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BASE CHANGE FUNCTORS IN THE A1-STABLE HOMOTOPY
CATEGORY

PO HU

(communicated by Gunnar Carlsson)

Abstract
We relate base change functors of sheaves in A1-homotopy

theory to group change functors from equivariant homotopy
theory, and use these functors to construct elements of the Pi-
card group of the A1-stable homotopy category. We also prove
an analogue of the Wirthmüller isomorphism from equivariant
homotopy theory in the A1-context.

Introduction

In this note, we will discuss certain functors between the A1-stable homotopy
categories over fields. These are in a sense analogous to the change of groups functors
in equivariant stable homotopy theory. Section 1 contains some preliminaries in
doing A1-stable homotopy theory. In Section 2, we define the change of base field
functors between the A1-homotopy categories over fields L and k, where L is a finite
extension of k. In Section 3, We give a application of these functors in constructing
objects of the A1-stable homotopy category over k that are invertible under the
smash product, by constructing a functor from the category of equivariant spaces
with respect to the Galois group of k to the category of algebraic spaces over k. In
Section 4, we prove an analogue of the Wirthmüller isomorphism, a classical result
from algebraic topology. We will also show that in the present setting, this result
is in fact not only an analogue, but a consequence of the equivariant result. This
gives a very explicit formulation of the Wirthmüller isomorphism map. It is also
analogous to classical results from the theory of sheaves. Finally, in Section 5, we
give some technical details of the definitions of join and smash powers of a k-space,
which are needed in showing that the examples constructed in Section 3 are indeed
invertible.

1. Preliminaries

We recall some fundamental constructions needed to do stable homotopy theory
in the algebraic geometrical setting, due to Morel and Voevodsky [11]. Let S be a
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Noetherian scheme of finite dimension, and Sm/S the category of smooth schemes of
finite type over S. The Nisnevich topology on Sm/S is defined to be the subtopology
of the étale topology generated by diagrams of the following form.

p−1(U) //

��

Y

p

��

U
i

// X.

Here, we require i to be an open embedding, p to be an étale map, such that
p|p−1(X\{0}) is an isomorphism.

The Nisnevich topology makes Sm/S into a small Grothendieck site [12]. The
category of S-spaces

Spc(S) = ∆opSh(Sm/S)Nis

is the category of simplicial sheaves of sets over Sm/S with respect to the Nisnevich
topology. In particular, a smooth scheme X over S is the sheaf represented by X,
concentrated in simplicial degree 0. The category Spc(S) has all small colimits and
limits, and is the analogue of topological spaces. Also, it is generated by Sm/S in
the sense that every S-space is a colimit of smooth schemes over S in Spc(S).

To do homotopy theory in Spc(S), one defines a closed model structure on the
category Spc(S) in two steps as follows. First, one says that a map f is a simplicial
cofibration if it is a monomorphism, a simplicial weak equivalence if it is a weak
equivalence of simplicial sets at every point of the site Sm/S, and a simplicial
fibration if it has the right lifting property with respect to all acyclic simplicial
cofibrations. This defines the simplicial model structure on Spc(S). Let Hs(S) be
the homotopy category on Spc(S) associated to this model structure. The simplicial
model structure has too few weak equivalences for our purposes. In particular, we
would like the affine line A1

S over S to be weakly equivalent to the S-space S, which
is the analogue in the category Spc(S) of a single point. To obtain this, one localizes
in the sense of Bousfield [2] at all projection maps A1 × X → X. Specifically, an
S-space Y is said to be A1-local, if for all X, the map of morphism sets in Hs

Hs(X, Y ) → Hs(X × A1, Y )

is a bijection. A map f : X → Y is an A1-weak equivalence if for all A1-local objects
Z, the map of morphism sets

Hs(Y, Z) → Hs(X, Z)

is a bijection. A map f is an A1-cofibration if it is a simplicial cofibration, and it is
an A1-fibration if it satisfies the right lifting property with respect to all acyclic A1-
weak equivalences. These three classes of maps define the A1-local model structure
on Spc(S), the model structure with which one works in homotopy theory.

One can also consider the category Spc(S)• of based S-spaces, an object of
which is a S-space X together with a given map from S to X, called the basepoint
of X. The A1-local model structure on Spc(S)• is defined in the unbased category
Spc(S) [11, 6]. We also have analogues of certain basic constructions from topology.
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In particular, we have the disjoint basepoint functor (−)+ : Spc(S) → Spc(S)•,
which takes an unbased S-space X to the based S-space XqS, where the basepoint
is the disjoint copy of S. Also, for X, Y ∈ Spc(S)•, the smash product of X and Y
over S is given by

X ∧S Y = (X ×S Y )/S(X ∨S Y )

where X ∨S Y is the pushout in Spc(S) of the basepoint maps S → X and S → Y ,
and /S is the quotient space functor in Spc(S), obtained by collapsing X ∧S Y to
S.

To do stable homotopy theory, one stabilizes with respect to the one-dimensional
projective space P1

S over S. The category of S-spectra is defined in a similar manner
as in topology. Namely, an S-prespectrum D is a sequence of based S-spaces {Dn},
along with a give structure map

ΣP
1
Dn → Dn+1

for each n. Here, ΣP
1

denotes the suspension functor P1
S∧−. Equivalently, a structure

map is a map

Dn → ΩP
1
Dn+1 (1.1)

where ΩP
1

= Hom•(P1
S ,−) is the internal Hom object from A1

S , i. e. the right
adjoint to the functor ΣP

1
in the category of based S-spaces. An S-prespectrum is

an S-spectrum if its structure maps (1.1) are isomorphisms in Spc(S)•. There is a
spectrification functor L from the category of S-prespectra to the category of S-
spectra, which is analogous to the spectrification functor from inclusion prespectra
to spectra in topology. Namely, given an S-prespectrum D = {Dn},

(LD)n = colimkΩ(P1)∧k
Dn+k.

We denote the category of S-spectra by Spectra(S). Stabilizing the A1-local model
structure on Spc(S)• in the manner of Bousfield and Friedlander [3] gives the stable
A1-local model structure on the category of S-spectra (see [6, 14]). In particular, for
any S-prespecturm D, the unit map D → LD is always an A1-weak equivalence [6].
We will call the homotopy category associated with this model structure the stable
homotopy category over S, denoted by SH(S). It is the algebraic analogue of the
stable homotopy category in topology. As in topology, we can think of S-spectra
as indexed on an universe U ∼= A∞S over S, then for two S-spectra E and E′, the
internal smash product E ∧ E′ is given by first taking the external smash product
E∧E′, which is an S-spectrum indexed on U⊕2, then taking the change of universe
functor back to spectra indexed on U via an linear injection U⊕2 → U [6]. The
operad of such linear injections is A1

S-contractible. Hence, the smash product of
spectra are well-defined in SH(S). In this note, we will work only with the case
where S = Spec(k) for an arbitrary field k.
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2. Change of Bases Functors
Let k be an arbitrary field, and let L be a finite separable extension of k. We

have a canonical map

i : Spec(L) → Spec(k) (2.1)

from the inclusion of k in L.

Definition 2.2. Define the functor

i∗ : Spc(k) → Spc(L)

by

i∗(X) = X ×Spec(k) Spec(L).

The structure map i∗(X) → Spec(L) is the pullback of the structure map X →
Spec(k) along i.

On the level of affine schemes, i∗ corresponds to the extension of scalars functor

i∗ = L⊗k − : Algebras(k) → Algebras(L).

Considering k-spaces as simplicial Nisnevich sheaves over Sm/k, Morel and Vo-
evodsky [11] defined the inverse image functor with respect to a map of base
schemes. If f : S1 → S2 is a morphism of schemes, it gives a continuous map
of the Nisnevich sites (Sm/S1)Nis → (Sm/S2)Nis. Thus, there is an inverse image
of sheaves functor f∗ : Spc(S2) → Spc(S1). In our case, f = i : Spec(L) → Spec(k)
is a smooth map. So for a smooth scheme X ∈ Sm/k, the inverse image of the sheaf
represented by X is the sheaf on Sm/L represeted by X×Spec(k)Spec(L). Also, recall
that every k-space is a colimit of sheaves represented by smooth schemes (see [6],
Appendix). Thus, our functor i∗ is the same as the inverse image functor for all
objects of Sm/k.

The functor i∗ is analogous to a change of groups functor from equivariant ho-
motopy theory in the following sense. Recall from Lewis, May and Steinberger [9]
that if we have a compact Lie group G, and a (closed) subgroup H ⊆ G, then there
is a forgetful functor from the category of G-equivariant topological spaces to the
category of H-equivariant topological spaces. On the other hand, we can also con-
sider the category of G-equivariant spaces parametrized over a given G-equivariant
based space X, i. e. the comma category of G-equivariant spaces Z, together with
a given continuous G-map to X. In particular, there is a equivalence of categories
between the category of G-equivariant spaces parametrized over the homogenous
G-space G/H, and the category of H-equivariant spaces. Namely, given an H-space
T , we have a G-space

G×H T = {(g, t) | g ∈ G, t ∈ T}/(gh, x) ∼ (g, hx) (2.3)

where the action of G is induced by the multiplication of G on itself from the left.
This has a natural G-map to G/H, induced from collapsing T to a single fixed
point. Conversely, for a G-space Z with a G-map Z → G/H, the fiber ZeH of
Z over the coset eH of G/H is an H-equivariant space. It is straightforward to
check that these two functors are inverse equivalences. Also, let f : G/H → ∗ be
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the collapse map. Then similarly as in the algebraic case, we also have the functor
f∗ from the category of G-spaces to the category of G-spaces over G/H, give by
f∗(T ) = G/H × T , with the diagonal G-action, and mapping to G/H via the
first projection. Also, f∗ corresponds to the forgetful functor from G-spaces to H-
spaces, with respect to the equivalence of categories between G-spaces over G/H
and H-spaces. Now let G = Gal(E/k) for some finite Galois extension E of L,
and let H = Gal(E/L). Then the E-points of a k-space has a natural G-action,
and the E-points of an L-space has a natural H-action. The counterpart of the
homogenous space G/H is Spec(L), whereas L-spaces, i. e. k-spaces over Spec(L),
corresponding to G-spaces over G/H, and i : Spec(L) → Spec(k) corresponds to
the G-map G/H → ∗. In this sense, i∗ is analogous to the forgetful functor with
respect to the inclusion map H → G. For instance, i∗Spec(k) = Spec(L), which is
analogous to the fact that the G-space consisting of a single fixed point forgets to
the H-space consisting of a single fixed point.

In the equivariant topological context, the forgetful functor has both a left adjoint
and a right adjoint. The left adjoint is G ×H − from H-equivariant spaces to G-
equivariant spaces, as given in (2.3). The right adjoint is MapsH(G,−), the space
of H-equivariant maps from G, with the G-action induced by the action of G on
itself from the right.

