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Abstract

We describe a category ht Top* whose objects are pointed continu-
ous maps and whose morphisms are generated under composition by
the tracks (relative homotopy classes) of homotopies. For example, if
my : hk — xis a nullhomotopy then its track is a morphism from & to h.
The composition of tracks in ht Top* amounts to a sharpening of the
classical secondary composition operation (Toda bracket). Standard
properties of the Toda bracket can be derived in this setting. Moreover
we show that htTop* is itself the homotopy category of a bicategory
bTop* and so admits also a secondary composition operation.

0. Introduction

Secondary and higher order homotopy composition operations (Toda brackets) were introduced
by H. Toda [T] in order to construct elements of the homotopy groups of spheres as part of his
‘composition method’ for computing these groups. Although at first the appropriate definitions
of the higher order brackets were not entirely clear, at least since the work of G. Walker [W]
and M. Mori [M] these have been well enough understood to enable their basic properties to be
determined and to permit their application to computation. Our present knowledge, however,
leaves something to be desired. For example, although we have a convenient upper bound for
the indeterminacy of a bracket in [W; Theorem 2] (see also [M; Proposition 4]) it is apparently
not known whether this bound is the best possible.

More urgently, Baues and Dreckmann [BD] have shown, for certain full subcategories of the
pointed homotopy category, that the operation of the secondary homotopy composition (i.e.
the triple Toda bracket) is determined by a certain 3-dimensional class in the cohomology of
the subcategory with coefficients in a natural system of abelian groups. It is reasonable to
conjecture that analogous results can be proved for the higher order operations, but one is
brought to a standstill when one formulates the question: in what category does there exist
a characteristic cohomology class that determines (in the sense of Baues-Dreckmann) the
quaternary Toda bracket?

To make progress one needs to recall another lacuna. Much of the development of algebraic
topology has proceeded under the dominant influence of the nineteenth century concept of
group. Although, by the 1960’s, it had been recognised that the fundamental groupoid of a
topological space has significant conceptual advantages over its (collection of) fundamental
group(s) (cf. [Brl, Br2]) this structure has not yet fully been exploited by homotopy theorists.
It is true that, since the work of Barratt [Bar] and Rutter [R], tracks (i.e. relative homotopy
classes of homotopies) have been objects of interest in their own right, but their usual fate
is to suffer the indignity of being converted into group elements by a difference construction.
To come into their own they need to be seen as morphisms of a ‘homotopy category’ with
an appropriate role. We achieve this by modifying the difference construction into a ‘pasting’
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composition.

We take the view that the higher order homotopy composition operations are essentially
(determined by) triple Toda brackets in a homotopy category whose morphisms are tracks of
the appropriate dimension.

To clarify what we have in mind, suppose that k£ : V. — U, h : U — Z are pointed maps
whose composite is homotopically trivial and let m; : hk ~ % be a nullhomotopy. The relative
homotopy class of m; is a I-track which we will denote by m. We shall regard m as a morphism
from k to h in a category whose objects are pointed maps. To understand the composition
(which will be defined purely formally in section 1), note that we also regard the morphism
as an oriented square

V ——x
klﬂml — m:Ekoh. (0.1)
UT>Z

The domain and codomain arrows moving anticlockwise around the square establish its orien-
tation. Moreover the morphism m : £ — h has other representations such as

I U=——=0
Lﬂ_m lh and kTTT—m \Lh (0.1.1)

x —> 7 \% *>Z

but note that here the domain and codomain arrows establish the opposite orientations and,
to compensate, the tracks inhabiting the diagrams are —m.
Suppose that n : h — g is another morphism, where g : Z — Y is a map and n; : gh ~ * a
nullhomotopy with associated track n. Then we define

nAm = —gm + kn:k—g (0.2)

(where —g.m and k'n are the relative homotopy classes {gm;_;} and {n:k} respectively), i.e.
to be the track pasting

V—U *
Lﬂ mlh ﬂnl
* Z Y

- > —>g

|

k

of the squares associated with m and n. Note that this pasting takes place in the classical
double category of track homotopy commutative squares of pointed maps. The composite
morphism nAm can also be identified with various oriented squares such as

U—————>Y

kT f+ —g.m + k'n Tg (0.2.1)

