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STRIPPING AND CONJUGATION IN THE
MOD p STEENROD ALGEBRA AND ITS DUAL

DAGMAR M. MEYER
(commaunicated by Hvedri Inassaridze)

Abstract

Let p be an odd prime and A* the mod p Steenrod algebra. We
study the technique known as “stripping” applied to A* and derive
certain conjugation formulas both for A* and its dual, generalising
work of J. H. Silverman for p = 2 (“Conjugation and excess in the
Steenrod algebra”, Proc. Am. Math. Soc. 119 (1993), no.2, 657 — 661;
“Hit polynomials and conjugation in the dual Steenrod algebra”, Math.
Proc. Camb. Philos. Soc. 123 (1998), no.3, 531 — 547) to the case of
an odd prime.

1. Introduction and statement of results

In this note we study the technique known as “stripping” applied to the mod p Steenrod
algebra A*, where p is an odd prime, and use the results obtained to prove certain conjugation
formulas both in A* and its dual. This generalises work of Judith Silverman carried out in [S1]
and [S3] for p = 2 to the case of an odd prime. More precisely, our results concern Steenrod
operations which lie in the sub-Hopf algebra P* of .A* which is generated by the reduced power
operations P(i), i > 1, in dimensions |P(i)| = 2i(p — 1). We use the convention P(0) := 1.

Of particular interest are the Steenrod operations in P* which are of the form

Plk; f] =P f) - PO f) - ... - P(pf) - P(f)

where k > 1 and f > 0. Note that P[1; f] is just P(f). Being a sub-Hopf algebra, P* inherits
the canonical anti-automorphism x of 4*; following notation introduced in [WW], we write
f instead of x(6). In particular, P(a) = x(P(a)) and P[k; f] = x(P[k; f]).

For m > 0 we define

m—1

y(m) ==Y p'.

=0
Our first main result is an explicit conjugation formula for P[k; f] in certain special cases. It
generalises Thm. 3.1 in [S1] to odd primes:

Theorem 4.6 For all positive integers s, t and ¢ with 1 < ¢ < p the following conjugation
formula holds:

Pls;ey(0)] = (=1)*“Plt; ev(s)]

The main result concerning conjugation in the dual P. is a conjugation formula for cer-
tain elements X7(k), which are defined in Section 5. This formula is the mod p analogue of
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Prop. 5.5 in [S3]. A special case states that modulo monomials of length strictly greater than
k the operations §Z(k) and (—1)““5,;’(’) coincide up to a certain error term; the conjugate of
the error term is a sum of monomials of length strictly greater than i:

Theorem 5.6 Let i,k > 0. Modulo monomials of length > k we have

k-1
0*gY - 30 i [ &)
Jj=0

T £7E€G (k)

éfY(k)

Here &(k) denotes the symmetric group acting on {0,1,2,... ,k —1} and & =0 forr <0.
In particular, if f <y(k+1) is a non-negative integer then

&Y NPl f1= (D)"Y NPl 1] = (~D)™Pli f (k)]

where we use the notation y N _ for the stripping operation D(y).

The ideas underlying the proofs of the results in this paper are similar to those of their
mod 2 counterparts in [S1] and [S3]. However, getting down to the details we note two major
differences that appear in the odd-primary case: first of all, in just about every formula we
prove there are some signs involved, and secondly (in Section 4) we have to deal with mod p
binomial coefficients which appear as non-trivial coefficients in our formulas. These difficulties
cause the generalisation of the mod 2 results to be not quite as straightforward as it may seem
at first glance.

Both Thm. 4.6 and Thm. 5.6 are essential ingredients for the work carried out in [M].
There the Steenrod operations P[k; f] are studied further; in particular the excess of these
operations is determined. In fact, that project was one of the main motivations for the work
on the problems discussed in the present paper.

Acknowledgements: I would like to thank Judith Silverman for many helpful comments on the
subject of this paper, in particular for supplying the elegant proof of Lemma 4.4 which is reproduced
here. I also thank Ken Monks for pointing out to me the work of Ismet Karaca on related problems
and for sending me copies of [Ka2], [Ka3].