In the algebraic context, we also have both a left and a right adjoint to i∗. We
denote the left adjoint to i∗ by

i] : Spc(L) → Spc(k).

An L-space X has a structure map X → Spec(L), which is also a map over
Spec(k). Composition with i gives a structure map X → Spec(k), which com-
pletely determines a k-space structure on X. This gives i]X. If we have a map
f : i]X → Y over Spec(k) for an L-space X and a k-space Y , then taking the
pullback of f along the i : Spec(L) → Spec(k) gives a map over Spec(L) from X to
i∗(Y ) = Spec(L)×Spec(k) Y . Conversely, given a map g : X → Spec(L)×Spec(k) Y ,
composition with the map Spec(L) ×Spec(k) Y gives a map from i]X to Y over
Spec(k). It is clear that these corrspondances are inverse to each other, so i] is the
left adjoint to i∗. In particular, on the level of affine schemes, i] corresponds to a
functor

Algebras(L) → Algebras(k).

This is the right adjoint to the extension of scalars functor, i. e. the forgetful functor.
When there is no possibility of confusion, we will omit i] from the notation. Since
i is a smooth morphism, then by Proposition 3.1.23 of [11], when we think of i∗ as
the inverse image of sheaves functor, we can also define the left adjoint i] of i∗ to
be an “extension by zero” functor of sheaves. By the uniqueness of adjoints, this
definition of i] coincide with our definitions.

There is also a right adjoint

i∗ : Spc(L) → Spc(k)

to i∗. To write down i∗, recall that the category of k-spaces is closed, i. e. for any



Homology, Homotopy and Applications, vol. 3(2), 2001 422

Y , the functor

Y ×Spec(k) − : Spc(k) → Spc(k)

has a right adjoint

HomSpec(k)(Y,−) : Spc(k) → Spc(k).

Let X be an L-space, we think of Spec(L) and X as k-spaces via the forgetful functor
i]. We define i∗X to be MapsL(Spec(L), X), the k-space of maps Spec(L) → X
over L. More precisely, the structure map

pX : X → Spec(L)

of X gives a map of k-spaces

(pX)∗ : HomSpec(k)(Spec(L), X) → HomSpec(k)(Spec(L), Spec(L)).

Also, the identity map Id : Spec(k) ×Spec(k) Spec(L) → Spec(L) over Spec(k) is
adjoint to

ι : Spec(k) → HomSpec(k)(Spec(L), Spec(L)).

We define i∗X = MapsL(Spec(L), X) by the pullback diagram over Spec(k)

MapsL(Spec(L), X) //

��

HomSpec(k)(Spec(L), X)

(pX)∗
��

Spec(k) ι
// HomSpec(k)(Spec(L), Spec(L)).

(2.4)

Lemma 2.5. The functor i∗ = MapsL(Spec(L),−) is the right adjoint to i∗.

Proof. For a k-space Y and an L-space X, a map over Spec(k)

f : Y → MapsL(Spec(L), X)

is equivalent to a commutative diagram over Spec(k)

Y
f

//

��

HomSpec(k)(Spec(L), X)

(pX)∗
��

Spec(k) ι
// HomSpec(k)(Spec(L), Spec(L)).

By naturality of the adjunction (Spec(L) ×Spec(k) −, HomSpec(k)(Spec(L),−)) in
Spc(k), this is equivalent to a commutative diagram

Y ×Spec(k) Spec(L) / /

� �

X

pX

��

Spec(k)×Spec(k) Spec(L)
Id

/ / Spec(L)

i. e. a map Y ×Spec(k) Spec(L) → X over Spec(L).
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Again, by the uniqueness of adjoints, i∗ is the same as the direct image functor of
sheaves [11], if we think of spaces over k and over L as simplicial Nisnevich sheaves.
Remark: For any L-spaces X and Y , there is another mapping space from X to
Y over Spec(L), namely

HomSpec(L)(X, Y )

which is the right adjoint to the functor

X ×Spec(L) − : Spc(L) → Spc(L).

In particular, for X = Spec(L), Spec(L)×Spec(L) − is the identity functor, thus, so
is HomSpec(L)(Spec(L),−). For a general L-space Y , the k-space

i∗Y = MapsL(Spec(L), Y )

is not the same as i](HomSpec(L)(Spec(L), Y )) = i]Y .

On the level of affine schemes,

i∗ : Algebras(L) → Algebras(k)

is the left adjoint to the extension of scalars functor. If [L : k] = n, and we choose a
basis α1, . . . , αn of L as a vector space over k, then for a finitely generated L-algebra

R = L[y1, . . . , yr]/I

we can write down the k-algebra i∗R in terms of generators and relations to be

i∗R = k[x1,1, . . . , x1,r, x2,1, . . . , xn,r]/J

where J is the following ideal of k[x1,1, . . . , x1,r, x2,1, . . . , xn,r]. For f a polynomial
in L[y1, . . . , yr], we have unique g1(f), . . . , gn(f) in k[x1,1, . . . , x1,r, x2,1, . . . , xn,r]
such that

f





n
∑

j=1

xj,1αj , . . . ,
n

∑

j=1

xj,rαj



 =
n

∑

j=1

gj(f)(x1,1, . . . , xn,r)αj .

Then set J = {gj(f) | f ∈ I}. It is routine to check that this is independent of the
choice of basis, and is indeed the left adjoint to the functor L⊗k −.

Examples:
1. Consider A1

L = Spec(L[x]) over Spec(L). Then on the level of algebras,

i∗(L[x]) = k[x1, . . . , x[L:k]]

so i∗(A1
L) = A[L:k]

k .

2. Suppose L = k[
√

a] is an extension of degree 2 over k, for some a ∈ k×, a 6∈ (k×)2,
and choose the basis {1,

√
a} of L as a vector space over k. Consider the affine variety

(Gm)L = Spec(L[x, y]/xy = 1).

Then on the level of algebras

i∗(L[x, y]/xy = 1) = k[x1, x2, y1, y2]/ ∼
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If we think of x = x1 + x2
√

a, y = y1 + y2
√

a, then the relation ∼ is given by

xy = (x1 + x2
√

a)(y1 + y2
√

a) = 1,

so x1y1 + ax2y2 = 1, and x1y2 + x2y1 = 0. Hence, the k-space i∗(Gm)L is

Spec(k[x1, x2, y1, y2]/(x1y1 + ax2y2 − 1, x1y2 + x2y1).

This gives the adjoint functors i], i∗ and i∗ between the categories of unbased
spaces Spc(k) and Spc(L). We would also like to have these functors on the cat-
egories of based k-spaces and L-spaces. In the equivariant context, the forgetful
functor from based G-spaces to based H-spaces is given by applying the unbased
forgetful functor to the diagram of G-spaces ∗ → X, where ∗ denotes a single fixed
point. This suggests that

i∗ : Spc(k)• → Spc(L)•

should be defined similarly. Thus, for X ∈ Spc(k)•, we define i∗(X) by applying
the unbased i∗ to the diagram Spec(k) → X. We have i∗(Spec(k)) = Spec(L),
i∗X = Spec(L)×Spec(k)X, and the induced basepoint Spec(L) → Spec(L)×Spec(k)X
is the pullback along i of the basepoint map Spec(k) → X.

Given a based L-space X, we can define the based k-space i]X by the following
pushout diagram

Spec(L) //

i
��

X

��

Spec(k) // i]X

where the top horizontal map is the basepoint of X. This is a diagram over k, so
strictly speaking, the top right corner of the square is the unbased version of i]X.
It is routine to check that the functor i] : Spc(L)• → Spc(k)• is the left adjoint to
i∗ : Spc(k)• → Spc(L)•.

The based right adjoint i∗ : Spc(L)• → Spc(k)• is also defined, same as in the
unbased case, to be MapsL(Spec(L),−). For a based L-space Y , the basepoint map
Spec(k) → MapsL(Spec(L), Y ) is the adjoint to the basepoint map Spec(L) → Y
of Y . The functor i∗ : Spc(L)• → Spc(k)• is the right adjoint to i∗ since it is the
right adjoint to i∗ in the categories of unbased spaces.

This gives the functors i], i∗ and i∗ for based spaces. We would also like the
spectra versions of these functors. For this, we need the following results. First,
note that i∗(P1

k) = P1
L.

Lemma 2.6. If X is a based space over Spec(k), then

i∗(ΣP
1
kX) ∼= ΣP

1
Li∗X

naturally.
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Proof. Let iX : Spec(k) → X be the basepoint of X, and iP1k : Spec(k) → P1
k be

the basepoint of P1
k. We have that

ΣP
1
kX =

P1
k ×Spec(k) X
P1

k ∨Spec(k) X

where the quotient is in the category of k-spaces, and the map of P1
k ∨Spec(k) X

into P1
k ×Spec(k) X is induced by iX and iP1k . Since i∗ is a left adjoint, it preserves

pushouts, so

i∗ΣP
1
kX ∼=

i∗P1
k ×Spec(k) X

i∗P1
k ∨Spec(k) X

(2.7)

naturally, where the quotient takes place in Spc(L). We have that i∗(Spec(k)) =
Spec(L), and i∗(P1

k) = P1
L, so

i∗P1
k ∨Spec(k) X ∼= P1

L ∨Spec(L) i∗X

naturally. Also, since i∗ is a right adjoint, it preserves pullbacks, so

i∗P1
k ×Spec(k) X ∼= P1

L ×Spec(L) i∗X

naturally. Finally, as L-spaces, the basepoints of P1
L and i∗X are i∗ applied to iP1k

and iX respectively. Hence, (2.7) is naturally isomorphic to

ΣP
1
Li∗X =

P1
L ×spec(L) i∗X
P1

L ∨Spec(L) i∗X
.

Proposition 2.8. Let X be a based k-space, and Y a based L-space. Then there
are natural isomorphisms of based k-spaces

ζ : i](Y ∧Spec(L) i∗X) ∼= (i]Y ) ∧Spec(k) X

ϕ : i∗(HomSpec(L)(i
∗X, Y )) ∼= HomSpec(k)(X, i∗Y ).

Proof. The first statement follows by explicitly checking the definitions of the smash
products and of the based i]. For the second statement, note that the functor
i∗(HomSpec(L)(i

∗X,−)) from Spc(L)• to Spc(k)• is right adjoint to the functor
i∗(−) ∧Spec(L) i∗X, and the functor HomSpec(k)(X, i∗(−)) is right adjoint to the
functor i∗(−∧Spec(k)X). By explicitly checking the definitions of the smash product,
we have that for any based k-space Z,

i∗Z ∧Spec(L) i∗X ∼= i∗(Z ∧Spec(k) X).

So the two left adjoints coincide, and the statement follows by the uniqueness of
adjoints.

