found in [LM95]. The definitions below were lifted
directly from [LM95] and [LS93] and then modified in [KjeOl] to fit the language
of this paper. The machinery used in deformation theory (see, for example, [GS90])
will prove useful in the process of constructing an shLie structure and an shLie mod-
ule structure on the resolution of the Lie-Rinehart pair in §3, although we will not
use the language in the traditional way.

Definition 2.6. An £(m)-structure on a graded module sL consists of a system
of coderivations {Ik : f\(sL) —>• f\(sL) : 1 sj k sj m sj oo,k ^ oo} which
are extensions of maps Ik : (sL)Ak —>• sL. Each Ik has degree — 1. Moreover, the
following generalized form of the Jacobi identity is satisfied for n sj m:

= \ E MJ=0 (5)

on f\(sL). If L admits an £(oo)-structure, then L is a strongly homotopy Lie
algebra (an shLie algebra).

For this paper, we will view a standard Lie algebra sg as a degenerate shLie
algebra f\(sg) where all coderivations l{ are zero except l<i- We decorate the bracket
h on sg to distinguish it from l2 on the shLie algebra which resolves f\{sg).

The following maps will be useful in §3, where we will use a deformation theoretic
approach to construct an shLie algebra together with an shLie module.

Definition 2.7. For n > 1, the n th Jacobi coderivation Jn : /\(sL) -»• /\(sL) is
given by

For an £(m)-algebra, Jn = [h,ln] for every 2 < n < m. Since [h,ln] = hln +
(—l)""1/,^! and h is a differential on L, it will be useful to have a name for the
following map even though it is not a coderivation on /\(sL).

Definition 2.8. For n > 1, the nth Jacobi obstruction map JoBSTra : (sL)An -»• sL
is given by

In the language of deformation theory (see, among others, [Ger63], [Ger64],
[Ger66], [Ger68], [GS90], [GS88], [FGV95] and [FGV]), an £(m)-structure on L
may be extended to an £(m+l)-structure if there is a linear map lm+i : LAm+1 —>• L
such that JiDm+i = 0 or> equivalently, such that |[/i,/m+i] = Jm+i- What we are
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deforming here is a bit obscure and less important than the process of extending an
£(m)-structure. The graded Lie algebra Coder(/\L), together with the differential
given by [h, ], governs the extension theory of £(m)-structures on /\ L. If we were
viewing the construction of an £(oo)-structure strictly as a deformation theory
problem rather than simply borrowing the machinery, the map Jn would be called
the n th obstruction. However, in the context of our construction in §3, the use of
the map ,/oBSTn is more consistent with the common notion of an obstruction. The
following lemmas concerning Jn and JoBSin w1^ also be useful in §3.

LEMMA 2.9. The coderivation Jn is a cocycle, i.e., [li,Jn] = 0.

Proof of Lemma 2.9. We will show that [h, -4J n ] = 0.

h, V 2[lj}k - T

Since [h, [lj,h]] = [[k,lj],h] - [[li,h],lj], it follows that

[li,[h,li]] + [li,[li,h]]

= [[h,hlh]] ~ [[h,h],h]] + [[hMM ~ [[h,h]M]]
= 0.

Therefore, [h,Jn} = -\[h, -AJn] = 0. •

LEMMA 2.10. If sL admits an £(n)-structure, then WJoBSin = 0 on (sL)An.

Proof of Lemma 2.10. The map JoBSTn = - E (~1) i ( i~1)/i /i' s o

We substitute l\lj with — \ . lrh and reassociate so that

s>0,r>l

y us \L= y
+j+

\s>0,r>l
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If we let i + s = t + 1, the sum above becomes

+ + I t
i,s>0

Since Jiut = 0 on (sL)At for all 1 sj t sj n — 1, the final sum above is zero. •

Definition 2.11. [LM95] Let (sL, k) be an C(p)-algebra (0 < p < oo) and let M be
a differential graded module with differential mi. Then a left £(fc)-module structure
over sL on M (for k ^ p) is a collection of coderivations {mn : /\(sL) <g> M -»•
/\(sL) <s> M : 1 ^ n ^ k,n ^ oo}. Each mn is I„-subordinate and the extension of
a map mn : Lhn~1 <g> M —>• M SMC/I tAat i/ie n t h action identity map

^(7Ti D n = - ^ [mhmi] = 0

on f\(sL)®M. The differential graded module M is a strongly homotopy Lie module
over sL (or an sL-shLie module) if sL admits an C(oo) -structure and M is a module
with respect to that £. (oo) -structure.

Definition 2.11 implies that the differential mi on M must be /i-subordinate. It
is simple to verify that mi is a differential on /\ L <g> M.

When M is a differential graded commutative algebra, we will insist the maps
mi be M-derivation sources, that is to say, the map m,i(v[i t 0 i-i] ® ( )) : M -¥ M
is in Der(M) for every vfc t 0 ^ ^ e LM~1.

In this paper a module B over a Lie algebra g is a degenerate shLie module
A(sfl) ® B over the shLie algebra /\(sg), where all the coderivations m,j are zero
except for m-j (again, we decorate this particular map).

Below, we define the maps ACTn and ^4CToBSTra, the analogs oijn and

Definition 2.12. Forn > 1, the n t h action map ACTn : /\(sL)®M ->• /\(sL)®M
is given by

ACTn = ~\ Yl K>m<]-

Definition 2.13. For n > 1, i/ie n t h action obstruction map
(sl/)7^™"1 (g) M ->• M is

If sL is an £(p)-algebra and M is an £(n)-module over sL with n < p — 1 (or
n < oo if p = oo), we can extend the £(n)-module structure to an C(n + l)-module
structure if an ln+i-subordinate M-derivation source mra+i : (sL)An <g> M —>• M can
be found such that ACT\Dn+1 = 0. Again, what exactly we are deforming here is
less important than the language and machinery of deformation theory.
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The following lemmas and their proofs mimic lemmas 2.9 and 2.10 and their
proofs.

LEMMA 2.14. The coderivation ACTn is a cocycle, i.e., [mi, ACTn] = 0.

LEMMA 2.15. If L admits an C{p)-structure and M is an L-C(n)-module for n <
p — 1 (or n < oo if p = oo,), then miACToBSTn = 0 on LAn~1 <g> M.

PROPOSITION 2.16. [LS93] If {sL,U) is an shLie algebra, the map DsL = Y^Lih
is a differential on f\(sL), i.e. it is a map of degree -1 such that DS£ o DS£ = 0.