2. Preliminaries

Let S denote the additive monoid of sequences of non-negative integers almost all of which
are 0, with componentwise addition. We write Os for the trivial element. Throughout we shall
use capital letters to denote sequences in S and small letters for their coordinates; e.g. S =
(s1,82,...). If Shass; =0 for i > L, we write S as (s1, $2,...,51). The degree of an element
S € S is defined to be |S| = 3,5, si(p* — 1), its length as len(S) = min{i > 0]s; = 0 Vj > i},
and its excess as ex(S) =) .-, s;. It will be convenient to adjoin an extra element x to S with
the property that * + 2 =z + % = * for all z € SU {x} =: §*. We also define sequences B(j)
for any j € Z:if j > 0 then B(j) is the sequence with b(j); := d;5, if j < 0 we set B(j) := *.

There are many interesting bases for A* and hence for P*; the most important and most
commonly used are the basis of admissible monomials (“admissible basis”) and the Milnor
basis. Recall that the monomial P(aq) - ... P(ay) with a, > 0 is admissible if a, > pa,41 for
all 1 < r < n; we also define P(0) = 1 to be admissible. The admissible basis of P* can be
parameterised in terms of the numbers s; = a; — pa;;1; that is, given a sequence S € S of
length n > 0, we define the admissible element E[S] := P(a1) - ... P(ay,) by setting a, = sy,
and a; = pa;jy1 +s; for 1 < i < n— 1. We also set E[0s] := P(0) = 1. For example, if
S =1(0,...,0, f) has length k then E[S] = P(p*~1f) ... - P(f) = P[k; f].

For the Milnor basis of P* consider the dual Hopf algebra P,.. This is a polynomial algebra
over F, on generators & (i > 1) in dimension 2(p’ — 1); we use the convention & := 1. For
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S € S we write ¢[S] for the monomial [[,5, &. In particular, {[B;] = ¢; for any j > 0. The
Milnor basis of P* itself is the basis dual to the basis of P, consisting of all the monomials
¢[S] with S € S; the element dual to £[S] will be denoted by M[S].

We further set M[x] = 0 = E[*] and {[+] = 0, and we adopt the convention that M[S] =
0 = E[S] and £[S] = 0if S is a finite sequence of integers which does not belong to S, i.e. with
at least one negative entry. In particular, & := 0 if ¢ < 0.

For any S € S we define length and excess of the monomial £[S] as len(S) and 2ex(S)
respectively. Likewise, for the admissible and the Milnor basis we define

leng(E[S]) :=len(S) =: lenp (M]S]),
exg(E[S]) :=2ex(S) =: expr (M][S]) .

More generally, suppose 6 is any homogeneous element of P* with a basis representation given
by 6 = >, a; B[S;], where B stands for either E or M. Then we set

leng(9) := m?x{lenB(B[Si])} = m?,x{len(Si)}
exp(f) := miin{eXB(B[Si])} = 2miin{ex(5i)} .

The excess of any operation # in P* can also be defined as ex(f) := min {n|0(,) #
0 € H*(K(Z/p,n);F,)}, where v, € H*(K(Z/p,n);F,) is the fundamental class. In fact,
all the different definitions of excess that we have given coincide (cf. [Kr]); in particular
exp(f) = ex(0) = exp(0).

By [Mi], the change-of-basis matrix in each dimension between the admissible and the
Milnor basis is upper triangular with diagonal entry %1, if for both bases we use the order
induced by the right-lexicographical order on S. From this it follows that for any S € S we
have leng(M[S]) = leng(E[S]) = len(S) and lenas(E[S]) = lenp (M[S]) = len(S), and one
easily sees that this implies lenps(0) = leng(0) for any 6§ € P*. Henceforth we denote this
common value simply by len(6).

3. Stripping in P*

3.1. Recollections about the stripping technique

Much recent progress on problems related to the structure of the Steenrod algebra has
been made by applying a tool that has become known as “stripping technique” (for a de-
tailed account see [W]). This technique applies to any Hopf algebra, so in particular to the
cocommutative, connected Hopf algebra P*.

Let A* denote the diagonal map of P* and (, ) the inner product. We consider the natural
action of the dual Hopf algebra P, on P* which is given for each £ € P, by

id®(¢,)

D(): P* S PP P

this action satisfies

(€-9,0) = (4, D()F) (1)

for all ¢ € Py, 6 € P*. The operation D(§) : P* — P* is called “stripping by &” and can be
considered as a kind of cap-product. For this reason the notation

D) =:£N¥

has become customary.