V—e—/—"F7—"7">2
but note that the squares (0.1) and (0.2.1) are of a different type. We say that the morphism
m : k — his of type 1 and nAm : k — g is of type 2. There is very little distinction between
the square (0.2.1) and the track inhabiting it. With very mild abuse we blur the distinction

and regard nAm also as an element of the *-based track group 7 (Y’;*) in the sense of [R].
It is well-known that there is an isomorphism

0:7" (V%) = n(TV, V). (0.2.2)
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Then, denoting the homotopy classes of the maps g, h, k by 8, 7, § respectively, we recognise
f(nAm) € 7(XV,Y) as an element of the triple Toda bracket:

O(nam) € {8,7,0} C x(SV,Y). (0.3)

Moreover, let f : Y — X be a map and p; : fg ~ * a nullhomotopy with associated track p.
More general compositions of squares such as m, n, p are defined via pasting in the double
category of homotopy commutative squares. For example pA(nAm) and (pAn)Am have a
common definition namely the track inhabiting the pasting

—k>U—>

14 %
f —m ' n

%i’;i 04
Mo

* ———>

ﬂ_
T

—_—

of the double category of homotopy commutative squares. Thus we get the associativity prop-
erty for free. We shall see that the above instance of associativity (via the middle four inter-
change of the double category) translates into the bijection [T; Proposition 1.2 (iv)] between
the cosets

ao{B,7,6} = —{a, 3,7} o X, (0.5)

where a denotes the homotopy class of f.

The properties of the ‘category of maps and tracks’ ht Top* obtained in this way are pursued
further in section 1.

To represent ht Top™ as a homotopy category we invoke the theory of the homotopy 2-groupoid
G1E of a Hausdorff space E studied in [HKK]. By considering the case E = XV, the (un-
pointed) space of pointed continuous maps from V to X and taking an adjoint, we obtain
a 2-groupoid Go(V, X) whose objects are pointed maps from V to X, whose 1-morphisms
called semitracks are equivalence classes (h;) of homotopies h; : V' — X under a relation finer
than relative homotopy, and whose 2-morphisms are 2-tracks. We then construct a bicategory
bTop* whose 2-morphisms are 2-tracks and whose underlying (weak) category is similar to
htTop* except that tracks m are replaced by semitracks (m;). Finally we show that htTop*
is the quotient category obtained from the underlying category of bTop* by factoring out by
the homotopy relation between the 1-morphisms induced by the 2-tracks.

Now suppose that nAm = 0 and pAn = 0. Since (as we claim) our category is a homotopy
category one might hope to define a triple Toda bracket {p,n,m} and to show that

{p,n,m} C {a,8,7,0} C n(Z*V,X), (0.6)

where the four-fold bracket refers to the classical quaternary Toda bracket. However, the
underlying ‘category’ of bTop* is only a weak category and an extension of the classical
theory of the Toda bracket is required. It is intended that this theory will be given in a paper
devoted to the study of the bracket in an arbitrary bicategory and applied there to obtain the
inclusion (0.6) together with other applications. Meanwhile further ramifications of ht Top* ,
including some Hopf invariant theory involving a new formula for the classical Toda bracket
are given in section 4, together with a sample application in which a (new) nontrivial Toda
bracket in the homotopy groups of spheres is detected.

The authors acknowledge conversations with J.J.C. Vermeulen, comments and suggestions by
R. Brown and by the referee.
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1. The category htTop*

We begin with some historical remarks. The notion of double category was first introduced by
C. Ehresmann [E], see also [BS; S; SW]. Track homotopy commutative squares of maps have
been used extensively in coherent homotopy theory. For the definition of the double category
of track homotopy commutative squares in an abstract setting we refer to [KP; Chapter IV]
and to [S].