Proof of Proposition 2.16. A proof can be found in [LS93]. Here the proof is essen-
tially the same but takes advantage of the bracket of coderivations:

oo

= ££¥* = £ £
i=l *=1

Using equation in definition 2.6, we see that
OO - . O O -. OC

V V / • / • - - V V r z - M - - \
7 7 V t Vt 7 7 \ V t * V t I 7

' •* ' •* J l 2 / J ' J 2 *-
n=l i+j=n+i n=l i+j=n+i n=l

Note also that DsL is a degree —1 coderivation, so DsL o DsL = ^[DsL,DsL] and
the graded skew-commutativity of the bracket ensures that [D s i ,D s i ] = 0. •

For the Lie algebra /\(sg), the differential DSB = l<i-

PROPOSITION 2.17. The map D M = X ^ i m; is a differential on f\(sL) <g> M, i.e.,
D M ° D M = 0.

Proof of Proposition 2.17. Isomorphic to the proof of proposition 2.16. Notice that
D M is Ds i-subordinate and that D M ° D M = | [ D M , D M ] = 0. •

For the Lie module A(sfl) ® B, the differential D B = m^-

Homotopy Chevalley-Eilenberg cohomology
Definition 2.18. A homotopy Chevalley-Eilenberg pair (M, L) consists of an shLie
algebra L and an L-shLie module M.

A multi-linear graded alternating function Fn : L
xn -»• M can be seen as a

linear function Fn : (sL)An -»• M. So the homotopy Chevalley-Eilenberg algebra
Altk(L, M) is isomorphic to Homfc(/\(sL), /\(sL) <g> M) with the differential 5hCE =
( D M , )

PROPOSITION 2.19. ShcE ° $hCE = 0.

Proof of Proposition 2.19. 6hcE ° ShCE = ( D M , ( D M , )) = ( | [ D M , D M ] , ) =
0. •
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The cohomology with respect to ShCE is the homotopy Chevalley-Eilenberg co-
homology of sL with coefficients in M. A quick check shows that the Chevalley-
Eilenberg cohomology complex for the pair (B,sg) is simply a degenerate form of
the homotopy version where 8cE = ShCE = (fni, ) because m̂  and l{ are zero for
all i ^ 2.

When M is a differential graded commutative algebra, the homotopy Chevalley-
Eilenberg complex Homfc(/\(sL), f\{sL) <g> M) is a differential graded commutative
algebra. The differential Sh,cE acts as a derivation with respect to this multiplication.

Homotopy Lie-Rinehart pairs and homotopy Rinehart cohomology
The homotopy Rinehart complex is a straightforward generalization of the Rinehart
complex in the ungraded setting. Since the Rinehart complex is defined only for Lie-
Rinehart pairs (B,sg), we must define what constitutes a homotopy Lie-Rinehart
pair (M,sL). The subset AltM(sL,M) of Altk(sL,M) consisting of all M-linear
graded alternating functions is isomorphic to Rom M {/\{s L), /\{sL) <g> M).

Definition 2.20. A homotopy Lie-Rinehart pair (M, sL) consists of a differential
graded commutative algebra (M, mi) which is an shLie module over the shLie algebra
(sL,li), which in turn is an M-module. Moreover, the following two homotopy Lie-
Rinehart relations must be satisfied for all i Jj 1:

(hLRai): The shLie module structure map m* is M-linear.
(hLRbi): The shLie structure map /; rests on rrn (definition 2.5).

An £(p)-Lie-Rinehart pair ((M, rrn), (sL, /j)) has maps rrn and k which satisfy
and {hLRbi) for 1 ̂  i ^ p.

The proposition below follows from the fact that, for every i, the image of F under
the map (m ,̂ ) is again a map in HomM{f\{sL), f\{sL) <g> M) for all i [KjeOl].

PROPOSITION 2.21. If F is M-linear, then so is 6hcEF.

We conclude that the subset of all M-linear functions in Homfc(/\(sL), /\{sL) <g>
M) forms a subcomplex 11 = HornM{/\{sL), /\{sL) <g> M) with differential Sn =
(DM, )• The differential, together with the cup product, provides the homotopy
Rinehart complex 11 with the structure of a differential graded commutative algebra.
The cohomology of 1Z with respect to Sn is the homotopy Rinehart cohomology of
sL with coefficients in M.

The following two propositions for general homotopy Lie-Rinehart pairs (M, sL)
are observations based on the fact that both Coder^/y {sL)®M) and Coder^ (/\(sL))
are graded Lie algebras.

PROPOSITION 2.22. The maps ACTiDn and ACTn are are J\Dn and Jn-subordinate,
respectively; both are M-linear and M-derivation sources.

The significance of this proposition lies in recognizing that, as a result, each of the
maps ACT ID n and ACTn are completely determined by their image on a generating
set for f\{sL) as an M-module and a generating set for M, so long as the maps
JiDn

 a nd Jn are available.
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PROPOSITION 2.23. The maps Jmn and Jn rest on ACTmn and ACTn, respec-

Here again, the implication is that the maps Jmn and Jn are completely determined
by their image on a generating set of f\(sL) as an M-module.

Homotopy Lie-Rinehart resolutions of Lie-Rinehart pairs
Let (B, sg) be a Lie-Rinehart pair over a fc-algebra A with module structure

maps ju : B <g> sg -»• sg and m-i : sg ® B -»• B. Let /2 denote the bracket on
sg and TTB denote the multiplication on B. The basic ingredients of a homotopy
Lie-Rinehart resolution for a Lie-Rinehart pair (B,sg) are (sL,li) and (M,mj,7TM)
where H^ (sL) = sg and HTOl (M) = B.

Definition 2.24. A homotopy Lie-Rinehart resolution of a Lie-Rinehart pair (B, sg)
over an algebra A is a homotopy Lie-Rinehart pair (M, sL) over A, such that

(a) the shLie algebra (sL,li), seen as the coalgebra f\(sL), resolves /\(sg), i.e.,

(6)

where (following the physicists' notation) H^ denotes the homology with re-
spect to the differential h,

(b) the differential graded commutative algebra (M,mj,7TM) satisfies

H r a i(/ \(sL)®M) = / \ (sg)®B, (7)

(c) the dgca (M,rrn,-KM) also satisfies

Hmi(M<8>M) = B<g>B. (8)

Furthermore, the following conditions hold:

i. Bh(l2) =h on /\(SQ).

ii. HTOl (m2) = m~2 on f\(sg) <8> B .

in. H m i (TTM) = TTB on B <s> B .