For the reader’s convenience we now recall some important properties of the stripping
operation (cf. [S2]):

Let A, denote the product of P, and ¢, the comultiplication; the canonical anti-automorphism
of P. will again be denoted by x, with x(y) =: . In what follows let ¢.(y) =: >y’ ® y" and
A*(0) =: >0 ®6". We write D for the F,-vector space with basis {D({[S])| S € S}.
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The maps x : P« — Py, Ay : P @ P — Py and ¢y : P, — P, ® P, induce maps
A:D®D— D, D(y1)®D(y2) = D(y1 - y2)
¢« :D—DRD, D(y)— > D(y)®D(y").
Proposition 3.1. The following formulas hold:
1 (yi+y2)NO=yiNO+yNO
(W1-y2)NO=(y2-y1)NO=y1N(y2N0) =y2N (y1 N )
) =22y No1) - (y" Nb)
)=y N61) - (¥ Nb:)

—

y N

yﬁ(61-62
g6y -0
ne =

<<
>

3.2. Stripping in the Milnor basis and in the admissible basis

The effect of stripping by an element y € P, on a Milnor basis element can easily be
described by writing y as a sum of basis elements [R]. In fact, recall that the comultiplication
A* of P* is determined by the formula

AT (MIS]) = Y M[S]® M[S"]
5'+5"=8
([Mi]). From this and the definition of stripping one easily sees that
ERINM[S]=M[S - R].

In particular, stripping does not increase length.
Determining the effect of D({[R]) on a given admissible monomial is more involved. More
generally, let P(a;)---P(a,) be any (not necessarily admissible) monomial in P*. For n > k,

we define V,,  to be the set of all sequences (v1, ... ,vy) in which the non-zero elements form

exactly the subsequence (p*~1,...,p,1). For example, V3 » consists of (0,p,1), (p,0,1), and

(p,1,0). For n < k, we define V,, ; := 0.
Proposition 3.2. With this notation
&N (Pla)-...-Plan)) = > Plar—v1)-...-Plan —vn).
VeV, k
Proof. The proof is analogous to that of Prop. 3.1 in [S3]. Alternatively, see [CWW, Sec-
tion 2]. ad
We note the following consequences:

Corollary 3.3. 1. If6 € P* has length n, then £§[S]N@ =0 for any S € S of length greater
than n; in particular & N0 =0 for any k > n .

2. If P(ay) -...-P(ay) is admissible of excess 2e, then
&N (Plar)-...-Plag)) =Plar —p* 1) - Plaz —p* ?) ... Play — 1),

which is again admissible and has excess 2e — 2. Consequently, if R = (r1,... ,1) € S,
then & N E[R] = E[(r1,... ,mk—1,7% — 1)].

3. In particular,

& NPk fl=Plk; f—1] and & NPlk; f] =Plk; f — 1],
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where the second equation follows from Prop. 3.1(5).
O

The next thing we determine is the action of D(ﬁﬁ]) on a given element § € P*. By [Mi],
conjugation in P, is determined by

= Y (1@ H e (2)

acPart(k)
where o runs through all ordered partitions a = (a1, @z, ... ,q(q)) of k, [(@) is the length of
the partition «, and o;(a) is the partial sum E;;ll a;.

Consequences 3.4. 1. The excess of & = {[By] is 2 for any k, so the summand with the
largest excess in formula (2) is the monomial corresponding to the partition « of length
l(a) =k with a; =1 for 1 <i <k, i.e. the summand

—1)* Hsi’“ = (—1)keg™
=1

which has excess 2y(k). Hence stripping by &, reduces excess by mo more than 2v(k).
2. Since §NP(f) =0 for alll > 1, we have
& NP(f) = (-1 nP(f)
_ { (=DFP(f = (k) if f=~(k)
0

otherwise.

3.3. Stripping P[A; f] by éi
We will be mostly concerned with the special Steenrod operations P[A; f]. Therefore we
take a closer look at the action of the stripping operations D(&}) on these elements.

Lemma 3.5. For any 0 in P* we have
&N (P2 f]-6) = P(pf) - (&N (P(£)-6)).

Proof. The proof is analogous to the proof of Lemma 4.4 in [S2]: recall that the comultipli-
cation in P, is given by

ko
OEDI AL 3)
=0
([Mi]). Hence by Prop. 3.1(3) we obtain
k .
& N (P[2;f1-0) = P(of) - (& N ( )+ (G NP@h) - (G0 (P -6).