As mentioned in the introduction the objects of ht Top* are pointed continuous maps and the
morphisms are generated by composing squares of the form (0.1). However, we shall need a
more formal description. A morphism of the category has a type which is an integer r, where
0 < r < 3. For each object (i.e. pointed map) k there is an identity morphism 14 : &k — k. A
morphism of type 1, m : k — h, is only defined if codomain(k) = domain(h) and hk ~ *. Then
it consists of an element of the track set 7V (Z; hk, *), in the sense of [R], where V = domain (k)
and Z = codomain(h). For arbitrary maps h : U — Z and f : Y — X morphisms of type 2
and type 3, r : h — f are always defined. Geometrically the morphisms may be regarded as
diagrams of the form

1 1

kT TTOTk = 1y:k—=k (type0) kTﬂ_mlh = m:h—k (typel)
P qa—
hT frr Tf = r:h—f (type?2) hT ﬂrlf = r:h—f (type3)

where r € 7Y (X; %), corresponding to identity arrows and composites of one, two and three
(respectively) morphisms of type 1. The diagrams compose via suitable pasting in the double
category of track homotopy commutative squares. Here some of the diagrams have to be turned
upside down (cf. the definition of nAm in (0.2)) and the positions of their bounding arrows
rearranged.

The following composition formulae can be checked. Note that the interpretation is consistent
with that given in the introduction.

nAm = —gm+ k'n (m:k— h,n:h— gof type 1)

rAm = —kr (m:k— hoftypel,r:h— f of type 2 or 3)

pAr = fr (p:g— foftypel, r:k — g of type 2 or 3)

sar=0 (r:k—>goftype2or3,s:g— eisof type 2 or 3)

Although a track m always has an inverse —m, note that morphisms of types 1,2,3 are not
invertible.

We denote by hom,.(k, f) the set of morphisms in htTop* of type r from k : V' — U to
f:Y—>X.

1.2. Proposition. The pasting composition is associative and htTop* is a category. There
exist bijective correspondences as follows.

(1) If hk ~ x then hom1(k,h) + n(XV, Z).

(”) hom2 (k7g) & Ug*’y:OJc*fy:O {{9}77) {k}}

(iti) homs(k, f) < Uf*ﬁzo,go»y:o,kw:o fdB, 7, {k}}
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The first assertion of the Proposition is a consequence of the definition in terms of the double
category. However we shall give a direct argument from the formal definitions in this section.
We recall the well-known interchange property for 1-tracks.

1.3. Lemma. Let ks :ko~k :V = U and hy : hg ~ hy : U — Z be a pair of homotopies.
Then (k‘o)h + (hl)k = (ho)k + (k1)h

Proof 1t is sufficient to observe that H; s = h(1_g)¢kst +hst+1-sksq(1—5); is a relative homotopy
from htko + hlkt to hgkt + htkl.

Proof of Proposition 1.2 To check associativity of A we need to examine cases. Suppose three
morphisms m: k — h,n:h — g, p: g — f are each of type 1. Applying (1.1) we find

pPA(nAm) = f,(-g.m+k'n) = —fgm+ fkn (1.3.1)

and
(pAn)Am = —k'(—fn+ h'p)=—khp+kfn. (1.3.2)
However —f,g.m = —k*h'p by an application of Lemma 1.3 and, since the operators f, and k-

commute, the desired equality follows.

Suppose now that q : f — e is a morphism of type 1. Then (QAp)A(nAm) = 0, being a compo-
sition of morphisms of type 2. Moreover qA(pA(nAm)) = e.(—f.gm+ fk'n) = (ef).(—g.m+
k'm) = 0. Dually we may argue that ((qAp)An)Am = 0 and hence ((qAp)An)Am =
qA(pA(nam)). We have now checked all possible associativities. Hence htTop* is a cate-
gory.

In passing we may observe that the equalities (1.3.1) and (1.3.2) verify the assertion (0.5) of
the introduction.

An alternative approach to the category htTop* would be to permit further morphisms of
type 0. In such an approach a morphism of type 0 from k' to k is defined if k¥’ and k are
homotopic maps and then it consists of a diagram of form

V=—7=V

|k
kl y lk , (14)
U:U

where k = {k;} is the relative homotopy class of a homotopy k: : k' ~ k : V — U. The
advantage of considering such morphisms of type 0 is that they become isomorphisms in the
category, so that homotopic maps are necessarily isomorphic in ht Top*. To avoid subsequent
complication we have preferred not to adopt this approach. However, with the present defini-
tions, homotopic maps are weakly isomorphic objects of ht Top* in the following sense.