In the proposition below, we state conditions on the homotopy Lie-Rinehart pair
that guarantee it satisfies definition 2.24. The proof is found in [KjeOl].

PROPOSITION 2.25. Let (M,sL) be a homotopy Lie-Rinehart pair. Suppose the dif-
ferential graded algebra (M, mj,7TM) is a projective resolution of B over A which
respects the algebra structure on B , i.e., condition in of definition 2.24 is satisfied.
Suppose (sL,li) is a projective resolution sg. Furthermore,

(a) Rit (h) = h on sg A sg and

(b) HT O l ( m 2 ) = ffi2 on sg <8> B .

Then (M,sL) is a homotopy Lie-Rinehart resolution of (B,sg).

We used a spectral sequence argument in [KjeOl] to prove the following theorem.

THEOREM 2.26. / / the pair (M, sL) is a projective homotopy Lie-Rinehart resolution
of the Lie-Rinehart pair (B,sg), then (7Z,(DM, )) is a cohomological model for
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3. Constructing the homotopy Lie-Rinehart pair
, ~KZ/T2) and classical BRST cohomology

Constructing homotopy Lie-Rinehart resolutions for a Lie-Rinehart pair is not
always easy, as we will see as we construct a homotopy Lie-Rinehart resolution
(Kyi/x,Kj/j2) for the Lie-Rinehart pair (A/I,X/X2) from classical BRST coho-
mology. Details which are not instructive (especially sign arguments) are ommitted,
but can be found in [Kje96].

The Lie algebra X/X2 has already been suspended, i.e., every element of X/X2

has degree +1 and the bracket /2 is a coderivation on ^X/X2. However, we will
suppress the suspension indicator "s" both here and in the shLie algebra Ki/12.

Let the set ya = {t/i, ...,t/s} generate the coisotropic ideal X as an finitely pre-
sented A-module. If ya forms a basis of X over the field k, there is a unique set
of structure constants C6

af5 e k, each of which is antisymmetric in its lower in-
dices, such that {yajyp} = Cf/32/<5- (Note: We will use Einstein's summation con-
vention throughout §3 and §4.) With structure constants, the Jacobi identity is a
statement about coefficients, namely C^Cg7 + C^7Cga + C^aCgp = 0 for every
e. When the generators do not form a basis for X over k, we can still find (not
necessarily unique) structure functions C6

af5 in A such that {ya,yp} = CipVs- (In
the BRST context, the elements of the Poisson algebra A are functions on a sym-
plectic manifold, hence the term structure functions.) The Jacobi identity becomes
(C^C^ + {Cap,y-y} + c.p.)ye = 0, where c.p. stands for cyclic permutations of
a.,/3 and 7. For convenience we will set Je equal to (C^C^ + {C^,y7} +c.p.), so
that the Jacobi identity can be written as Jeye = 0. The Jacobi identity is now a
relation among the generators of X.

Definition 3.1. [Kim93], [FHST89] Let X be finitely generated by the set ya =
{yi,...,ys}. The set is irreducible if faya = 0 implies fa = ga^yp, where each
coefficient ga/s is antisymmetric with respect to its indices. An ideal which has a set
of irreducible generators is called irreducible.

Definition 3.2. [Kim93], [FHST89] An ideal X which is finitely generated by
the set yai = {t/i, t/2, • • •, ySl} admits a complete set of reducibility functions if
there exists ZaZ'1 in the complement of X, such that for n = 2, 2^yai = 0 and
faiyai = 0 implies that f011 = g012^ +Ta^yp1, where T"1* = -T^1"1 . For
n > 2, Zll^ZalZl = 0 mod X and f^^Z^l! = 0 mod X implies /""-1 =
g°lnZa2~1 mod X. An ideal which admits a complete set of reducibility functions is
reducible.

We consider only ideals which are either irreducible or reducible. Since the Jacobi
identity is a relation among the generators of X, when the ideal is irreducible, we
have Jeye = 0 implies Je = geSys- When the ideal is completely reducible, we have
Jey£ = 0 implies Je = ga*Z%2 + T^yPl.

The quotient X/X2 inherits a Lie structure from X and is both an A and an A/X-
module. There is a Lie action of X on A given by z • f = {z, / } , which passes to the
quotient so that A/X is a Lie-module over both X and X/X2. Although (A/X, X) is
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not a Lie-Rinehart pair, the pair (A/2,2/21) is. The actions /x and to are given by

H:A/2®2/22 ->• X/X2 w : X/X2 <g> A/X ->• A/X
_ ® z (->• /z z ® / (->• •!>,/},

where _ and " denote equivalence classes. It is a straightforward exercise to show
that the Lie-Rinehart relations are satisfied.

The construction of / /
Before we describe how we construct the homotopy Lie-Rinehart resolution
(K-A/XJ K-X/Z2) for the pair (A/2,2/22), we skip ahead to STEP 1, where we review
the features of the Koszul-Tate resolution K-A/I of A/2 (see [Tat 5 7] and [Joz72]), a
free differential graded commutative algebra over A which is a projective resolution
of A/2.

STEP 1: The Koszul-Tate resolution KA/x
The Koszul complex K(0) is a dgca over A and is isomorphic to A®[\{T\,T2, •••, Vs},
where the TVs are assigned degree 1 and are in one-to-one correspondence with the
generators t/;. (Following the physics literature, we call the TVs antighosts [HT92].)
The differential mi maps each Vi to t/; and m\ is extended as an A-linear graded
derivation. The zeroth homology of the Koszul complex is A/2 even if higher ho-
mologies do not vanish. Using the inductive method Tate introduced in [Tat57], we
kill an unwanted nontrivial homology class [zq] of degree q by adjoining a formal vari-
able VZq of degree q + 1 to the existing Koszul complex. The variable VZq maps to zq