Taking the adjoint of Lemma 2.6, we get that for a based L-space Y ,

ΩP
1
k i∗Y ∼= i∗(ΩP

1
LY ) (2.9)
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naturally. Also, taking X = P1
k in the first statement of Proposition 2.8 gives that

for a based L-space Y ,

i](ΣP
1
LY ) ∼= ΣP

1
k i]Y (2.10)

naturally. Taking the adjoint of this gives that for a based k-space X,

ΩP
1
Li∗X ∼= i∗(ΩP

1
kX) (2.11)

naturally. Hence, we can define i∗ and i∗ on the level of spectra, and use the spec-
trification to define i] on spectra. More precisely, we have the following definition.

Definition 2.12. The functors

i] :Spectra(L) → Spectra(k)

i∗ :Spectra(k) → Spectra(L)

i∗ :Spectra(L) → Spectra(k)

are given as follows. Suppose D is a k-spectrum, and E is an L-spectrum. For i]E,
let the k-prespectrum ipre

] E be given by

ipre
] (E)n = i](En)

with structure maps

ΣP
1
k i](En) ∼= i](ΣP

1
LEn)

i]ρn→ i]En+1

where ρn : ΣP
1
LEn → En+1 is the adjoint structure map of E. Define i]E to be the

spectrification of ipre
] (E).

We define the L-spectrum i∗D by

(i∗D)n = i∗(Dn)

with structure maps

i∗(Dn) i∗rn→ i∗(ΩP
1
kDn+1) ∼= ΩP

1
Li∗Dn+1

where rn : Dn → ΩP
1
kDn+1 is the structure map of D. Similarly, define the k-

spectrum i∗E by

(i∗E)n = i∗(En).

The structure maps are

i∗(En)
i∗ρn→ i∗(ΩP

1
LEn+1) ∼= ΩP

1
k i∗En+1

where ρ : En → ΩP
1
LEn+1 is the structure map of E.

The following proposition follows from the adjunction relations between the func-
tors i], i∗ and i∗ on based spaces.

Proposition 2.13. The functor i] : Spectra(L) → Spectra(k) is the left adjoint to
i∗ : Spectra(k) → Spectra(L), and the functor i∗ : Spectra(L) → Spectra(k) is the
right adjoint to i∗.
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Remark: In the equivariant category, the analogues of Proposition 2.8 are the
homeomorphisms of G-spaces

G+ ∧H (Y ∧X) ∼= (G+ ∧H Y ) ∧X

FH(G+, F (X,Y )) ∼= F (X, FH(G+, Y ))

for X a based G-space and Y a based H-space (see [9]). As we will see in Section
5, the analogues of these statements in the theory of derived categories of sheaves
into an abelian category can also be stated, as a version of Verdier duality [1, 8].

By the composition of adjoints, (i]i∗, i∗i∗) form a adjoint pair of functors from
Spectra(k) to Spectra(k). For X ∈ Spc(k)•, let

F (X,−) : Spectra(k) → Spectra(k)

be the function spectrum functor, i. e. the right adjoint of the functor X ∧ − :
Spectra(k) → Spectra(k). The following corollary is analogous to the fact that in
equivariant topology, for a G-spectrum E, we have G+ ∧H E ∼= (G/H)+ ∧ E, and
FH(G+, E) ∼= F ((G/H)+, E).

Corollary 2.14. For a k-spectrum E, we have isomorphisms of k-spectra

i]i∗E ∼= Spec(L)+ ∧ E

i∗i∗E ∼= F (Spec(L)+, E).

Proof. Since the k-spectrum Spec(L)+ ∧E is defined spacewise, it suffices to show
that i]i∗X ∼= Spec(L)+∧X for a based k-space X. We have that for S0

L = Spec(L)q
Spec(L) in Spc(L)•, i]S0

L = Spec(L)+ = Spec(L) q Spec(k) in Spc(K)•. Thus,
applying Proposition 2.8 to S0

L gives the first statement. The second statement
follows from the uniqueness of adjoints, and the fact that F (Spec(L)+,−) is the
right adjoint to Spec(L)+ ∧ −.

Remarks:
1. In general, for any smooth Noetherian scheme S of finite dimension over k,
consider the category of Spc(S) of S-spaces. For any smooth map of schemes over
k

f : S′ → S

the functors f], f∗ and f∗ between the categories Spc(S) and Spc(S′) can be defined
as for an extension of fields. The based and stable versions of these functors are also
defined accordingly. If f is smooth and finite, then f∗ is the same as the inverse
image functor. Its left adjoint f] is the “extension by zero” functor constructed in
Proposition 3.1.23 of [11], and its right adjoint f∗ is the direct image functor.
2. If f is smooth and finite, such as f : Spec(L) → Spec(k), then by Corollary 3.1.24
and Proposition 3.2.9 of [11], f∗ preserves simplicial and A1-weak equivalences.
Also, By Propositions 3.2.9 and 3.2.12 of [11], the left derived functor of f] and the
right derived functor of f∗ in the simplicial homotopy categories preserve A1-weak
equivalences. Thus, f] preserves A1-weak equivalences between simplicially cofibrant
objects, and f∗ preserves A1-weak equivalences between simplicially fibrant objects.
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3. An application to Pic(SH(k))

We give an application of the base change functors towards constructing elements
of the Picard group Pic(SH(k)) of the stable homotopy category over k. This is the
group of objects that are invertible with respect to the smash product. For instance,
there are two versions of the circle in Spc(k)•

S1
s = A1/{0, 1}

Gm = A1 \ {0}.

We have that in Spc(k)•,

S1
s ∧Gm ' P1.

Hence, in SH(k), S1
s and Gm are both in Pic(SH(k)). In this sense, P1 is a “mixed

2-sphere”.
There are several known classes of elements in Pic(SH(k)) not generated by S1

s
and Gm [5]. For example, let a ∈ k×, a 6∈ (k×)2. The affine variety Sa given by the
equation x2 − ay2 = 1 has the property that

Sa ∧ ˜Spec(k[
√

a]) ∼= P1

where ˜ denotes the unreduced suspension. Thus, Sa and ˜Spec(k[
√

a]) are in
Pic(SH(k), and motivic cohomology calculations show that they are not in the
subgroup generated by S1

s and S1
t .

We would like to find other ways of constructing these objects. One such way
is via the category of equivariant topological spaces. For this section, let L be a
finite Galois extension of k, and G = Gal(L/k). For the category Sh(Sm/k)Nis of
sheaves on the site Sm/k with the Nisnevich topology, we define a functor

FL/k : Finite G−sets → Sh(Sm/k)Nis

which takes a homogenous G-set G/H to Spec(LH), and passes to disjoint unions.
To give FL/k on morphisms of finite G-sets, it suffices to give FL/k(α) for any G-
equivariant map G/H → G/K, where H and K are subgroups of G. By adjunction,
we have that the nonequivariant space of G-equivariant maps from G/H to G/K is
naturally isomorphic to the nonequivariant space of H-equivariant maps ∗ → G/K,
where the single point ∗ is thought of as a fixed H-space. In turn, this is the same
as the space of nonequivariant maps ∗ → (G/K)H , i. e. the nonequivariant space
(G/K)H of the H-fixed points of the homogenous G-set G/K. We have that

(G/K)H = {gK |g−1Hg ⊆ K}.

In particular, it is empty if H is not subconjugate to K. But G = Gal(L/k), so an
element g ∈ G gives g : L → L. If g−1Hg ⊆ K, then for any x ∈ LK and h ∈ H,
we have that g−1hg(x) = x, so hg(x) = g(x). Thus, such a g takes LK to LH . Also,
for every k ∈ K, we have that gk|LK = g|LK . So for any gK ∈ (G/K)H , we get a
well-defined map LK → LH , which gives

FL/k(gK) : FL/k(G/H) = Spec(LH) → Spec(LK) = FL/k(G/K).
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Recall that the category of k-spaces is just the category of simplicial sheaves on the
site Sm/k with the Nisnevich topology. So taking the simplicial categories of both
the source and the target, FL/k extends to a functor

FL/k : Finite G−simplicial sets → Spc(k). (3.1)

Since FL/k takes a single fixed point to Spec(k), it also passes to a functor from
the category of based G-simplicial sets to Spc(k)•. Namely, a based G-simplicial set
is a G-simplicial set X, together with a G-map iX : ∗ → X, where ∗ = G/G is a
single fixed point. We have that FL/k(∗) = Spc(LG) = Spec(k), since the extension
L/k is Galois. Hence, applying FL/k to iX gives a map Spec(k) → FL/k(X), which
makes FL/k(X) a based space over k. Also, if X is a G-space with a triangulation,
then applying FL/k to the simplicial model of X gives FL/k(X) as a k-space. Two
different triangulations of X are simplicially equivalent, so the k-space FL/k(X)
is well-defined up to simplicial weak equivalences. When there is no possibility of
confusion, we write just F for FL/k.

Suppose L is a finite Galois extension of k, H is a subgroup of G = Gal(L/k),
and E = LH . Then the functors FL/E from H-equivariant spaces to Spc(E) and
FL/k from G-equivariant spaces to Spc(k) are related in the following manner. Let
i : Spec(E) → Spec(k) be the map corresponding to the inclusion k ⊆ E, and let U
denote the forgetful functor from G-equivariant topological spaces to H-equivariant
topological spaces. In equivariant topology, recall that there is a natural equivalence
of categories between the category of G-equivariant spaces over the homogenous G-
space G/H and the category of H-equivariant spaces. Let f : G/H → ∗ be the map
collapsing G/H to a single fixed point. Then we have a functorf∗ from G-spaces to
G-spaces over G/H, given by f∗(T ) = G/H × T . Then the diagram of functors

G−spaces
U

xxp

p

p

p

p

p

p

p

p

p

p

f∗

((

R

R

R

R

R

R

R

R

R

R

R

R

R

H−spaces '
G×H−

// G−spaces over G/H

(3.2)

commutes. An analogous equivalence of categories hold between the categories of
G-simplicial sets over G/H and H-simplicial sets.

Now for G = Gal(L/k), FL/k(G/H) = Spec(LH) = Spec(E). So by passing to
comma categories, FL/k induces a functor from G-spaces over G/H to k-spaces with
a structure map to Spec(E), i. e. Spc(E). We will denote this functor on comma
categories also by FL/k. If N is a subgroup of H, then

FL/E(H/N) = Spec(LN ) = FL/k(G/N).

But the homogenous G-space G/N has a natrural map to G/H, and it is G×H(H/N)
as a G-space over G/H. Hence, FL/E is the same as the composition

H−spaces G×H−−→ G−spaces over G/H
FL/k−→ Spc(E). (3.3)
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Lemma 3.4. In the above situation, the diagram of functors

G−simplicial sets

U
� �

FL/k
// Spc(k)

i∗

� �

H−simplicial sets
FL/E

// Spc(E)

commutes up to natural equivalence.