Cons. 3.4(2) implies that éj NP(pf) = _5?71 NP(pf —1), thus

k

S EnPeh) - (€ n @) -9)

j=1

S

Z NP =1))- (€ 1y )" NP -0)

E” N (P(pf—1)-P(f)-6).
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But by the Adem relations P(pf — 1) - P(f) = 0, which proves the claim. a

The following more general result is now easily proved by induction on A, the case A = 2
being given by Lemma 3.5:

Proposition 3.6. For A > 2 and any 6 in P* we have

& N (P[A; f]-0) = PIA — 1;pf] - (& N (P(f)-6)) .
O

Finally, we investigate what happens if we strip P[A; f] by &, a total of j times. We note
that only the right-most 7 places are affected:

Proposition 3.7. Suppose A > j > 1. Then
& NP[A; f1=PIA —jip! f]- (L NP5 £) -

Proof. The proof is by induction on j, starting with j = 1 where the result is provided by
Prop. 3.6. O

4. Conjugation formulas for P*

In this section we establish some useful formulas involving conjugation of elements in P*. In
particular, we determine the simple formula for P[s; ¢y(t)] with 1 < ¢ < p that was announced
in the introduction.

Suppose that y is a non-negative integer. We use the notation «;(y) for the coefficient of p’
in the p-adic expansion of y, i.e. y =: 37, a;(y)pt.

The following lemma will be needed for the proof of Prop. 4.3.

Lemma 4.1. Suppose that k,l,c,m and e are non-negative integers with

1. k>1,

2.1<e<p—1,

8. m < pkt,

4. m=0 mod pl.

Then the following relation mod p holds:
ko _ ol ¢ kE_ ol
c — +e c\ (c — +e e
() =R O ) ) 0
pm =\t pm +1p pm + cp

Proof. The proof relies on the fact that mod p we have the relation (z) =I1 (& g;) There
0 %

are three cases: (I) ag(e) = ¢, (II) 0 < aq(e) <c¢—1,and (III) ¢+ 1 < ay(e) < p — 1. If we are

in case (I) then the first term on the right of (4) is 0 and

W —p) ey _ (e
pm —\pm +cpt
as required.

If we are in case (II) then the second term on the right of (4) is zero and so we have to

show that
c(pb —p') +e :_i c\ (c* —p')+e
pm - i pm + ip! ’

i=1
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=X 0

for 0 < ay(e) < ¢ — 1. Setting a := p — ¢ + a;(e) this amounts to showing that

>(5)(0) =0

for all p— ¢ < a < p— 1. In order to show this equivalence, note that

> (=2 = ()

as one sees by considering the coefficient of ¢ in the binomial expansion of (z + 1)°T® =
(z + 1)°(z + 1)%. Now the claim follows since (‘) =0forp—c<a<p—1.
Case (III) is similar. |

i.e. that

We will need the following multiplication formulas:

Lemma 4.2. Let v and v be non-negative integers. Then

P) - P) = (-1)' Y ('R' * eX(R)) MIR] (6)

R pu

and
PP = (-0 3 (M) i (7)

where the sum ranges over all sequences R in S with |R| = (p — 1)(u + v) and ( )p denotes
mod p binomial coefficients.

Proof. The proof of (6) can be found in [G]. The other equality, (7), can be extracted from
[Kal]. m|

Remark. In [Kal], our Lemma 4.2 is stated (wrongly) without any minus signs. Unfortu-
nately, Karaca does not explicitly say what his definition of ls(u) is. Instead, for the special
Milnor basis elements M[(0,...,0,7: = p®)] =: P§ he defines I/DE as (—=1)*x(P3). Since there
exists a basis of P* which consists of certain monomials in elements of the form Pj, it is
possible to ﬁgure out what the expressmn P( ) should mean according to Karaca’s definition,
assuming that Ps Py = P” Ps However, doing this translation one easily sees that there
should be some non- tr1v1a1 coefﬁcients in his formula. The correct result can nevertheless easily
be deduced from the argument given in [Kal].

After these preparations we are in a position to prove the following “hat-passing formula”,
which is a slightly generalised odd prime version of the formula given in [S1, Lemma 2.3]:
Proposition 4.3. Suppose that k,l,c,m and n are non-negative integers with

1. k>1,
1<eg<p—1,
m+n = cply(k - 1),

m < pk—17

m =0 mod p.
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We use the convention P(s) := 0 if s < 0. Then for | = 0 we have
P(m) - P(n) = (=1)°P(m +n — pm —¢) - P(pm + ¢)

and for 1 > 0 we have

P(m)-P(n) = 2:(—1)“'1 (c) P(m +ip'~') - P(n —ip'™")

i=1 Y
+ (=1)°P(m +n —pm — cp') - P(pm + cp') .
Proof. In order to see that for [ = 0 only one term in the expression for P(m) - ls(n) appears,
note that |R| = (p — 1)cy(k) = ¢(p* — 1), so that by applying Equation (6) in Lemma 4.2 we
obtain
c(p* — 1) +ex(R)
pm