under the differential, killing the unwanted homology. But these new variables may
introduce new nontrivial homology on higher levels, which must in turn be killed.
More formally, if X is reducible and generated by the set y a i = {t/i,..., ySl}, the ze-
roth homology of the Koszul complex K(0) = A<g> f\{Vai} is A/2, but Hi(K(0)) may
not be zero. The unwanted homology classes form a module generated by the cycles
za2 = Z^Vai, so we adjoin degree 2 antighosts Va2 and setting mi(Va2) = za2.
The resulting differential graded commutative algebra K(^ = A(g>/\{Vai,Va2} has
homology H0(K(!)) = A/2 and Hi(K(!)) = 0. Again, H2(K(!)) may contain non-
trivial classes, either as a result of introducing the level two antighosts or because
they were already present in K(0). Regardless of origin, we choose a generating set
zas for the nontrivial 2-cycles and adjoin degree 3 antighosts Vas to kill them. The
third homology of K(2) may be nonzero, so we continue the process. The complete
reducibility of X guarantees that a representative for each nontrivial n-class can be
chosen so that each zan+1 = /̂ ™ 1Van+ "more". The limit K ^ ) is the Koszul-Tate
projective resolution "K-A/I of A/2 and is isomorphic to A <g> /\P, where P is the
graded vector space with basis {Pa^,Va2,Vaz,...}. The product TTK on KA/x is
a chain map. It is straightforward to check that Hmi(?rK) = ?r / , that is to say,

A/I

condition (in) in definition 2.24 is satisfied.
A chain / 7 P j in K.A/I, where P / = Van "'T~'anBi has homogeneous degree,

which we again denote by I. In context, we will not confuse the index I with the
degree I. The boundary of an antighost Van will be denoted as ZaZ~1Van_1 +
Z^Pj whenever the "linear" term plays an important role. Otherwise, we will set
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m\{Van) =ZIa PJ - Whenever possible, an element of ~KA/T will be denoted simply
by A".

When A is a Poisson algebra and the ideal X is a multiplicative ideal, the Koszul-
Tate resolution K-A/I admits a graded Poisson bracket given by {fIPi,gJPj} =

The Procedure
The construction of (K-A/II ^-X/X2) relies on four features: the Poisson structure on
the Koszul-Tate resolution K.A/I, the relations among the generators of X, the fact
that both "KA/X a nd ^-x/x2 a r e projective resolutions of A/1 and l /T 2 , respectively,
and an A-module coderivation \t from K-A/I to K.x/x2- A general outline of the
process follows:

STEP 1: Choose a Koszul-Tate resolution KA/x for A/l. The differential on
K-A/x is mi, which must satisfy condition (Hi) in definition 2.24. (Already
done!)

STEP 2: Construct a differential graded K^/j-module Kx/x2 which is a pro-
jective resolution of l/l2 (See propositions 3.3 and 3.4). The action /j, :
K-A/I <8> Ki/j2 —>• Ki/j2 is free, i.e., Kx/j2 is isomorphic to K-A/X ® $> where
$ is a graded vector space over k which is isomorphic to the graded vector
space P. (We have already suspended the graded vector space $. Therefore,
K.x/x2 is already suspended.) We construct the differential on K.x/x2 using the
coderivation *. The differential h rests on mi, so the pair (KA/X^X/X2) has
an £(1)-Lie-Rinehart structure.

STEP 3: The loop—defining the homotopy Lie-Rinehart structure maps mn

and ln. For n ^ 2, the loop extends the C(n — 1)-Lie-Rinehart structure to an
£(n)-Lie-Rinehart structure.

(an). Constructing mn. Since the map mn must satisfy the homotopy Lie-
Rinehart relation (hLRan) and be a K^/j-derivation source, the map
mn is completely determined once we define it on $Ara~1 ® A and the
basis elements ip^ t0 ra_i] ® P n of $Ara~1 <g> P, such that yi ^ • • • ^ ipn

with respect to a degree-preserving total ordering of the preghosts:
i. Define mn on $Ara~1 <g) A by setting mn(y>[i to n-i] ® /) =

(- l )^-!^! to «-2]

Here, the inductive assumption (step ara_iiii "above") guarantees that
mn is well-defined on $Ara~1 ® A. The extended Poisson bracket on
K^/j in the definition guarantees that mn will be an A-derivation
source. (Does not require proof.)

ii. Verify that ACT\Y)n = 0 on $A™-1 ® A by showing that m\mn =
ACToBSTn°

n that subspace. (Requires proof. See proposition 3.5.)
iii. Ensure that mn is well-defined and that ACTiDn = 0 on $A™-1 <g>

P by exploiting the acyclicity of KA/X to define mn on the basis
V[i to n-i] ® ̂ *nof $Ara~1 (g) P with y)i ^ • • • ^ tpn. (Requires proof.
See proposition 3.6.)
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iv. Since ACTmn is completely determined by its image on the generat-
ing set ^>An~1 <g A and $A™-1 ® P (recall Proposition 2.22), it follows
that ACTiDn = 0 on all of K ^ 1 <g KA/X and therefore ACTmn = 0
on / \ K i / j 2 (g) "KA/I- (Does not need proof.)

(&„). Constructing /„. The map /„ must rest on mn and is therefore completely
determined once we define it on <J>Ara.

i. Set ln(ip[i to n]) = fen(^[i to n-i] ®^n)- Since mn is well-defined on
$Ara~1 <g P , it follows that the map ln is well-defined on $Ara. (Does
not need proof.)

ii. Verify that Jmn = 0 on <J?Ara. We do so by showing that on the space
$Ara~1 (g) P, the sequence of equalities

/ 1 / n ( l A "" 1 (g * ) = f ro i ro n =

holds. (Requires proof. See proposition 3.7.)

iii. Since JiBn rests on ACT\Dn (recall Proposition 2.23) and Jmn = 0 on
<J>Ara, it follows that Jmn = 0 on all of K j m and therefore Jmn = 0
on / \ K i / j 2 . (Does not need proof.)

STEP 4: Verify that the conditions (i) and (ii) in definition 2.24 are met.

2
STEP 2: Constructing K I / I 2

The shLie algebra K j ^ is the free K^/j-module K ^ / j (g $. The graded vector
space $ is spanned by the graded basis {fai > ^a2 > ^03 )•••}> where there is a one-to-
one correspondence between the preghosts ipai, and the antighosts Vai. Each y a i i

is assigned degree n. (The vector space $ is the suspension of the vector space $
found in [Kje96].) A typical element has the form XIP"nipan, where X 7 P " " is an
element of "K-A/I- AS before, the degree of XT~P"n in K.A/X will be denoted by I.
The degree of the element XI~P"nipan, then, is the sum (I + n). Whenever possible,
an abbreviated form Xanipan will be used for a typical element, in which case the
degree of Xan will be denoted by an, again, without confusion.