Proof. By diagram (3.2) and (3.3), it suffices to show that the diagram of functors

G−simplicial sets

f∗

��

FL/k
/ / Spc(k)

i∗

��

G−simplicial sets over G/H
FL/k

// Spc(E)

commutes up to natural equivalence. Since f∗ and i∗ commute with simplicial struc-
tures, it suffices to show this for a homogenous G-set G/K, where K is a subgroup
of G. We have that FL/k(G/K) = Spec(LK), so

i∗FL/k(G/K) = Spec(E)×Spec(k) Spec(LK)

as an E-space. On the other hand, f∗(G/K) = G/H ×G/K, which maps to G/H
by collapsing G/K. For any (g1H, g2K) ∈ G/H × G/K, an element g ∈ G fixes
(g1H, g2K) if and only if g ∈ H ∩K. Thus, the isotropy subgroup of every point of
G/H ×G/K is H ∩K, i. e. as a G-set,

G/H ×G/K ∼=
∐

G/(H ∩K)

is the disjoint union of n copies of G/(H ∩ K), where n = ([G : H][G : K])/[G :
H ∩K]. Thus,

FL/kf∗(G/K) =
∐

Spec(LH∩K) =
∐

Spec(ELK).

This is naturally isomorphic to Spec(E) ×Spec(k) Spec(LK) since the extension L
over k is Galois.

Consider a finite-demensional real representation V of the group G. We will
denote the unit sphere of V by S(V ), and the one-point compactification of V by
SV . The following theorem give a class of invertible objects in SH(k).

Theorem 3.5. For V a finite-dimensional real representation of G = Gal(L/k),
FL/k(SV ) is invertible in SH(k).

To prove the theorem, we introduce the notion of join powers and smash powers
of a k-space X to the power of T , where T is an étale scheme over Spec(k). Recall
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that for topological spaces X and Y , the join X ∗Y is the homotopy pushout of the
diagram

X × Y //

� �

X

��

Y / / X ∗ Y

where X×Y maps to X and Y by the projections. For k-spaces X and Y , their join
X ∗ Y is defined in the same way. In particular, a model for X ∗ Y is the quotient
space of X ×Y ×A1, obtained by collapsing X ×Y ×{0} to X and X ×Y ×{1} to
Y . Also, recall that the unreduced suspension ˜X of a k-space X is defined by the
cofiber sequence

X+ → S0 → ˜X.

The join product has the property that

X̃ ∗ Y ' ˜X ∧ ˜Y .

Now as a simplicial set, the 1-simplex in the topological category realizes to the
unit interval I, whereas the 1-simplex in the category Spc(k) realizes to the affine
line A1. Thus, for a G-space X with a triangulation, FL/k(X × I) = FL/k(X)×A1.
Also, as shown in the proof of Lemma 3.4, for subgroups H and K of G,

FL/k(G/H ×G/K) ∼= FL/k(G/H)× FL/k(G/K)

naturally. Passing to the simplicial categories, we get that for G-equivariant spaces
X and Y with triangulations,

FL/k(X × Y ) ' FL/k(X)× FL/k(Y )

naturally. Using these facts, and the fact that FL/k preserves pushouts, it is easy
to check that F commutes with the join product and the unreduced suspension.
Also, the based version of FL/k commutes with the smash product. This is because
for based G-spaces X and Y , X ∧ Y = (X × Y )/(X ∨ Y ), and similarly for based
k-spaces. Since X ∨ Y is a pushout of the basepoint maps ∗ → X and ∗ → Y , and
FL/k(∗) = Spec(k), we get that FL/k(X ∨ Y ) = FL/k(X) ∨Spec(k) FL/k(Y ). But
FL/k also preserves products and quotient by a subspace, so it preserves the smash
product.

For the rest of this section, we will abbreviate FL/k to just F . For X ∈ Spc(k),
and T → Spec(k) étale, X∗T is an analogue of the join power X∗n, which takes
into account the “Galois action” on the parametrizing k-space T . Likewise, if X ∈
Spc(k)•, we have the smash power X∧T . We will defer the exact definitions of the
join and smash powers to T to Secton 5. The properties of the usual join and smash
powers apply to (−)∗T and (−)∧T . For instance, similarly as in the case of X∗n and
X∧n, the join and smash powers to T has the property that for X ∈ Spc(k),

˜X∗T ' ( ˜X)∧T .

Likewise, for a G-space X and a G-set TG, we can define X∗TG . From the defini-
tions of (−)∗TG and (−)∗T , we will see in Section 5 that if G = Gal(L/k), and X is
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a triangulated G-space, then there is a weak equivalence of k-spaces

F (X∗TG) ' (F (X))∗FL/k(TG).

Let R[G] be the regular real representation of G. We have the following lemma.

Lemma 3.6. For the triagulated G-space S(R[G]), we have a natural isomorphism

F (S(R[G])) ∼= (S0)∗Spec(L).

Proof. It suffices to show that S(R[G]) is naturally isomorphic to (S0)∗G, where S0

is ∗ q ∗ in the G-equivariant category. In particular, S0 = S(R) is the unit sphere
of the one-dimensional trivial representation R of G. For the nonequivariant join
product, we have that for two representations V and W of G, there is a natural
G-equivariant homeomorphism S(V )∗S(W ) ∼= S(V ⊕W ). Similarly, for (−)∗G, one
has that

S(R)∗G ∼= S(RG)

naturally as G-equivariant spaces. But RG is just R[G] as a G-representation.

We also have the following lemma, whose proof we defer to Section 5.

Lemma 3.7. For an étale scheme T over k, the functor (−)∧T has the property
that for X, Y ∈ Spc(k)•,

X∧T ∧ Y ∧T ' (X ∧ Y )∧T .

Proof of Theorem 3.5. Since F (S(R[G])) ' (S0)∗Spec(L), and F preserves unre-
duced suspensions, by taking the unreduced suspension of both sides, we get that

F (SR[G]) ' ˜(S0)∗Spec(L) ' (S1
s )∧Spec(L)

since S1
s = ˜S0 by definition. Recall also from [11] that there is a A1-weak equivalence

of k-spaces

S1
s ∧Gm ' P1.

So by Lemma 3.7,

(S1
s )∧Spec(L) ∧ (Gm)∧Spec(L) ' (P1)∧Spec(L).

Also, note that

(A1
k)Spec(L) = i∗i∗A1

k = i∗A1
L = An

k .

But we also have an A1-homotopy equivalence P1 ' A1/A1 \ {0} ([11]). Thus,

(P1)∧Spec(L) ' (A1/A1 \ {0})∧Spec(L)

∼= (A1)Spec(L)/(A1)Spec(L) \ {0}
∼= (A1)n/(A1)n \ {0}
' (P1)∧n.
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This is invertible in SH(k), so F (SR[G]) = (S1
s )∧Spec(L) is invertible in SH(k).

But for any irreducible representation V , V is a direct summand of R[G], so F (SV )
is a smash summand of F (SR[G]), and is therefore also invertible in SH(k). Finally,
for any finite-dimensional representation V of G, we have V = ⊕n

i=1Vi as a finite
direct sum of irreducible representations Vi of G, so SV is a finite smash product of
SVi ’s. Therefore, F (SV ) is in Pic(SH(k)) for any finite-dimensional representation
V of G.

Example: Let L be a cyclic extension of degree p over k, and let γ be a generator
of Gal(L/k) = Z/p. Define O+ to be the cofiber in the stable homotopy category
over k of the map

Spec(L)+
Id−γ−→ Spec(L)+.

It is the suspension spectrum of the homotopy coequalizer O of the maps

Id, γ : Spec(L) → Spec(L)

together with a disjoint basepoint. Consider the 2-dimensional real representation
V of Z/2 given by multiplication by e2πi/p in R2. The simpicial decompositions of
S(V ) is that it has one 0-cell Z/p× ∗, and one 1-cell Z/p× I. By the definition of
the homotopy coequalizer, we see that the simplicial definition of O is the same,
with Z/p replaced by Spec(L), and I replaced by A1

k. Since F (Z/p) = Spec(L), we
get

F (S(V )) = O.

Hence, O = F (SV ) is invertible in SH(k). (More on O will be in [7].)

4. The Wirthmüller Isomorphism

The main result of this section is the following theorem, which is an analogue of
the Wirthmüller isomorphism for the A1-setting ([15], see also [9, 4]).

Theorem 4.1. For L a finite separable extension of k, and E an L-spectrum, we
have a natural A1-weak equivalence of k-spectra

i]E ' i∗E.

We will give an explicit construction of the equivalence, in terms of the smash-
invertible objects considered in the last section.

We begin by definition a natural map of k-spectra

ψ : i]E → i∗E. (4.2)

By adjunction, this is equivalent to a map of L-spectra

ψ : i∗i]E → E. (4.3)
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Let X be a based L-space. Let

FSpectra(L)(X,−) : Spectra(L) → Spectra(L)

denote the right adjoint to the functor X ∧ − : Spectra(L) → Spectra(L).
To construct ψ, we will first consider i∗i] on the level of based spaces. Let X

be a based space over Spec(L), with basepoint iX : Spec(L) → X and structure
map pX : X → Spec(L). We have that i](X) = X/Spec(k)Spec(L), where /Spec(k)
denotes taking quotient of iX in the category of spaces over Spec(k). So

i∗i](X) = Spec(L)×Spec(k) (X/Spec(k)Spec(L))
∼= (Spec(L)×Spec(k) X)/Spec(L)(Spec(L)×Spec(k) Spec(L))

since i∗ commutes with pushouts as a left adjoint. Note that on the right hand side,
both Spec(L)×Spec(k) X and Spec(L)×Spec(k) Spec(L) are spaces over Spec(L) via
the first projection map.

We have the following property of Spec(L)×Spec(k) X.

Lemma 4.4. If X is a space over Spec(L), then for Spec(L)×Spec(k) X as a space
over Spec(L) via the first projection, consider the embedding over Spec(L)

∆X = pX ×Spec(k) Id : X → Spec(L)×Spec(k) X

which is the structure map of X on the first coordinate, and the identity on X on
the second. Then we have

Spec(L)×Spec(k) X = ∆X q ((Spec(L)×Spec(k) X) \∆X)

as spaces over Spec(L), where (Spec(L)×Spec(k) X) \∆X is a space over Spec(L)
by the first projection.

Proof. For the case when X is an affine scheme of finite type over Spec(L), say
X = Spec(R) for a finitely generated L-algebra R, we have that Spec(L) ×Spec(k)
X = Spec(L⊗k R), and the map ∆X corresponds to the map of L-algebras

L⊗k R → R

which is the multiplication. Hence, passing to the level of L-algebras, we get that
the lemma holds in the case when X is an affine scheme of finite type over Spec(L).