P(m) - P(n) = (-1)" Y (

|Rl=c(p*—1)

Now recall that ex(R) = Y r;. Dividing |R| by (p — 1) and substituting ex(R) — >_ r; for 7y
i>1 i>2

>pM[R] .

we have
R . .
1k = T = S (i) = ex(R)+ Y (i~ 1)
p i>1 i>2

Thus we see that ex(R) = ¢ mod p. Now we apply Lemma 4.1 with e = ex(R); we have just
seen that we are always in case (I) so that

(7 (28)

Equation (7) in Lemma 4.2 now implies that

A c(p® — 1) +ex(R)
P(m)-P(n) = (-1)" MI[R]
|Rl=c(p* 1) < pm >f'
— (_l)c(_l)ernfpmfc Z eX(R) M[R]
|Bl=c(p* 1) <pm - c>f'

= (=1)P(m+n—pm—c)-P(pm +c).

The formula for [ > 0 easily follows from Lemma 4.1, carefully keeping track of any minus
signs that enter into the formula. a

In order to arrive at the simple description of P[s; ¢y(t)] that will be obtained in Theorem 4.6
we need yet another lemma. The elegant proof given here, due to Judith Silverman, is a nice
application of the “stripping technique” discussed in Section 3 and replaces the original, more
complicated proof which didn’t use stripping at all.

Lemma 4.4. Let c and | be positive integers with 1 < ¢ < p—1. Then P(cy(l)) -P(ap'~!) =0
for any a which satisfies p—c < ap(a) <p—1.

Proof. The lemma is proved by downward induction on ¢. We start with the case c =p—1 so
that 1 < ag(a) < p— 1. Then by the Adem relations we have

P —1)-Plap'™")

= ; (_1)p’71+z <(P —D(apt —2) -1

P(p' —1+ap'™" —2)-P(2).
l - - >
p—1—-pz »
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We show that the mod p binomial coefficients appearing in this formula are all 0. First consider
the case z = 0: since 1 < ap(a) < p—1 we have 0 < ay_1((p — Dap'~! —1) < p -2, but
a_1(pt —=1) =p—1 and so ((pflz‘ffll_l*l) = 0. On the other hand, if z # 0 then there exists
some index jo with 0 < jo <1 —2such that 1 < z;, <p—1but z; =0 for all 0 < j < Jo.
Hence 1 < ajy(p—1)2) =p—2j, <p—1landso 0 < aj,((p—1)(ap'~! —2) —1) < p—2. But
(p—l)(lap“l—Z)—l) =0.
p'—1—pz

Now let 1 < ¢ < p—1 and suppose that the lemma has been shown to be true for all ¢ with
¢ < ¢ < p—1. Choose a with p—ec < ap(a) < p—1 (which implies p—(c¢+1) < ap(a—1) < p—1
and p— (c+ 1) < ap(a) < p—1). The lemma for ¢ + 1 guarantees that

P((c+1)y(D) -Plap'™") =0 (8)

aj,(p' — 1 —pz) = p—1 and so again (

and
P((c+1)v(1)) -P((a—1)p""") =0. (9)
Using Equation (3), Prop. 3.1(4) and Cons. 3.4(2) we strip Equation (8) by & to obtain

v(1)) - P(ap'™")]

y(1))] - P(ap'™")
[—1 .
+ [& NP((c+1)7()] - [€-, N P(ap'™)] (10)

=0
= (=1)'P(ey(1)) - P(ap" ') + E,
where E is defined to be the big sum in (10). It remains to show that £ = 0. We fix i with
1 <i<1—1 and observe that for any b > 0 we have
& .nPk) = (~1)"Ph-piyi—-i) = —&,  nPb-p).

1

Setting b = ap'~', we find that E can be rewritten as

[ .
E==3"[&nP(c+1)yD))] - [, NP((a—1)p'™")]
i=0
= =& 0 [P((e+1)y() -P((a = 1)p' 1] (11)
But by (9), the product in (11) is 0. Consequently E = 0 as desired. |

The next lemma establishes the basis of induction for Theorem 4.6.