When X is irreducible, the map h = mi <gl is a differential on Kx/X2 RJ KA/X<g>$,
whose homology is AJX (g $, which is isomorphic to X/J 2 as A/X-modules. The
isomorphism is given by sending fai(pai i->- faiyai- The details are left to the
reader. It follows that K.x/X2 is a resolution oiX/X2.

We define a degree 0 A-linear map * : K ^ / j —> Kx/X2 by setting *( -P a n) = <Pan

and extending $ a s a graded derivation, i.e., ^(VaiT-'ai) = (—^)^T-'ai
lfai +T->aifai-

In the irreducible case, the map ^ is a chain map.
In the reducible case, the graded module ~KX/X2 does not come equipped with

a differential; we must build one. The tool we need is the map \&. We create l\ on
K2/22 so that ^ is a chain map. We set l\ (<-pan) = ^lm\ (Van) and extend l\ to all of
K2/22 so that it rests on m\. The map $ is a chain map provided l\ is a differential
on Ki/12.
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PROPOSITION 3.3. h o lx = 0 on K j / p .

Proof of Proposition 3.3. We begin by showing that h (h (ipan)) = 0. Recall that * is
a chain map. It follows that h(h(ipan)) =h(V(m1(Van))) = #(mi(miCPaJ)) =0 .
Since l\ rests on m\, it follows that

+ (-

= 0. D

The spectral sequence argument below proves that K J / J ? resolves X/2 2 as mod-
ules.

PROPOSITION 3.4. Rh(Kx/X2) = l / l 2 .

Proof of Proposition 3.4. The module K ^ p is naturally bigraded. The bidegree of
the element Xa"ipan is (an,n). The differential decomposes as h = (mi<g>l) + dW +
^(2) ^ with respect to the filtration of Kx/X2 by preghost degree, where mi <8> 1
has bidegree (—1,0) and d^ has bidegree (i — l,i). The differential on the Eo term
is mi ® 1. The kth row of the Eo term is K ^ / j <g> $(ft) where $(-ft-) is the vector space
spanned by the ipak 's. Each row is exact except in the first slot. Therefore the E\
term of the spectral sequence is concentrated in the first column:

0 .

Since the E\ term collapses to one column, the homology of Kx/X2 with respect to
l\ will be the homology of the E\ term.

Let K be the kernel of the map TT : A/1 <g> $ (^ —y l/l2 which sends /^_ ®

V>ai to faiyai. We need to show that $V{A/l® $W) = if. (C): Since hyan =

Zan~1<-Pan-i + "more", it follows that d f 1 ' / 0 " ^ = / a "2a°"Vo n _r Consider any

element fa2ipa2 of A/1® $(2). The image under TrdW is zero because for all a2 the

sum 2^yai = 0. (D): Suppose ir(faiipai) = faiyai = 0. Recalling that the ideal
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X admits a complete set of reducibility functions, we see that

foil,. — hai^11lo II =$• if011 — hai^11la )il — D

=> f011 = g^ZH mod X.

It then follows that dW(g^_ipa2) = ga2Z^ipai = f^y>ai. We conclude that the
zeroth cohomology of Kj/Z2 with respect to h is (A/X(g>^^)/K, which is isomor-
phic to X/X2 as modules. For higher cohomologies, suppose fanipan is a cocycle.
Then

^f*n=g«n+i2«:+i m o d I

Hence, the higher cohomologies are zero. •

The map * is quite useful. We constructed h so that * was a chain map. In the
notation of shLie algebras and shLie modules, we were able to show that Jim = 0
on $ because ^ACTmi = J m i * and ACTmi = 0 on * ~ 1 $ . We shall see this
pattern of proof again in proposition 3.7.
^Let P j = VI^-VI. e KA/X. Then *(P/) = K(J i )P^ / i , where P1/ = Vh • • •
Pit '' 'Pi. an<i Pit indicates that this factor is omitted. The sign K(JJ) is the sign
produced by moving Vit past Vi1 • • • Vii_1 • Recalling that m\Van = Z ^ P / , we can
write Zi(v?aJ= K^^Z^P^^.

STEP 3: The loop
We prove the three propositions needed to complete the inductive step of the loop.
Then we will return to n = 2 and define m<i at the one location where both
and Kx/j2 are not exact.

PROPOSITION 3.5. (3anii) If we setmn(^[i t0 n_i] <g>/)=(-l)n{mn_i(y>[i to n-i\
Vn-i),f}, foripx ^ ••• ̂  <Pn-i, then

i'll to n-l] ® /)) = -ACToBSTn(tP[l to n-1] ® /)•

Proof of Proposition 3.5. We omit sign arguments and specific signs, opting instead
for ±. Using the definition, mimn(ip[i t0 n-i] ® / )

= ±m1{mn-1((f[1 t0 n_2] <8>Vn-i),f}

= ±{m1(mn-i(<p[1 to n-2] ®Vn-1)),f}±Zf1 t0 n_1 ]{mi(P,i),/},

where mn_i(y[i t0 n_2] ®Vn-i) = Zj* t0 n _ 1 ] P^. Now, ACTOBSTn(<P[i to n-i] ®/)
contains one term ±m2{ln-i{<*P[i to «-i]) ® / ) which uses the (n — l,O)-unshuffle.
But since

ln-l(<P[l to n - l ] ,
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and m2 is

j t0 n_1}Pi^ ® /) = ±Zjt t0 . . . ^ j ]

Since mim n _i is equal to ^4CToBSTra-i, we may rewrite ±{mim n _i (y^ t 0 ra_2] <8>
P n _ i ) , / } as ±{^CTOBSTn-i(y>[i ton-2] ® ^ " n - i ) , / } , which must equal the re-
maining terms in the map ACToBSTnO^i to n-i] ® / ) •

We organize the remaining terms by unshuffle. Let a be an (i,j — 2)-unshuffle. Ap-
plying a to y>[! t 0 „_!] produces two hands y>CT[1 t 0 ;] and <pa[i+1 t 0 n _ i ] . In
ACToBSTni^lL to n-i] ® /)> there are two terms in which the ip^s appear in the a
order. They are

(Mjliia) = ±mj(li(ip(T[1 to i]) A Va[i+1 to n-l] ® / )

and

( M J + I M J - . K T ) = i m i + i ^ f ! t 0 ,] ® m j _ i ( ^ [ j + i t 0 n_i] <g> / ) ) .