For general X, recall that every space X over Spec(L) is a colimit of affine
schemes of finite type, say X = colimiXi over Spec(L), where each Xi = Spec(Ri)
for some finitely generated L-algebra Ri. Then

Spec(L)×Spec(k) X ∼= colimi Spec(L)×Spec(k) Xi

naturally, since Spec(L)×Spec(k)− = i∗ commutes with colimits. Suppose f : Xi →
Xj is a map of the colimit. Then the diagram

Xi

f

� �

∆Xi
// Spec(L)×Spec(k) Xi

Spec(L)×Spec(k)f

� �

Xj
∆Xj

/ / Spec(L)×Spec(k) Xj

(4.5)



Homology, Homotopy and Applications, vol. 3(2), 2001 435

commutes, since f is a map over Spec(L). Hence, ∆X is

colimi∆i : X = colimiXi → colimi(Spec(L)×Spec(k) Xi) = Spec(L)×Spec(k) X.

Also, by passing to L-algebras, it is straightforward to check that diagram (4.5) is
in fact a pullback square. So the map

Spec(L)×Spec(k) f : Spec(L)×Spec(k) Xi → Spec(L)×Spec(k) Xj

restricts to ∆Xi(Xi) → ∆Xj (Xj) and

(Spec(L)×Spec(k) Xi) \∆Xi(Xi) → (Spec(L)×Spec(k) Xj) \∆Xj (Xj)

and the diagram

Spec(L)×Spec(k) Xi

Spec(L)×Spec(k)f

��

∼=
// ∆Xi(Xi)q ((Spec(L)×Spec(k) Xi) \∆Xi(Xi))

� �

Spec(L)×Spec(k) Xj ∼=
// ∆Xj (Xj)q ((Spec(L)×Spec(k) Xj) \∆Xj (Xj))

commutes. So passing to colimits, we get that

Spec(L)×Spec(k) X ∼= (colimi∆Xi(Xi))q (colimi(Spec(L)×Spec(k) Xi) \∆Xi(Xi))

naturally. We have colimi∆Xi(Xi) ∼= ∆X(X), so colimi(Spec(L) ×Spec(k) Xi) \
∆Xi(Xi) is (Spec(L)×Spec(k) X) \∆X(X).

This allows us to define a map of unbased spaces over Spec(L)

ψu : Spec(L)×X ∼= ∆X(X)q ((Spec(L)×Spec(k) X) \∆X(X)) → X.

This is the identity on ∆X(X) ∼= X, and on the other component, it is

(Spec(L)×Spec(k) (X) \∆X(X) π1→ Spec(L) iX→ X.

For X ∈ Spc(L)•, we define

ψ : i∗i](X) ∼= (Spec(L)×Spec(k) X)/Spec(L)(Spec(L)×Spec(k) Spec(L)) → X

to be induced from ψu. To check that this is a well-defined map in Spc(L)•, we need
that ψu maps Spec(L)×Spec(k) Spec(L) into the basepoint of X, i. e. the diagram

Spec(L)×Spec(k) Spec(L) Id×iX
//

π1

� �

Spec(L)×Spec(k) X

ψu

� �

Spec(L)
iX

/ / X

(4.6)

commutes. This follows because we have
Spec(L)×Spec(k) Spec(L)

= ∆Spec(L)(Spec(L))q ((Spec(L)×Spec(k) Spec(L)) \∆Spec(L)(Spec(L)))

and
Spec(L)×Spec(k) X = ∆X(X)q ((Spec(L)×Spec(k) X) \∆X(X)).
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It is straightforward to check that diagram (4.6) commutes on ∆Spec(L)(Spec(L))
and on (Spec(L)×Spec(k) Spec(L)) \∆Spec(L)(Spec(L)).

Passing to the stable categories, we can now define ψ for a spectrum E over
Spec(L)

i∗i](E) → E

to be given by first applying spacewise ψ for based spaces, then taking the spectri-
fication functor. To check that applying ψ spacewise gives a map of L-prespectra,
we need that the diagram

ΣP
1
L(i∗i](En))

ΣP
1
L ψ

//

∼=
��

ΣP
1
LEn

=

��

i∗i]ΣP
1
LEn

i∗i]ρn

��

ΣP
1
LEn

ρn

� �

i∗i]En+1
ψ

// En+1

commutes, where ρ : ΣP
1
LEn → En+1 is the structure map of E. This follows since

ρ is a map over Spec(L). This gives the map ψ of (4.2).
To define the inverse to ψ, we use the constructions of [9]. Let E be the normal

closure of L, and let G = Gal(E/k), and H = Gal(E/L). Consider the functor
F given by (3.1) from the category of finite G-simplicial sets to the category of
k-spaces. In particular, F ((G/H)+) = Spec(EH)+ = Spec(L)+. Let V be a finite-
dimensional representation of G. such that G/H embeds in V . This embedding
extends to an open tubular neighborhood Uof G/H in V . Now the quotient space
SV /(SV \U) is the Thom space of the normal bundle of the embedding of G/H+ in
SV , so it is G-equivariantly homotopy equivalent to (G/H)+ ∧ SV . Thus, we have
a Pontrjagin-Thom map

t : SV → SV /(SV \ U) ' (G/H)+ ∧ SV

in the category of G-equivariant spaces. Taking simplicial approximation and ap-
plying the functor F and then the suspension spectrum functor to t gives a map of
k-spectra

F (t) : F (SV ) → Spec(L)+ ∧ F (SV ).

Now let D be any k-spectrum, we define a pretransfer map

t : D → Spec(L)+ ∧D

as follows. By Theorem 3.5, F (SV ) is invertible in the stable homotopy category
SH(k) over k. By formal arguments, in SH(k), F (SV )−1 must be DF (SV ) =
F (S0, SV ), the Spanier-Whitehead dual of F (SV ). In fact, bythe proof of The-
orem 3.5, we have a rigid model of F (SV )−1 in the category Spectra(k), which
underlies SH(k). Namely, let G = Gal(E/k), and let R[G]− V be the complement
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of V in the regular representation R[G] of V , and let Gm be the multiplicative group
over k. Then we have a natural A1-weak equivalence

F (SV ) ∧ FE/k(SR[G]−V ) ∧ (Gm)∧Spec(E) ∼= (P1
k)n

where n = [E : k]. Thus, we can define the model of F (SV )−1 to be

Σ−nΣ∞(F (SR[G]−V ) ∧ (Gm)∧Spec(E)). (4.7)

Here, Σ−nΣ∞ denotes the n-th shift desuspension of the suspension spectrum of
the space over k. For the smash product of spectra F (SV ) ∧ F (SV )−1, we choose
any linear injection α : U⊕2 → U , where U ∼= A∞k is the universe over k [6]. Then
using the rigid model (4.7) of F (SV )−1, and α for the smash product of spectra,
similarly as in topology, we get a natural homotopy equivalence

F (SV ) ∧ F (SV )−1 ' Σ−nΣ∞(F (SV ) ∧ F (SR[G]−V ) ∧ (Gm)∧Spec(L)) ∼= S0
k. (4.8)

In particular, in SH(k), we have the coevaluation map

c : S0
k → F (SV )−1 ∧ F (SV )

and the evaluation map

e : F (SV )−1 ∧ F (SV ) → S0
k.

Then e and c are inverse isomorphisms in SH(k). Again, we define rigid models in
Spectra(k) for c and e, using (4.7) for F (SV )−1. Namely, define the rigid coevalu-
ation map to be

c : S0
k
∼= Σ−nΣ∞(P1)∧n

'→ Σ−nΣ∞(F (SV ) ∧ (F (SR[G]−V ) ∧ (Gm)∧Spec(E)))
'→ F (SV ) ∧ Σ−nΣ∞(F (SR[G]−V ) ∧ (Gm)∧Spec(E))

= F (SV ) ∧ F (SV )−1.

(4.9)

Similarly, the rigid model of the evaluation map is

e : F (SV ) ∧ F (SV )−1 = F (SV ) ∧ Σ−nΣ∞(F (SR[G]−V ) ∧ (Gm)∧Spec(E))
'→ Σ−nΣ∞(F (SV ) ∧ (F (SR[G]−V ) ∧ (Gm)∧Spec(E)))
'→ Σ−nΣ∞(P1)∧n

∼= S0
k.

(4.10)

Then the rigid models of c and e pass to c and e in SH(k), so they are inverse
A1-weak equivalences in Spectra(k). We define

t : D c→ F (SV )−1 ∧D ∧ F (SV )
F (t)→ F (SV )−1 ∧D ∧ (Spec(L)+ ∧ F (SV ))
τ→ Spec(L)+ ∧ (F (SV )−1 ∧D ∧ F (SV ))
e→ Spec(L)+ ∧D
∼= i]i∗D.
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The last (natural) isomorophism is by Corollary 2.14. Also, the transposition map τ
is a natural homotopy equivalence, since it is naturally homotopic to taking Σ−nΣ∞

of a transposition of spaces. By arguments similar to that of [9], when we pass to
SH(k), t is independent of the choice of V .

Let D = i∗E for an L-spectrum E. We define a map ω of k-spectra by

ω : i∗E
t→ i]i∗(i∗E)

i]ε→ i]E

where the second map ε is the counit of the adjunction (i∗, i∗).
To prove Theorem 4.1, we first make the following reduction.

Lemma 4.11. If ψ : i]E → i∗E is an A1-weak equivalence for all L-spectra E that
are shift desuspensions of suspension spectra, then it is an A1-weak equivalence for
all L-spectra.

Proof. For any L-spectrum E = {En}, we have a canonical A1-weak equivalence

E ' colimnΣ−nΣ∞En

(see [6]). Since i] : Spectra(L) → Spectra(k) is a left adjoint, it commutes with all
small colimits. Also, recall that any smooth scheme Y over k is an small object in
Spc(k), i. e.

HomSpc(k)(Y, colimjXj) ∼= colimjHomSpc(k)(Y, Xj)

for all directed systems {Xj} of k-spaces. Now let Y ∈ Sm/k, then Y ×Spec(k)
Spec(L) ∈ Sm/L, so it is also small in Spc(L). Hence, for any directed system
{Xj} in Spc(L),

HomSpc(k)(Y, i∗(colimjXj)) ∼= HomSpc(L)(Y ×Spec(k) Spec(L), colimjXj)
∼= colimjHomSpc(L)(Y ×Spec(k) Spec(L), Xj)
∼= colimjHomSpc(k)(Y, i∗Xj)
∼= HomSpc(k)(Y, colimj(i∗Xj)).

Also, recall that every object of Spc(k) is a colimit of smooth schemes (see Appendix
of [6]). Thus, for any Y ∈ Spc(k), we have Y = colimrYr, where each Yr is a smooth
scheme over k.