Note that the track k defines a function k* : hom, (k, h) — hom,(k', h) if we set

*

\% V—7
k*m = k’l g kl f+ m Th =hk +m:k' —>h. (1.4.1)

*

Then k* is a bijection since (—k)* is inverse to k*. Moreover one can check, if nAm is defined

that
nAk*m = nAm , (1.4.2)
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by considering the pasting

k'

|

U——

v
1lﬂ—k l1ﬂ0
V—Le—>
lﬂ—mlhﬂn
* Z

g

M x<=— %

By similar arguments the remaining cases can be checked to show that the morphism sets and
the composition operation in htTop* (suitably interpreted) depend only on the homotopy
classes of the object maps.

It is clear that the track group 7" (Z; %) acts transitively and effectively on the set hom (k, h).
With our choice of orientation, this action is on the right. If we identify homa (k, g) with a subset
of 7V (Y; %) via the bijection of Proposition 1.2(ii), then for u € 7V (Z;*) and A € 7Y (Y; %)
we record

nAAm.p = —g.u+nAam+ k. (1.5)
With the notation used in (0.2), note that
(8,76} = {Bnramp) | A€ 7V (V;4), p eV (Z)}.

Then the equation (1.5) corresponds to the classical representation of {f,v,0} as a double
coset.

The reader should be aware that the same track can denote many different morphisms in
htTop*. For example, suppose that k¥ : V - U, A\ : U - U, h: U — Z,g9:7Z = Y are
maps and my : hAk ~ %, ny : gh ~ % are homotopies. If m = {m;} and n = {n;} denote the
associated tracks, then we have morphisms

Me 2 h 2 g and kA28

Moreover nAm = —gm + k*A'n : Ak - g and A'nAm = —gm + k'A\'n : kK — g . Note that
the track parts of the respective A composites are equal.

The point is brought out well in the following Lemma.
1.6. Lemma. Given maps
whv Stz Sy Ly

and homotopies my : hkA ~ %, ny : ghk ~ %, p; : fgh ~ % then the corresponding composite
morphisms in htTop*

Ao k29, A2 h—Ps g h—2sgh—2 s f

satisfy
fnAm + XNpAn = pAm.

Proof The track equality can be verified by direct computation but the following diagrams
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offer an explanation.

U——>

b

k —n

=

/
T

<T>

|

*
*
A

g
j

=

/
=
=

W—r—

Lemma 1.6 translates into the following (possibly new) Toda bracket formula.
1.7. Proposition. Given the following sequence of spaces and homotopy classes
w-SvSu Lz Sy Sy
and suppose that afy =0, By =0, vde = 0. Then
{aocB,y,00e} Cao{B,yod,e} + {a,f07,6}0%e.

Proof Lemma 1.6 indicates that the two sides have a common element. It only remains to note
that the left hand side has a smaller indeterminacy.

We shall return to the study of the category ht Top* in section 4 where the emphasis will be
on properties of the classical triple Toda bracket and on the form they take when expressed
in this category.

2. Properties of 2-tracks

In this section we recall some details of the homotopy 2-groupoid G2 FE of a Hausdorff space
E and of the 2-groupoid enrichment of the category of pointed topological spaces as given in
[HKK]. For each pair of pointed spaces X and Y we have a 2-groupoid G (V, X)) whose objects
are pointed maps from V' to X, 1-morphisms are (equivalence classes of) pointed homotopies
and whose 2-morphisms (also called 2-tracks) are (equivalence classes of) relative homotopy
classes of 2-homotopies from (equivalence classes of) homotopies to homotopies.

If p and ¢ are points of E, a path f in E from p to q is a continuous map f : I — E from the
unit interval [ into E such that f(0) = p and f(1) = ¢. If g is another path in E from ¢ to r,
we denote their concatenation by ge f.

Let f,f' : p ~ q be paths in E. A relative homotopy fs : f ~ f' : p ~ ¢ is a homotopy
such that the initial and final points of f and f’ remain fixed during the homotopy. Let
fs, fl o f~ f': p =~ q be two relative homotopies. We consider fs; and f, themselves to be
relatively homotopic, if they are homotopic via a homotopy I x I x I — E which is constant
on the boundary of I x I. The relative homotopy class {fs} of fs is called a 2-track.