There is a unique (j—2, i)-unshuffle p which switches the a hands, i.e., <-Pp[j-i to «-i]
^ [ i to i] and ^ [ i to i-2] = ^CT[i+i to n-i]- T h e t w 0 terms in which the <^'s appear
in the p order, written in terms of a are

(M i + 2lL i_2a) = ±mi+2(/?_2(<>V[i+l to n-l]) A ̂ [ i to i] ® / )

and

(Mj-_iMi+i<7) = ±mj-i((pa[i+i to n-l] ® mi+l{Va[l to i] ® /))•

Organized in this way, the terms remaining in ACTOBSTn{f[i to n-i] ® / ) can be
rewritten as

2<i<n (*,J-2)

Without loss of generality, we now compute the sum

for the identity (i,j — 2)-unshuffle e and show that the sum equals the two terms in

±{ACTOBSTn-l(.<Pll to n-2] ® ? V l ) , / }

for which ip^ t 0 n_2] <8>Vn-i is split into the hands ip^ t 0 j] and y>[i+i t 0 n_2] (

The terms of the sum M^Lje + M i + i M j _ i e + M i + 2 L j _ 2 e + Mj-_iM i + ie expand
to become
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(MjLje) = ±{mj-!(kiip^ t 0 i\) A ip[i+1 t 0 n-2] ® Vn-i, / } (-4)
±{Zfl to i]' / l m i - l (^[i+l to n-1] ® PA) , (5)

_l_/7-B /7J4 f l i p TJ //-T\
- ±iZ'[i+l to n-1]' i^Il to i]' JSS^BfA (,O j

±{Z[i to i]' / l m i - i (V[i+i to n-i] ® P A ) , (£>)

= ±(Z[t to i], (Zf+1 to n-1], /}}PAPB (S)

-1 t o n — l l ' J J *~l~l \ r [1 t o xj

} (G)

f t 0 n_1}, f}mi+1 (^[! t 0 i] ® P B ) , (if)

Terms which are identical up to sign cancel, i.e., (B) cancels with (D), (F) can-
cels with (H). After exchanging P ^ and P,4 in (C), we can combine (C) with (£?)
and use the Jacobi identity to produce ±{{Zj^ t 0 ̂ ,Z^+1 t 0 n_1APAPB, f}, where
we have brought P ^ P B inside the bracket. Since rrn+\ (ip^ t 0 j] <S> Z^+1 t 0 ra_1,) =
^ i i t o i j ' f + i t o n - i ] } ^ ' t h e t e r m a b o v e becomes ±{mi+1(ip[1 t 0 q®
Z^+1 t 0 ra_1i)Ps,/}- To this we add (G), yielding one of the desired terms:
±{mi+i(y>[i t 0 i] ®mj-i((p[i+1 to n-2] ®Vn-i)),f}. This term and (A) are the two
terms in ±{ACTOBSTn-i(

iP[i to n-2] ® Vn-\),f} for which ip^ t 0 n_2]®
Pn_i is split into the hands <̂ [i t 0 j] and y[j+i to n-2] ® Vn-\ • Therefore, for each
(i,j — 2)-unshuffle a, we produce a term of the form ±{mj_i(/j(first a hand) ®
(second a hand)),/} and a term of the form ±{mj+i((first a hand)®
m,j-i(second a hand)),/} with the appropriate signs. As j runs from 2 to n, j — 1
runs from 1 to n — 1, so as we run through all (i,j — 2)-unshuffles and divide by
two, we produce ±{ACTOBSTn-i(<P[i to n-2] ® Vn-i),/}• n

PROPOSITION 3.6. (3araiii) -For n ̂  3, one can define mn(y>[i to n-i] ®^"n) /or eac/i
element of the totally ordered basis for $Ara~1 <g> P so that mn is well-defined and
so that

mi(mn(^[i to n-l] ®Vn)) = ACToBSTn&il to n-1]

Proof of Proposition 3.6. We ensure that mra is well-defined on $Ara~1 ® P by
defining mn on the basis elements y>[i t 0 ra_i] ® "Pn with ip\ ^ • • • ^ (pn with
respect to the total ordering of the preghosts. The image of y>[i t 0 ra_i] Vn under
ACTOBSTU is m

 K-A/I- The map ACTOBSTU has degree —2, so for n ^ 3, the
degree of ̂ .CToBSTnO^i to n-i] ®^n) is at least one, at which level ~KA/T is exact.
So if we can show that

TTHACTOBSTni^ll to n-1] ®^n) = 0,

then a pre-image exists which we can set equal to mn((p[i to n-i] ® 'Pn)- Since
^ C n = ACTn — mnm,\ and that ACTn is a symmetric chain map, we find
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that

n = m1{ACTn - m

= m\ACTn —
= ACTnm\ —
= (ACTn — m\mn)m\.

Let us begin by examining mn on an ordered basis element y>[i t 0 ra_i] <g> Vn with
\(fi\ = 1 for all i. For such a basis element we have

to n-i] ® ̂ n) = (-4CTn - mimn)mi(y[i t 0 n _

= (ACTn - m1mn)((p[1 t0 n_

Since we already know that -4CTiDn(y>[i t 0 n-i] ® J/n) = 0, we can replace ACTn —
m\mn with (—l)™"-^^! , yielding mnm\(tp^ t 0 „_!] ® j/n)> which equals 0.

The proof is completed by strong induction. Let tp^ t 0 n-i]k ® ^nfc be the kth

basis element in the ordered list and suppose ACTiDn(ip^ t 0 n-\\. ® Vni) = 0 for
all basis elements before the kth one, where once again,

mi ACT'oBSTn(v>[i to n-i]fc ® "̂n J = {ACT n - irnm^irn (ip{1 t 0 n_1]fc (8)PnJ.