HomSpc(k)(Y, i∗(colimjXj)) ∼= lim
r

HomSpc(k)(Yr, i∗(colimjXj))

∼= lim
r

HomSpc(k)(Yr, colimj(i∗Xj))

∼= HomSpc(k)(Y, colimj(i∗Xj))

So i∗ : Spc(L) → Spc(k) commutes with all small directed colimits. The same holds
for the case of based spaces. Since colimits of spectra are formed spacewise, i∗ :
Spectra(L) → Spectra(k) also commutes with all small directed colimits. Further,
since i : Spec(L) → Spec(k) is a smooth finite morphism, by Propositions 3.2.9 and
3.2.12 of [11], i] and i∗ preserve A1-weak equivalences. Thus, we have canonical



Homology, Homotopy and Applications, vol. 3(2), 2001 439

A1-weak equivalences of k-spectra

i]E ' colimni](Σ−nΣ∞En)

i∗E ' colimni∗(Σ−nΣ∞En).

By the naturality of ψ, the map ψE : i]E → i∗E is the directed colimit of the maps

ψΣ−nΣ∞En : i](Σ−nΣ∞En) → i∗(Σ−nΣ∞En).

Also, recall that directed colimits of k-spectra preserve A1-weak equivalences, since
they coincide with homotopy colimits of k-spectra ([11, 6]). Thus, if each ψΣ−nΣ∞En

is an A1-weak equivalence, then so is ψE .

The heart of the proof of Theorem 4.1 is the following lemma. Let V be a repre-
sentation of G = Gal(E/k) as above, and let H = Gal(E/L). We will write

U : G−spaces → H−spaces

for the forgetful functor.

Lemma 4.12. The composition map in the category of based L-spaces

i∗FE/k(SV )
i∗(FE/k(t))

→ i∗(Spec(L)+ ∧ FE/k(SV )) ∼= i∗(i]i∗FE/k(SV ))

ψ→ i∗FG(SV )
(4.13)

is A1-homotopic to the identity.

Proof. Since in the category of based G-spaces, G+ ∧H SV = G/H+ ∧SV , we have
a map u : G/H+ ∧ SV → SV induced by the map G+ → H+, which maps G \H to
the disjoint basepoint in H+. By Lemma II.5.9 of [9], the following composition in
the category of based G-spaces

SV t→ G/H+ ∧ SV u→ SV (4.14)

is H-homotopic to the identity. We will show that (4.13) is FE/k ·f∗ of (4.14). Since
FE/k(G/H+) = Spec(L)+, and FE/k preserves smash products, we get that

i∗FE/k(G/H+ ∧ SV ) = i∗(Spec(L)+ ∧ FE/k(SV )).

To see that the maps are correct, recall that there is a natural equivalence of cat-
egories between H-equivariant spaces and G-equivariant spaces over G/H. If we
write f : G/H → ∗ for the collapse map, then the forgetful functor U corresponds
to f∗ = G/H ×−. By Lemma 3.4, We have that

FE/L · U ∼= i∗ · FE/k
∼= FE/k · f∗.

Here, FE/k is thought of as a functor from the comma category of G-spaces over
G/H to the comma category of k-spaces over FE/k(G/H) = Spec(L), i. e. L-spaces.
Hence, checking the definitions of ψ and u, we get that (4.13) is indeed FE/kf∗

applied to the sequence (4.14).
But FE/k is a simplicial functor, so it takes a homotopy in based G-spaces to an

A1-homotopy in Spc(k)•. Also, i∗(X×Spec(k)A1
k) = i∗X×Spec(L)A1

L for any k-space
X, so it takes an A1-homotopy of k-spaces to an A1-homotopy of L-spaces.
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Lemma 4.15. 1. For Y a based L-space, the diagram

Σ∞(i∗i]Y )

Σ∞ψY

��

∼=
// i∗i]Σ∞Y

ψΣ∞Y

��

Σ∞Y =
// Σ∞Y

commutes. Here, the left vertical map ψY is thought of as in the category of based
L-spaces, and the right vertical map ψΣ∞Y is in the category of L-spectra.

2. For D a k-spectrum and Y a based L-space, the diagram

i∗(i](i∗D ∧ Y ))

ψi∗D∧Y

��

∼=

ζ
// i∗(D ∧ (i]Y ))

∼=
/ / i∗D ∧ (i∗i]E)

Id∧ψY

��

i∗D ∧ Y =
// i∗D ∧ Y

commutes. Here, ζ is the isomorphism from Proposition 2.8.

Proof. The first part follows from the fact that the map ψ on spectra is defined
spacewise. The second part follows from the analogous statement for based spaces,
and stabilizing with respect to D. Here, we use the fact that the functors i∗ and
i] commute with the spectrification functor L, so for the L-spectrum i∗D and the
L-space Y ,

i∗i](i∗D ∧ E) ∼= L({i∗i](i∗Dn ∧ Y )})

naturally, where {i∗i](i∗Dn ∧ Y )} is the L-prespectrum obtained by applying i∗i]
to the L-prespectrum {Dn ∧ Y } spacewise.

Proof of Theorem 4.1. We will show that ω and ψ are inverse A1-weak equivalences
on all shift desuspensions of suspension spectra. For this, we use arguments similar
to that of [9]. We first show that ψ · ω is homotopic to the identity on i∗E, for
any L-spectrum E. Let ε : i∗i∗E → E denote the counit of the adjunction (i∗, i∗),
then by definition, ε · (i∗ψ) = ψ. Thus, it suffices to show that ψ · i∗ω is naturally
homotopic to ε : i∗i∗E → E. Consider the following diagram of L-spectra.

i∗i∗E
i∗t

// i∗i]i∗i∗E

ψ
��

i∗i]ε
/ / i∗i]E

ψ

� �

i∗i∗E ε
/ / E.

The top row of this diagram is just i∗ω. By the naturality of ε and ψ, the square
commutes. Thus, it suffices to show that the composition

i∗i∗E
i∗t−→ i∗i]i∗i∗E

ψ−→ i∗i∗E

passes to the identity in the stable homotopy category SH(L).
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We will show that the composition

i∗D i∗t→ i∗i]i∗D
ψ→ i∗D (4.16)

is the identity in SH(L) for any k-spectrum D, and apply it to D = i∗E. By part
1 of Lemma 4.15, Lemma 4.12 also holds for the suspension spectrum of F (SV ), by
stabilizing the homotopy to Σ∞F (SV ). We have the following diagram of L-spectra.

i∗D

i∗t

��

'
c

// i∗F (SV )−1 ∧ i∗D ∧ i∗F (SV )

i∗F (t)
�� ))

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

i∗F (SV )−1 ∧ i∗D
∧i∗(Spec(L)+ ∧ F (SV ))

e '

��

Id∧ψ
//

i∗F (SV )−1 ∧ i∗D
∧i∗F (SV )

e'

��

i∗i]i∗D ∼=
// i∗Spec(L)+ ∧ i∗D

ψ
// i∗D.

The left square of this diagram commutes up to homotopy by the definition of t,
and keeping track of the transpositions. The lower right square of this diagram is

i∗F (SV )−1 ∧ i∗D ∧ i∗(i]i∗F (SV ))

∼=
� �

Id∧ψi∗F (SV )
// i∗F (SV )−1 ∧ i∗D ∧ i∗F (SV )

=
��

i∗i](i∗F (SV )−1 ∧ i∗D
∧i∗F (SV ))

i∗i]e

��

ψi∗F (SV )−1∧i∗D∧i∗F (SV )
//

i∗F (SV )−1 ∧ i∗D
∧i∗F (SV )

e

��

i∗i](i∗D)
ψi∗D

// i∗D.

The upper part of this commutes by part 2 of Lemma 4.15, and lower part commutes
by the naturality of ψ. Hence, the composition (4.16) is the composition

i∗D '→ i∗F (SV )−1 ∧ i∗D ∧ i∗F (SV ) → i∗F (SV )−1 ∧ i∗D ∧ i∗F (SV ) '→ i∗D.

The first and third maps are the inverse homotopy equivalences c and e, respec-
tively. The middle map is homotopic to the identity by Lemma 4.12. Thus, (4.16)
is homotopic to i∗e · i∗c, which passes to the identity in SH(L), since by the remark
at the end of Section 2, i∗ preserves A1-weak equivalences.

We still have to show that ω · ψ is the identity on i]E when we pass to the
stable homotopy category over k, if E ∈ Spectra(L) is the shift desuspension of a
suspension spectrum. Let η : E → i∗i]E be the unit of the adjunction (i], i∗). Then
it suffices to show that i∗ω · i∗ψ ·η is homotopic to η over L. Recall the isomorphism
ζ given in Proposition 2.8. For an L-spectrum E, we consider the following diagram
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of k-spectra.

i]E
ψ

//

t
��

i∗E

ω
##

H

H

H

H

H

H

H

H

H

t
��

i]i∗i]E
i]i∗ψ

// i]i∗i∗E i]ε
// i]E.

(4.17)

This diagram commutes by the naturality of t. By the fact that ψ = ε · (i∗ψ), we
get that

ω · ψ = i](ψ) · t.

We consider two more diagrams. First, let Y be a based L-space. We have the
following diagram of based L-spaces.

i∗F (SV ) ∧ Y

Id∧η
��

Id∧η
// i∗F (SV ) ∧ i∗i]Y

i∗F (t)∧Id
//

=

��

i∗i]i∗F (SV ) ∧ i∗i]Y

∼=
��

ψ∧Id
uuj

j

j

j

j

j

j

j

j

j

j

j

j

j

j

i∗F (SV ) ∧ i∗i]Y
=

/ / i∗F (SV ) ∧ i∗i]Y

∼=
��

i∗(i]i∗F (SV ) ∧ i]Y )

i∗ζ−1∼=
� �

i∗(F (SV ) ∧ i]Y )

∼=

O O

i∗(F (SV ) ∧ i]Y )

i∗ζ−1 ∼=
��

i∗i](i∗F (SV ) ∧ i∗i]Y )

i∗i](Id∧ψ)
��

ψ
iiT

T

T

T

T

T

T

T

T

T

T

T

T

T

T

i∗i](Y ∧ i∗F (SV ))

∼= i∗ζ

OO

i∗i](i∗F (SV ) ∧ Y )
∼=

o o i∗i](i∗F (SV ) ∧ Y ).=
oo

(4.18)

The two squares on the left of the diagram commute. Also, the upper right triangle
commutes up to homotopy by Lemma 4.12. The middle right triangle commutes by
part 2 of Lemma 4.15. Also, the lower right square commutes when we restrict to
the image of the composition around the top and right side of the diagram, starting
with the upper left corner i∗F (SV ) ∧ Y . Thus, the large square commutes up to
homotopy in the category of based L-spaces.