Lemma 4.5. Let ¢ be an integer with 1 < c < p—1. Then
P(ev(s)) = (=1)*Pls; ]
Proof. The case s = 1 is clear: by [Mi] we have
Ple) = (=1)° > MI[Q] = (-1)°P(e),
|Q|=c(p—1)

and in general

(=)7® > MQ]. (12)

|Ql=c(p°—1)

-
—~
Q

3
=~
Va)
N’
N’
I
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By induction and Equation (6) we obtain
(=1)*Pls;e] = (=1)*P(p" '¢) - Pls — 15¢]
= (=D)P@"'c) Pley(s - 1))

— (_1)57(3) Z <|R| + eX(R)> M[R] ,

c S
|Rl=c(p*—1) P

so that by (12) it only remains to show that (lth;f(R)) = 1 for all R with |R| = ¢(p® — 1).

It follows directly from the definitions that 0 < ex(R) < plljl = ¢v(s). On the other hand it

is easy to see that the sequence (0,---,0,7s = ¢) is of excess ¢ and that this is the minimal
excess of any sequence in S of degree ¢(p® —1). The inequality ¢ < ex(R) < ¢y(s) now implies
that

cp® < |R|+ex(R) < epy(s) = cp* +cp* P+ ... +cp

so that indeed (1F11ex(®) =1 for all R with |R| = c(p® — 1). 0

Finally we can prove the conjugation formula announced earlier on, which is a slightly
generalised mod p version of [S1, Theorem 3.1]. The proof is similar to the one in the mod 2
case.

Theorem 4.6. For all positive integers s, t and c with 1 < ¢ < p the following conjugation
formula holds:

Pls;ev(1)] = (—1)*“Plt; ev(s)]

Proof. We first prove the theorem for 1 < ¢ < p — 1. The case ¢ = p will follow from the case
¢ =1 by a stripping argument.

The proof for 1 < ¢ < p — 1 is by induction on ¢. The basis of induction (i.e. the case t =1
or equivalently s = 1) has been established in Lemma 4.5. So let us assume that ¢ > 1, s > 1
and that the theorem has been shown to be true for all 1 <# <t — 1, all s and also for ¢ = t,
all 1 < § < s—1. We begin with the following remark:

Remark. Under the above assumptions the following is true:
For all non-negative integers a with p — ¢ < ap(a) < p—1 and for all 1 <1 < s we have

P(ap'™") - Pll;ev(t)] = 0.
We prove this result as follows: we have
P(ap'™!) - Pll; ev(t)] = x[P[l; ev(1)] - P(ap' )],
which by induction equals
(—=D)"x[P[t;ey(D)] - Plap'™)] = (=1)"*x[P[t — L;pey(1))] - P(ey (1)) - Plap' )] -

But by Lemma 4.4 the expression P(cy(l)) - P(ap!~") vanishes. This proves the remark.
Now we get back to the proof of the theorem: by induction we obtain

P[t; ()] = X(P[t — L;ey(s))) -X(P(pt_icv(S)))
= (=) Pls;ey(t = 1)]- P e (s)) - (13)

We claim that for 1 < d < s the following formula holds:
Pld;ey(t — 1)] - P(p' " ex(s)) = ()P 'ey(s — d)) - Pld; ey(#)]

Proof of the claim: for d = 1 we have to show that

P(ey(t = 1)) -P(p''ey(s)) = (=1)°P(pey(s — 1)) - Plex(1)) -
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This follows immediately from Prop. 4.3 with m = ¢y(t — 1), n = p'~'ey(s), k =t+s—1 and
I = 0. So suppose that 2 < d < s, assuming that the claim has been proved for all 1 < d < d.
Then using induction we obtaln

Pld;ey(t = 1)]-P(" " ex(s))
=P(p*tey(t = 1)) -Pld = Liey(t = 1)]- P ey(s))
= ()P tey(t = 1)) - P Pey(s —d + 1)) - Pld - Lev(1)].
Again, we apply Prop. 4.3, this time to the first two terms, with the parameters m = p?—!
1),n=pt2cy(s —d+1),k=t+s—1and [ = d— 1. We deduce that

P(p?~ 107(?5 —1)) P %ey(s —d + 1))
= Z 1)t ( ) (" eyt —1) +ip®2) P 2ey(s —d+ 1) —iph?)

(— )P ey(s — d) - P(p? e ().

By the remark, the terms in the big sum vanish upon multiplication with P[d — 1; ¢7y(t)] from
the right, and so we arrive at

P[d; ey(t = 1)]- P ex(s))
= (=)™ PP ey(s — ) - P(p" ey (1)) - P[d — Lev(1)]
= (=D)*PE"  ey(s — d)) - Pld; ey(1)]

ey(t—

P(p*
P(
which proves the claim.