The element m i ^ t 0 n_i]fc ® Pn^) can only have pieces in K ^ I 2 <g> K ^ / j for
0 ^ P ^ n — 1 and, moreover, the pieces in K^?^ 1 <g> K ^ / j contain only basis
elements of order less than that of ip^ t 0 n-i]k ®1?nk- So for m\{ip^ t 0 n- i] f c

we can replace ^4CTra — m\mn with mnm\. It follows that

t 0 n _i ] f c O P n J = m n ( m i ( m i ( ^ [ i t 0 n - )) =0. •

P R O P O S I T I O N 3.7. (3&nii) / / we set ln{V[\ ton]) = ^ n ^ i to n-i] ® Pn), then
= 0 on A

Proof of Proposition 3.7. As outlined above, we will prove that Jmn = 0 on <J?Ara

by showing that on $Ara~1 <g) P , the following equalities hold:

The first equality holds because the map * is a chain map. Since ACTiDn = 0, it
follows that niimn = ACTOBSTU- The second equality holds because f m i m n =
^ACTOBSTU- Showing that ^ACTOBSTn = JoBST n( lA n" 1 ® *) is more difficult
because \& does not commute with rrii for i > 1. We will need to organize ACToBSTn
and JoBSTn by unshuffle. Let a be any {i,j — 2)-unshuffle. The two terms in the
sum ACToBSTn f° r which ip^ t 0 n_^ ® Vn is split into the hands ip^ t 0 ̂  and
y<7[i+i to n-i] ® ̂ *n are

±mj {li{ipa[1 to i]) A W[i+l to n-l] ® Vn)

±mi+1 (^ [ i to i] ®mj-l(<A7[i+l to n-l] ®"Pn)) •

We will show that when \& is applied to each of the terms above, their sum becomes

± / j (li{<P<r[l to i]) A y<7[i+l to n - l ] A <£„)

(y<7[l to i] A / j - l (y<7[i+l to n - l ] A i p n ) ) .
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This fact completes the proof because we can expand JoBSTra (<P[i to n]) s o that ipn

is never moved. For any (i,j — l)-unshuffle which moves (fn, we will use the graded
symmetry of the shLie structure maps to move ipn back to the last position. With
this approach,

JoBSTniVll to n]) = /2 z J ( '•?' ('»(^Ml to i]) A (pa[i+i to n] )

i>0,i>l (*,J-2)

±'i+l (<Ar[l to i] A Z j - i ^ f i + i to n])))

Without loss of generality, we shall show that the desired equality holds for the
identity (i,j — 2)-unshuffle e. The e-terms of ACT'OBSTni'Pli to «-i] Q'Pn) a r e

mi {k{V[l to i\) A ̂ [i+i to n-l] n)

= ±Zj4 t o ^ " m , - ^ . A ̂ [ j + 1 t 0 „_!

and

(^[i to i] ® mj_i ((P[i+l to n-l] ®"Pn)

= ± i Z
[l to i]'Z[i+l to

Applying \& to MjlLj produces

± Z [1 to i ] P l a / i ( ^ a A ̂ [i+i to n}) ± Zft to i]"^i(y[i+l to n] ®

The map ^ acts on P ^ P B in the {}^,-_2) term to produce two terms

P^P^V-Bi,- Using the derivational property of the bracket and the definition of rrij,

the first term of {}(i>i_2) equals ±mj(ip[i+1 t 0 n] ® zji to i])p^a(>;'^a- Adding this

term to * (MjLj ) , we have

± Z [ t tO i ] P l a / i ( ^ a A ¥>[<+! tO „]) ± m," (¥>[<+! tO „] ® Z[t tO i ] P l a ) ^ a ,

which equals ±lj (Zj(^[i t 0 i]) A ̂ [ i + i t 0 n]) • Similarly, the sum of *(M i + iMj-_i )
and the second term of ^({}(j ,_2)) ^s the second desired term
±li+1 ((p{1 to i] A lj-i(ip[i+i to „])) • We produce all the terms in J O B S T J ^ I to «])
as we run through all (i,j — 2)-unshuffles with 2 < j < n. •

Return to n = 2:
We can define rri2{<Pan ® ~Ppm) inductively on ipan <g> Vpm with ipan ^ <ppm, just as
in proposition 3.6, except for ipai <g> Vp1 with ipai ^ ^ j . Since m2 must be a chain
map, mi(m2(y>ai (E>Vpm) should equal m 2 (y a i (S imi^^J) . Having chosen structure
functions C^i/3i in A, we find that m2(<pai ® miCP^J) = {t/ai,2//3i} = C^^y^,
which is in X. Therefore a pre-image exists under mi; we set m 2 (y a i (SiV^) =
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We have completed the definition of m2 and in doing so, have finished the defi-
nition of 1-2 on Kx/j2 as well.

STEP 4:
To complete the construction of the homotopy Lie-Rinehart resolution (KA/I, ^-I/I2)

we must verify that Hmi(m2) = fn2 on X/X2 <g> A/X and that H ^ ^ ) = In on
X/X2 A l / l 2 , i.e., conditions (it) and (i) in definition 2.24 are satisfied.

Let Ai be a splitting from A/X into K-A/I a nd let A2 be a splitting of X/X2 into
K I / I 2 . Then for z® / e X/X2 ®A/X, the map m2 maps A2(X/22) <8> \\{A/1) into
A. It follows that HTOl(;z®/) = m2(A2(^) <8> Ai(/)). Suppose X2(z) = g"1^^, which

implies that ~z = g" 1yai- Then

= 77^(2 <£>/).

Similarly, for any zAw, there exists an element pfVai A ̂ w /̂31 m KI(/j2
whose class is z A w. Then

= f2(z Aw).

We conclude that the homotopy Rinehart algebra 11 for the homotopy Lie-
Rinehart resolution ^A/XRX/X2) is a model for the Rinehart algebra R for the
Lie-Rinehart pair (A/XX/X2).

4. Comparing the homotopy Rinehart algebra 1Z with the
BRST algebra A

Following [FV75], [BF83] and [BV85], the classical BRST algebra A for the
Poisson reduction of the Poisson algebra A by a finitely presented coisotropic ideal
X is a differential graded Poisson algebra, built from a specific choice of Koszul-Tate
resolution KA/x of A/1. The BRST algebra A is formed by tensoring the graded
commutative algebra /\N with KA/I, where TV and P are isomorphic as vector
spaces over k. The basis elements of TV are denoted by {r]ai,r]a2,r]a3,...}, and are
called ghosts. The result is

A « / \ N ® A <B> / \ P
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(see [FHST89], [HT88], [Sta92], [HT92], [Sta96] etc.). Each rya" has the same
degree as the corresponding Van, namely n. If we let N1 denote a string of ghosts
fjOiri! A • • • A rfni = ry""!1 to ;i, the degree of N1 is the sum Y^l npy which we shall
denote by I without confusion. There are two significant gradings on the BRST
algebra A. Let N 7 / / P j be an element of A. The first grading is the internal degree,
which is the difference between the ghost degree # / J ( N 7 / / P J ) = I and the antighost
degree an%/i(N7 / /Pj) = J. The second grading is by ghost number. The ghost
number #/ i#(N7 / /Pj) = i if N1 = r?""!1 to ;i. The multiplication on A is given by
the multiplication in each of its three pieces and obeys the Koszul sign convention,
that is to say,

The Poisson bracket on K-A/I ls extended to all of A by setting {TV, TV} = {TV, A} =
0 and {r]an, Vpm} = 8^ (where 8^ is the Kronecker delta). If we view N as the
dual of P, this bracket formula is the usual symplectic structure on N © P [Sta92].