Let E be an L-spectrum. We also consider the following diagram of k-spectra.

F (SV ) ∧ i]E
Id∧t

/ /

=

� �

F (SV ) ∧ i]i∗(i]E)
Id∧i]ψ

// F (SV ) ∧ i]E

F (SV ) ∧ i]E

Id∧F (t)
��

i](i∗F (SV ) ∧ i∗i]E)

ζ

O O

i](Id∧ψ)
// i](i∗F (SV ) ∧ E)

ζ

OO

i]i∗F (SV ) ∧ i]E
ζ−1

// i](i∗F (SV ) ∧ i∗i]E)

=

OO

.

(4.19)

The lower left corner of the diagram i]i∗F (SV ) ∧ i]E is Spec(L)+ ∧ F (SV ) ∧ i]E,
and the middle top term F (SV )∧ i]i∗(i]E) is F (SV )∧ Spec(L)+ ∧ i]E. By writing
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out the definition of t on i]E and keeping track of the transpositions, we get that
the left square of the diagram commutes. The right upper square of the diagram
commutes by the naturality of ζ and ψ.

By part 1 of Lemma 4.15, if E = Σ−nΣ∞Y for a based L-space Y , then we can
replace the composition around the right of (4.18) by i∗ applied to the composition
around the bottom of (4.19), which is in turn the top row of (4.19). Hence, we have
that

Id ∧ η : i∗F (SV ) ∧ E → i∗F (SV ) ∧ i∗i]E

is A1-homotopic to

Id ∧ (i∗i]ψ · i∗t · η)

in the category of L-spectra. Also, since i∗ preserves smash products, and i∗S0
k = S0

L,
we get that i∗F (SV ) is invertible in the stable homotopy category over L, with
inverse i∗(F (SV )−1). So smashing the homotopy with i∗(F (SV )−1) gives that η is
the same as

i∗(i]ψ) · i∗(t) · η

in the stable homotopy category SH(L). But now by (4.17), we can replace i∗(i]ψ) ·
i∗(t) by i∗ω · i∗(ψ). This shows that ω · ψ pass to the identity in SH(k), so ω and
ψ are inverse A1-weak equivalences of k-spectra.

5. The Join and Smash Powers to an Étale Scheme

In this section, we give the exact definition for X∗Spec(L) for X ∈ Spc(k), and
X∧Spec(L) for X ∈ Spc(k)•. In fact, for any scheme T over k, such that T → Spec(k)
is étale, we will define X∗T for unbased X and X∧T for based X. For X∗T , we
begin by recalling the join power X∗n for an integer n > 1. This can be described
as follows. Given Xn, for each pair of subsets of n = {1, . . . , n} of orders i and
j, i > j, we take all possible projection maps Xi → Xj . We have a partially
ordered set of such projections, and the homotopy pushout of this diagram is X∗n.
For motivation, recall that for a small category D and a functor F from D to the
category of topological spaces, the homotopy colimit of F with respect to D can be
described as the classifying space of the following topological category C(F ). The
objects space of C(F ) is

∐

D∈D

F (D)

and for x, y ∈ Obj(C(F )), x ∈ F (D) and y ∈ F (D′), the maps x → y in C(F )
corresponds to maps f : D → D′ in D, such that F (f) : x 7→ y. This is topologized
as

∐

D′∈Obj(D)

∐

f :D→D′

F (D).

For a space X and n > 1, we can define the topological category Cn(X) as follows.
Let A be the set of all nonempty subsets of n, and for S ⊆ n, denote by XS the
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space of maps from S into X. Then

Obj(Cn(X)) =
∐

S∈A

XS (5.1)

where the disjoint union runs over all pairs S, S′ in A with S′ ⊆ S. For a ∈ XS and
b ∈ XS′ , we have a map a → b in Cn(X) if and only if S′ ⊆ S, and a projects to
b via the projection XS → XS′ . Hence, the morphisms in Cn(X) are parametrized
by pairs S′ ⊆ S, and points in XS . So

Mor(Cn(X)) =
∐

S′⊆S∈A

XS .

Then X∗n is the classifying space of Cn(X).
For an unbased k-space X and an étale scheme T over Spec(k), we define

X∗Spec(L) via the interpretation of the homotopy colimit as the classifying space
of a category. For motivation, we first consider the case of equivariant topological
spaces. Let G be a finite group, and let T be a G-set. Then for a G-equivariant
topological space X, we can define X∗T in the above manner. Define

A = {S ⊆ T | S nonempty}.

Then A has a natural G-action by the multiplication of G from the right. For each
S ∈ A, let HS be the stabilizer subgroup of S. Then S is an HS-equivariant set. De-
fine the HS-equivariant space XS = HomG(S,X) to be the space of nonequivariant
maps from S to X, with an HS-action by conjugation. For each α ∈ G, and S ∈ A,
we have Hα(S) = αHSα−1, so the stabilizer subgroups are isomorphic for elements
in the same G-orbit of A. Also, note that if a ∈ XS , then α · a · α−1 ∈ Xα(S). We
have a natural isomorphism of G-equivariant spaces

α∗ : G×HS XS ∼=→ G×Hα(S) Xα(S) (5.2)

For g ∈ G and a ∈ XS , α∗ takes (g, a) ∈ G ×HS (XS) to (gα−1, α · a · α−1) in
G ×Hα(S) Xα(S). It is straightforward to check that this is indeed a G-equivariant
isomorphism. If α(S) = β(S), then α and β differ by h ∈ HS . But h∗ = Id for
h ∈ HS . Hence, the map α∗ of (5.2) depends only on the sets S, α(S).

We define the following category CT (X), which is enriched over the category of
G-equivariant topological spaces. If {S1, . . . , Sn} is a G-orbit in A, we will replace
∐n

i=1 XSi in (5.1) by G×H(Si) XSi for any choice of i between 1 and n, to get the
G-action. So the object space of CT (X) is

Obj(CT (X)) =
∐

Sj

G×HSj
XSj

where the Sj ’s range over a set of representatives of the orbits in A. This is a G-
equivariant space. For g(Sj) in the orbit of Sj in A, and a ∈ Xg(Sj), a corresponds
to (g−1, g · a · g−1) in G ×HSj

XSj . By (5.2), Obj(CT (X)) is independent of the
choices of orbit representatives.

For objects (g, a) ∈ G×HSj
XSj and (g′, b) ∈ G×HSr

XSr , which correspond to
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g−1 · a · g ∈ Xg−1(Sj) and (g′)−1 · b · g′ ∈ X(g′)−1(Sr), there is a morphism in CT (X)

(g, a) → (g′, b)

if and only if (g′)−1(Sr) ⊆ g−1(Sj), and (g′)−1 · b · g′ ∈ X(g′)−1(Sr) is the projection
of g−1 · a · g ∈ Xg−1(Sj). In other words, each morphism of CT (X) corresponds
uniquely to a pair of sets S′, S ∈ A, S′ ⊆ S, and a point in XS . Let

A2 = {(S′, S) | S, S′ ∈ A, S′ ⊆ S}.

Then A2 has a G-action by multiplication from the right. For each (S′, S) ∈ A2, let
H(S′,S) be the stabilizer subgroup of (S′, S). Let {(S′i, Si)} be a set of representatives
or the orbits in A2. Then the G-space of morphisms in CG(T ) is

Mor(CT (X)) =
∐

(S′i,Si)

G×H(S′i,Si)
XSi .

For g ∈ G and a ∈ XSi , (g, a) ∈ G×Hi XS corresponds to the morphism that comes
from the projection of g−1 · a · g ∈ Xg−1(Si) to Xg−1(S′i). There is a natural G-space
structure on Mor(CT (X)). For S ∈ A, (S, S) ∈ A2, HS = H(S,S), so the

Identity : Obj(CT (X)) → Mor(CT (X))

is given by a disjoint union of identity maps

G×HS XS → G×H(S,S) XS

composed with isomorphisms of the form (5.2) to make (S, S) one of the chosen
representatives of an orbit in A2. For each pair (S′, S) ∈ A2, H(S′,S) ⊆ HS , so
define

Source : Mor(CT (X)) → Obj(CT (X))

to be a disjoint union of quotient maps

G×H(S′,S)
XS → G×HS XS

composed with appropriate isomorphisms of the form (5.2). Also, the inclusion
S′ → S induces an H(S′,S)-equivariant map XS → XS′ . so define

Target : Mor(CT (X)) → Obj(CT (X))

to be a disjoint union of compositions

G×H(S′,S)
XS → G×H(S′,S)

XS′ → G×HS′ XS′

where the first map is induced by XS → XS′ , and the second map is the quotient
map. Finally, let A3 = {S′′ ⊆ S′ ⊆ S} with a G-action via multiplication from
the right, and let H(S′′,S′,S) be the stabilizer subgroup of (S′′, S′, S) in A3. Then
Mor(CT (X))×Obj(CT (X)) Mor(CT (X)) is a disjoint union of G-spaces of the form

(G×H(S′,S)
XS)×G×HS′

XS′ (G×H
(S′′,S′)

XS′) ∼= G×H(S′′,S′,S)
XS

where (S′′, S′, S) ranges over a set of representatives of orbits in A3. So

Composition : Mor(CT (X))×Obj(CT (X)) Mor(CT (X)) → Mor(CT (X))
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is a disjoint union of quotient maps of the form

G×H(S′′,S′,S)
XS → G×H(S′,S)

XS .

By definition, the identity, source, target, and composition of morphisms are G-
equivariant. Thus, CT (X) is a category enriched over G-topological spaces. The
classifying space of CT (X) is X∗T , which has a natural structure as a G-space.