Setting d = s and substituting back into expression (13) yields

Plt;ev(s)] = (=)D Ps; ey (t = 1] - P ey(s))
= (—=1)"*Pls; ()]

which finishes the proof of the theorem for 1 <c¢<p— 1.
There remains the case ¢ = p. We strip the formula

Pls;v(t+ 1)) = (=1)*TIP[t + 1;9(s)]
(this is the case ¢ = 1 with ¢ + 1 instead of ¢) by &, and by Cor. 3.3(3) we obtain
Pls; py(t)] = & N Pls; y(t + 1)]
= (=1)*FVE NPt + 154(s)]
which by Cons. 3.4(2) and Prop. 3.6 equals
(1) P py(s)] - (€ N P(v(5)) = (=) HIPL py(s)] - (—=1)°P(0)
= (=1)*"P[t;py(s)].
This completes the proof of the theorem. O

We observe the following:

Corollary 4.7. Let s, t and c be non-negative integers with s > 1 and 1 < ¢ < p. Then
the operations P[s;cy(t)] have length ezactly t independently of s and c. More generally, if
v(t) < f < ~(t+ 1) then the operations P[s; f] are all of length exactly t, independently of s.

Proof. Fort > 1 the first statement is an immediate consequence of Theorem 4.6; for ¢ = 0 the
statement is trivial. The second statement follows since stripping operations cannot increase
length (cf. Section 3.2). O
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5. Conjugation formulas for P,

We now turn to conjugation in the dual Steenrod algebra. Let &(k) be the symmetric group
with identity Ids acting on {0,1,2,... ,k —1}. For 7 € &(k) and i > 0 we define

k—1
T) = ijB@'M(j) -3,

Xi(k;7) = kT]—H§Z+TJ)J,

and
Xi(k) := Z sign(1) X;(k; 7).
re6(k)
Observation 5.1. Z;(k;1d;) = y(k)B(i) and X;(k;1d;) = &)
We will need the following lemma:

Lemma 5.2. For k > 1 we have X, (k) = (—1)k&;.

Proof. The proof is by induction on k. Let & = 1, then &X;(1) = & = —él, so the assertion
is true in this case. Now suppose the statement has been shown to be true for all 1 < IAc < k.
Note that if X;(k;7) # 0 then necessarily 7(j) > j — 1 for all j. So if X, (k;7) #0 then define
Ibyl=7"1k—1.1f ] = k — 1 then we obtain a cycle decomposition of 7 as (k — 1)o for some
oc€6(k—-1).1fl#k—1thenweobtainr(k—1)=k—-2,7(k—-2)=k-3,...,7(l+1) =1,
so that 7 has a cycle decomposition as (k — 1,k — 2,... ,l)o for some ¢ € &(l). In any case
we have

Xi(k;1) = X1(l;0) '51{311-

Sofor 0 <l <k—1let &(k) ={r € &k)|r() =k — 1}; obviously &(k) = |J &;(k). Then
by induction

Z Z sign(7) Xy (k;7)

=0 TEGI(IC)

= fk r’ Z )k - lslgn( ) Xi(l;0)
0

= JGG(!)
1 — ! a . A
= (-1Ft Zfﬁf, b = (-1)",
=0
where in the last line we used Milnor’s recursive formula for the anti-automorphism. a

In analogy to [S3] we make the following more general definitions:

Definition 5.3. For k > 1, let Z(k) be the set of non-decreasing sequences (ig,@1,.-. ,ix—1)
of positive integers. For T € &(k) and I € Z(k) we define
k—1
Zy(k;m) =Y P Bliry +7(3) — 4)
=0

Xy (k; 7) = €[Z1 (K; 7)) wam) .
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and
Xp(k) = ) sign(r) Xy (k;7).
TES(k)
We further define
k_l . .
Pr(k;) =Y 9 Blizg) +7(j) = (i +i0))
j=0
Jitig
Ry ( ) = E PI k T H EZ(])+T (7)—(j+io0)?
and
Ri(k) := Z sign(r) Rr(k; 7).
TEG(k)
Observations 5.4. 1. If I = (i,i,...,i) € Z(k) is a constant sequence then we obtain

Zi(k;7) = Zi(k;7) and consequently X1(k;7) = X;(k; 7). Moreover, for such a sequence

I and 7 # 1dy, we have Pr(k;7) = * and consequently Rr(k) = Rr(k;1dg) = 1.