When Z is irreducible, Batalin, Fradkin and Vilkovisky ([BF83] and [BV85])
were the first to define a differential T> on A which is a Poisson derivation and whose
zeroth cohomology R°(A,T>) w {A/1)1 [BF83]. Later it was shown that the BRST
algebra (A,T>) is a model for the entire Rinehart complex in the irreducible case
(see [HT92]).

A K^/x-linear map Fj~ : /\ 'Kz/x2 -^ ^-A/X is completely determined by where
it sends each element of the ordered basis wa . Once we set na" equal the

^ " " [ 1 to it] / H

fc-dual of (pan, the map Fk can be represented by

\ ^ na"[i to k]Fk(ipa ).
' •* ' " " " " [ I to k] '

It follows that the homotopy Rinehart algebra 7Z m Homfc(/\($),K74/j). This fact
allows us to compare the homotopy Rinehart algebra with the BRST algebra A.

THEOREM 4.1. Given a Lie-Rinehart pair (A/Z^Z/Z2) and a specific Koszul-Tate
resolution K-A/X of A/I, the BRST algebra A = f\N <g> K-A/I is isomorphic to
the homotopy Rinehart algebra 7Z = HomKA (f\(Kx/x2)j Ai^-x/x2) ®^-A/I)

 as

and as algebras (but not necessarily as differential graded algebras).

Proof of Theorem 4.1. It is straightforward to show that the map sending

is bijective and respects the K^/j-module structures on both 7Z and A. We need to
show that it is a map of algebras. Let F; : /\\$) -»• 'KA/X and Gj : /\J($) ->• '
Recall that the product Fi -—- Gj : /\ ($) —>• 'K-A/XJ evaluated on ipap is

Y] K(a)
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This product can be represented in A by

E
Similarly, Ft = £ r ^ 1 *» ̂ ( ^ to ;]) and Gj =

The product of F; and Gj in 4̂ is

E

but the terms if^1 to ;i r?""!1 to •>] are no longer in the proper order. Returning the
r?'s in each term to the proper order produces the sign K(CT) corresponding to the
(i, j)-unshuffle a which places 7i[i t0 j+J-] into the hands r[i to i\ and [̂i to j\- The
sum above becomes

The bidegree (ghost number, internal degree) on A agrees with the bidegree
(external degree, (suspended internal degree — external degree)) on 71.

The differentials {Q, } and (DM, ) when X is irreducible
The differential T> is an inner-derivation on A, i.e. T> = {Q, }, where the element
Q e A has total degree +1 and {Q,Q} = 0. The element Q (called the BRST
charge) is a sum X)̂ =o Qm where Qn has ghost number n + 1. The Jacobi identity
for the Poisson bracket guarantees that D has square zero. We construct the BRST
charge Q using methods from homological perturbation theory. The BRST algebra
A is filtered by ghost degree and Qn is defined by induction on n once we select a set
of generators {ya} for X and structure functions C ^ [Sta92]. We set Qo = rfya

and find that Q\ must equal —\i]a'rfC1
OiQV1 in order to kill the nonzero piece of

{QCMQOJ with ghost degree 2. This process continues: for every i > 1, the terms of
{Y?n=o Qn, Y?n=o Qn} have ghost degree at least i + 1. An element Qi with ghost
degree i + 1 is selected to kill the terms with ghost degree i + 1.

With respect to the filtration of A by ghost number, {Q, } decomposes as
1 ® nil + <5R + fa + .... In terms of the BRST differential, 1 <g> mi is {Qo, }, p and

5R = {QU }|AN+{Qo, } U + { Q I , },AP

is, loosely speaking, a "lifting" of the Rinehart differential 8R on R. The £̂ i term
of the associated spectral sequence is isomorphic to f\ N <g> A/X and the differential
c?i for the E\ term which 5R induces on Hi®TOl (A) is the map SR.



Homology, Homotopy and Applications, vol. 3, No. 8, 2001 190

The filtration of 11 by external degree is the same as the filtration of A by
ghost number. The differential (DM , ) breaks up into the sum Y^Li (m»> )> where
(mi, ) increases external degree by i — 1. For any map Fk e 11, the map {mi,Fk)
is m\Fk because h = 0 on A(*)- Suppressing the sum over the ordered ba-
sis (it is henceforth understood), we write Fk as r?""!1 to k^Fk(ipani t k ) and the
map miFk is represented in A by r?""!1 to k^rriiFkUpa ) , which equals (1 <g>

[1 to fe]
mi)( r?a"11 to k]Fk{<-Pan ))• So (mi, ), when realized on .4., is 1 <g> mi . We con-
clude that in the irreducible case, the E\ terms of the spectral sequences associated
with {Q,—} and (DM , ) are isomorphic. The differentials for the E\ terms are
induced by 8R and (m,2, ), respectively; we claim that (5R = (m,2, ) . Because both
(5R and (m,2, ) are derivations, a quick check on the ghosts, antighosts and the
elements of A suffices. For rf, we see that (m2,t)a) {<-pp A y 7 ) = rfliitpp A

^ A

For P a , we find that {m2,Va) {<pp) = m2Va(<Pi3) = -m2(<P/3 ® Va) = C^Vs and

And for / G A, it is straightforward to compute that {iri2,f) (pp) = ^2/(^,5) =
m2{<pp ® / ) = {yp,f} and {riaya,f}(<Pi3) = Va{ya,f}(<Pi3) = {yp,f}- We con-
clude that (A, {Q, }) and (1Z, ( D M , )) are equivalent as models for the Rinehart
cohomology of the Lie-Rinehart pair (A/1,1/1?) when the ideal I is irreducible.

When the ideal is reducible, we know that (1Z, (DM, )) is also a model for the
Rinehart cohomology, but we do not know, except in cases arising from particularly
nice symplectic settings (see [FHST89]), whether (A,{Q, }) is a model for the
Rinehart cohomology. This problem will be addressed in a future paper.
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