The construction in the algebraic case is similar. Let X be a k-space, and T is a
scheme over k, with étale map T → Spec(k). Then

T =
∐

r

Spec(Fr)

is a disjoint union of the spectra of finite extension fields Fr over k. Let L be a Galois
extension that contains Fr for every r, such as the the algebraic closure of k, and let
G = Gal(L/k). In particular, G may be a profinite group. For each Fr, let H(Fr) =
Gal(L/Fr), so Fr = LH(Fr). Thus, let the G-set TG be given by TG =

∐

r G/H(Fr),
then T = FL/k(TG). Again, let A be the collection of nonempty subsets of TG, with
a G-action by the multiplication of G from the right. For S ∈ A, let HS be the
stabilizer subgroup of S, and let ES = LHS , so Spec(ES) = FL/k(G/HS). Also, let
fS : Spec(ES) → Spec(k) be the map corresponding to the inclusion of fields. Then
FL/ES (S) ∈ Spc(ES), and the analogue of the HS-equivariant topological space XS

is the ES-space

XFL/ES
(S) = HomSpec(ES)(FL/ES (S), (fS)∗(X)). (5.3)

In particular, if S = TG, then ES = k and FL/ES (S) = FL/k(TG) = T as a k-space,
so we have

XTG = HomSpec(k)(T, X)

by Lemma 2.14. For α ∈ G and S ∈ A, Hα(S) = αHSα−1, so Eα(S) = α(ES). So
similarly as for (5.2), we have an isomorphism of k-spaces

α∗ : (fS)]XFL/ES
(S) ∼=→ (fα(S))]X

FL/Eα(S)
(α(S)). (5.4)

For α ∈ HS , the map (5.4) is the identity map, since fS = fS · α : Spec(ES) →
Spec(k). Thus, in general the map (5.4) depends only on the sets S and α(S). We
define the category CT/k(X), enriched over Spc(k), as follows. Define the k-space of
objects to be

Obj(CT/k(X)) =
∐

Sj

(fSj )]XSj

where Sj ranges over the representatives of the orbits in A. For (S′, S) ∈ A2, set
E(S′,S) = LH(S′,S) , so k ⊆ ES ⊆ E(S,S′). Let f(S′,S) : Spec(E(S′,S)) → Spec(k), and
a(S′,S) : Spec(E(S′,S)) → Spec(ES) be the maps corresponding to the inclusions
of fields. Then the analogue of G ×H(S′,S)

XS is (f(S′,S))]a∗(S′,S)X
FL/ES

(S). Thus,
define the k-space of morphisms in CT/k(X) to be

Mor(CT/k(X)) =
∐

(S′i,Si)

(f(S′i,Si))](a(S′i,Si))
∗XFL/ES

(S)
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where (Si, S′i) ranges over a set of representatives or the orbits in A2.
The identity, source, target, and composition maps of CT/k(X) are defined sim-

ilarly as in the equivariant case. For S in A, E(S,S) = ES , a : Spec(ES) →
Spec(E(S,S)) is the identity, and fS = f(S,S) : Spec(ES) → Spec(k). So

Identity : Obj(CT/k(X)) → Mor(C)T/k(X)

is a disjoint union of identity maps on (fS)]XFL/ES
(S), composed with isomorphisms

of the form (5.4) to make (S, S) one of the chosen representatives of an orbit in A2.
For the source map, note that for each (S′, S) in A2, f(S′,S) = fS · a(S′,S). Let c be
the counit of the adjunction pair ((a(S′,S))], (a(S′,S))∗). So define

Source : Mor(CT/k(X)) → Obj(CT/k(X))

to be a disjoint union of maps

(f(S′,S))](a(S′,S))∗XFL/ES
(S) = (fS)](a(S′,S))](a(S′,S))∗XFL/ES

(S)

c→ (fS)]XFL/ES
(S)

composed with isomorphisms of the form (5.4) to make (S′, S) an orbit repre-
sentative in A2. To define the target map, consider the natural map b(S′,S) :
Spec(E(S′,S)) → Spec(ES′). So we have a commuatative diagram

Spec(E(S′,S))

a(S′,S)

� �

b(S,S′)
//

f(S′,S)
''

N

N

N

N

N

N

N

N

N

N

N

ES′

fS′

��

Spec(ES)
fS

// Spec(k).

Then by Lemma 3.4, the inclusion S′ → S induces a map of E(S′,S)-spaces

(b(S′,S))∗FL/ES′
(S′) = FL/E(S′,S)

(S′) → FL/E(S′,S)
(S) = (a(S′,S))∗FL/ES (S).

This in turn induces a map of E(S′,S)-spaces

(a(S′,S))∗XFL/ES
(S) → (b(S′,S))∗X

FL/ES′
(S′).

This is because by taking the adjoint of Proposition 2.8, (b(S′,S))∗ and (a(S′,S))∗

commute with the internal Hom functor. This gives that

X(a(S′,S))
∗FL/ES

(S) = HomE(S′,S)
((a(S′,S))∗FL/ES (S), (f(S′,S))∗X)

∼= (a(S′,S))∗HomES
(FL/ES (S), f∗SX)

= (a(S′,S))∗XFL/ES
(S)

and similarly for X(b(S′,S))
∗FL/ES′

(S′). So

Target : Mor(CT/k(X)) → Obj(CT/k(X))

is a disjoint union of compositions

(f(S′,S))](a(S′,S))∗XFL/ES
(S) → (f(S′,S))](b(S′,S))∗X

FL/ES′
(S′) → (fS′)∗X

FL/ES′
(S′)
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where the second map is the counit of the adjunction pair ((b(S′,S))], (b(S′,S))∗).
Finally, for the composition of morphisms in CT/k(X), consider (S′′, S′, S) ∈ A3.
Let E(S′′,S′,S) = LH(S′′,S′,S) . We have natural maps

f(S′′,S′,S) : Spec(E(S′′,S′,S)) → Spec(k)

and
c(S′′,S′,S) : Spec(E(S′′,S′,S)) → Spec(E(S′,S)).

Then Mor(CT/k(X))×Obj(CT/k(X)) Mor(CT/k(X)) is a disjoint union of k-spaces of
the form

(f(S′,S))](a(S′,S))∗XFL/ES
(S) × (f(S′′,S′))](a(S′′,S′))∗XL/ES′ (S

′)

where the product is over (fS′)]XL/ES′ (S
′), to which the two factors map by the

target and source maps, respectively. This is isomorphic as a k-space to

(f(S′′,S′,S))](c(S′′,S′,S))∗(a(S′,S))∗XFL/ES
(S).

Hence,

Composition : Mor(CT/k(X))×Obj(CT/k(X)) Mor(CT/K(X)) → Mor(CT/k(X))

is a disjoint union of counit maps

(f(S′′,S′,S))]c∗(S′′,S′,S)a
∗
(S′,S)X

FL/ES
(S) → (f(S′,S))]a∗(S′,S)X

FL/ES
(S)

for the adjunction pairs ((c(S′′,S′,S))], (c(S′′,S′,S))∗), where (S′′, S′, S) ranges over a
set of orbit representatives in A3. Then CT/k(X) is a category enriched over Spc(k).
The join power X∗T is defined to be the classifying space of CT/k(X), which has a
natural structure as a k-space.

To show that X∗T is independent of the choice of L, it suffices to consider the
case where T = Spec(F ), for some separable finite extension F of k. Suppose L
and Lprime are two Galois extensions of k containing F . We can assume without
loss of generality that L′ contains L. Let J = Gal(L′/L), G′ = Gal(L′/k) and
G = Gal(L/k). So we have a short exact sequence of groups

1 → J → G′
p→ G → 1.

Let H = Gal(L/F ), and H ′ = Gal(L′/F ). Then T = Spec(F ) = FL/k(G/H) =
FL′/k(G′/H ′). But H ′ = p−1(H), so there is a canonical isomorphism of G′-sets

G′/H ′ ∼= G/H

where G/H is thought of as a G′-set fixed by J . So let AG be the collection of
nonempty subsets of G/H, and AG′ be the collection of nonempty subsets of G′/H ′.
There is a canonical G′-equivariant bijection between AG and AG′ . In particular,
for any S ∈ AG′ , let H ′

S ⊆ G′ be the isotropy subgroup of S in AG′ , and let HS ⊆ G
be the isotropy subgroup of S in AG. Then H ′

S = p−1(HS). Then

LHS = (L′)H′
S

so the definition of ES = LHS is independent of the choice of L. For a k-space X,
the objects and morphisms of the category CT/k(X) are build up out of k-spaces of
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the form XFL/ES
(S) for all S ∈ AG. By arguments similar as above,

FL/ES (S) = FL′/ES (S)

as k-spaces, where S is thought of as a subset of G/H on the left hand side, and
as a subset of G′/H ′ on the right hand side. Hence, by the definition of XFL/ES

(S)

in 5.3, we see that XFL/ES
(S) is independent of the choice of L.

If X is a triangulated G-equivariant space, TG is a G-set, and T = FL/k(TG) is
étale over Spec(k). Then from the completely analogous definitions of the categories
CG(X) and CT/k(FT/k(X)), we get a weak equivalence of k-spaces

FL/k(X∗TG) = FL/k(X)∗T .

Likewise, for X ∈ Spc(k)• and T → Spec(k) étale, we can also define X∧T ,
the smash powerof X to T . As before, we have an extension field L of k, with
G = Gal(L/k), such that T = FL/k(TG) for some G-set TG. For any S ∈ A, we
have fS : Spec(ES) → Spec(k). Then there is a map of unbased ES-spaces

XFL/ES
(S) → (fS)∗XT

by inclusions of basepoints, induced by the inclusion map S → G, which is HS-
equivariant. This corresponds to a map of unbased k-spaces

(fS)]XFL/ES
(S) → XSpec(L).

In particular, for any α ∈ G, then Eα(S) = α(ES), and the diagram

(fα(S))]X
FL/Eα(S)

(α(S)) α∗
∼=

//

''

P

P

P

P

P

P

P

P

P

P

P

P

P

(fS)]XFL/ES
(α(S))

x xp

p

p

p

p

p

p

p

p

p

p

p

XT

commutes, where α∗ is the map of (5.4). Let Sj range over a set of orbit represen-
tatives of A \ {G}. Then define the X∧T ∈ Spc(k)• to be

X∧T = XT /Spec(k)

⋃

Sj

(fSj )]X
FL/ESj

(Sj).

Here,
⋃

denotes the union inside XT .

It remains to prove Lemma 3.7.

Proof of Lemma 3.7. For any S ⊂ TG, the functor

(−)FL/ES
(S) = HomSpec(ES)(FL/ES (S), (fS)∗−) : Spc(k) → Spc(ES)

commutes with fibered products of unbased k-spaces. For X, Y ∈ Spc(k)•,

(X ∧ Y )∧T

= (X ∧ Y )T /
⋃

Sj

(fSj )](X ∧ Y )FE/Sj (Sj)

= (X × Y/X ∪ Y )T /
⋃

Sj

(fSj )](X ∧ Y )FE/Sj (Sj).
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On the other hand,

X∧T ∧ Y ∧T

= (XT /
⋃

Sj

(fSj )]X
FE/Sj (Sj)) ∧ (Y T /

⋃

Sj

(fSj )]Y
FE/Sj (Sj))

∼=
XT × Y T

(
⋃

Sj
(fSj )]X

FE/Sj (Sj)Y T ) ∪ (XT ×
⋃

Sj
(fSj )]Y

FE/Sj (Sj))
.

for all ordered pairs of subsets (S, S′) in TG, (S, S′) 6= (TG, TG), we have a map

((fS)]XFL/ES
(S))× ((fS′)]Y

FL/ES′ (S′)) → XT × Y T ∼= (X × Y )T .

Both (X ∧ Y )∧T and X∧T ∧ Y ∧T are isomorphic to the quotient

(X × Y )T /
⋃

Si,S′j

((fS)]XFL/ES
(S))× ((fS′)]Y

FL/ES′
(S′)).
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