2. If I = (io,i1,... ,ig—1) € Z(k) and ig > 1 let I[—1] denote the sequence (iop — 1,i; —

L... 051 —1) € Z(k). Then Ry(k) = (Rr—1(k))”.

Theorem 5.5. Let k > 1. Then X;(k) = (—1)i0kfz(i°) - R1(k) modulo monomials of length

> k.

Proof. First recall that we have the following expression for X (k):

/'\A,’I(k) Z sign(p H i) +o(i)—

PEGS(k) j=0

PES(k)

Applying Milnor’s recursive formula for the anti-automorphism we obtain

§Z;>(0)+P an lp(o)-i-P(O) n

n=1

modulo monomials of length > k. So we have

E Z Z SIgn gn Y (0)+p Hglp(J)-i-P(] -J°

n=1peS(k)

For each p € 6(k) we define p' by

() ifl=Fk—1
p(l)_{p(l+1) ifoO<I<k—2.

Note that sign(p) = (—=1)*~'sign(p’). So

k—2

=Y Y sy SRS |

n=1p'e&(k) 1=0

modulo monomials of length > k.

Z Sign(p) fip(o)-l‘P(O) ’ H Eii(j)'l‘ﬂ(j)—]
j=1

)
iyt (1) —(1+1)
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For the proof of the theorem, we fix k and use induction on iy. First suppose that ig = 1.
Then

k—2
o dH1

& - Ri(k) = Z sign(7) &, - glr(k n+T(k—1)—Fk Hgfr(j)+‘r(j)*(j+1)

TEG(k) Jj=0

so that
Xr(k) — (=1)* & - Ry (k)
k—2

k—1
I
= Z Z Slgn )gn -Elpr(k yte (k—1)—n ’ H é.fp/(Z)er’(l)f(lJrl) ' (14)

n=1p'eS(k) =0
It can easily be verified that the summand in (14) associated to n and p' is the negative of the

term associated to n and p” where

/(1) il #An—Tandl#k—1
p'H=< pn-1) ifl=k-1
Plk—1) ifl=n—1

(note that sign(p’) = —sign(p”)). So the difference X7(k) — (=1)&, - R (k) vanishes modulo
monomials of length > k£ and the theorem holds for g = 1.

The proof for general [ is similar. By induction we can assume that the statement is true
for (ip — 1,41 — 1,... ;i — 1) = I[—1]. By Observation 5.4(2)

G Rek) = (G570 Ry (k)" - &
which modulo terms of length > k is
= ((—l)k(io_l)/'\?l[fl] (k))p 3

= (e g, . Z sign (7 H iy =1H+7(j)=j

TEG(k) Jj=0
k k- +1
_ k(ip—1 ; ¢ £p?
= (=DM Y sten(n) &€ H €y +r ()G
TES(k) Jj=
Now one can define p" as before and proceed as in the case ip = 1 in order to establish the
inductive step. O
An especially interesting formula arises from Theorem 5.5 if we set I = (i,4,...,7), a

constant sequence:

Theorem 5.6. Let i,k > 0. Modulo monomials of length > k we have

~v(k) i i
§W=(-n*g - 3 sign(r ng

Id,#7E6 (k)
In particular, if 0 < f < vy(k+ 1) then
U NPl /1= (0% NPlisf] = (~1)"Pli; £ - (k)]

Proof. The first part follows immediately from Theorem 5.5 and Observation 5.4(1), so it
only remains to prove the second statement. By the part already proved we have the following
equality:

WPl f]= (0*gV NPl - (Y sien(r Hgm) ;) NPl /]

Tdp £7E€G (k)
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Now observe that for any Idy # 7 € &(k) the product H;”;é fir(j)—j is of length strictly
greater than i, so for any such 7 we get

(Hﬁm(] ;)nP [(Hfs+ru ;) NPl £

Using Cor. 3.3(3) we thus obtain 5”( N 13[ f] = Plis f — (k)] = (—1)ik§g("> N Pi; f]. The
claim now follows by application of (—1)*x to this formula. a

Finally, we note that Theorem 5.5 provides us with useful information regarding the be-
haviour of the stripping operations D(X;(k)):

Corollary 5.7. 1. If len(d) < k, then X;(k) N0 =0 for all I € Z(k).
2. If len(8) = k, then X;(k) N6 = (=1)kR (k) n (€] n o).
3. In particular, Xr(k) N Plk; f] = (=1)*R (k) N P[k; f — ~(i0)].

Proof. This follows immediately from the theorem by invoking Prop. 3.1 and Cor. 3.3. a
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