Concatenation of the relative homotopies fs; and gs (defined if f; = go) induces a vertical
pasting operation on 2-tracks, denoted +, yielding a groupoid structure (with identities denoted
0 or O7) on the set II, E(p, q) of 2-tracks between paths in E from p to ¢. Similarly if f, : f ~
ffip~qand hy: g~ g':q~r,the horizontal pasting of homotopies

hsefs:gef~gef :p~r,

obtained by concatenation of the respective paths at each stage of the homotopy, induces a
corresponding operation on 2-tracks:

({fs}:{hs}) — {hs} o {5},
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satisfying the interchange property

({hs} + {5} o ({fs} +{F:}) = ({hs} o {fs}) + ({BS} o {F3 D).

A relative homotopy s : f ~ f': p ~ q is thin if it can be factored
e Ix 125725 E,

where J is a tree, @5 : ¢ ~ ¢' is a relative homotopy, ¢ and ¢' are paths in J which (i) have the
same initial and the same final points, (ii) are finitely piecewise linear and (iii) satisfy p¢ = f,
pg' = f".

The wunderlying groupoid GE of GoFE is the groupoid of ~ classes of paths in E, where
f ~ f'if there exists a thin relative homotopy from f to f' and where the operation e is
induced by concatenation of paths. Let NE(p, q) denote the subgroupoid of ITyE(p, q) whose
morphisms are the relative homotopy classes of thin relative homotopies. Then NE(p, q) is
a normal subgroupoid of IIsE(p,q) and we define G2E(p,q) to be the quotient groupoid
I, E(p,q)/NE(p,q). We use (f) to denote the ~ class of a path f and 0. to denote the
identity 2-track in G2(E, (f)) = G2E({f),(f)). The main result of [HKK] may be stated as
follows.

2.1. Proposition. The sets NE(p,q)(f, f') are singletons or empty. G2 E is a 2-groupoid
with underlying groupoid GE, 2-morphism sets Ga(p, q)((f), (f')) and horizontal composition
o. GoF is functorial in E. For each path f in E, there is a natural isomorphism (of abelian

groups)
oty : Ga(B,(f)) = m(E, £(0),
where mo(E, £(0)) refers to the second homotopy group of E based at the point f(0).

Under a systematic adjunction (applying also to the detail of the construction) the objects of
G2 X" and G(V, X) remain pointed maps from V to X and we have the following table of
correspondences.

G2 XV & Go(V, X)
fil=XVeofi:VoaX
(f) & (fe)
fsif=fofis:fixf
{fod+{gs} & {fusd + {916}
{£s} o {hs} & {ush o {hus}
M, XV & T (V, X)

NXV & N(V, X)

Note that for each l-morphism (f;), with fo homotopic to the constant map, there is an
isomorphism

oy Ga(V, X)((fr) = 7(2%V, X).
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The elements (2-morphisms) of G2(V, X)((ft), (fi)) are generalised cosets of N(V, X) deter-
mined by 2-tracks. We shall refer to them also (with some abuse) as 2-tracks and denote
them by capital letters. In the following summary of their properties, we make use of the ‘star
operations’

(f),H=0(,¢H and (g) H=He0y,, (2.2)
where 0y, refers to the identity element in Go(V, X)((f)). In the following list of properties,
¢ refers to a constant homotopy.

H+(G+F)=H+G)+F
H+0=0+H=H
H+(-H)=0=(-H)+H
(he) (=H) = —(he)"H, (ge),.(—H) = —{ge) H

(he)"(H + G) = (lu) H + (he)"G,  {g0),(H + G) = (gs) . H + (9:),G
((ge) o (fe))« = (9. (ft)., (ct), = identity
((fe) o (he))* = (he) " ()", (ce)™ = identity, (ge),(he)”™ = (he)"(ge),
G o H = (fi)'G + (g H = (gi) H + (f1)"G, 21)
in the situation
(g¢)

N
i \J_}f;
(fi) (g1)

Each 2-track H : (f;) — (f{) has an inverse with respect to the horizontal composition denoted
H=Y: (fi+) = (f{_;). Via the equations 2.2.1 we obtain

H™' = —(fi_ )" (free) H = —(fie) (fi_) . H . (2.2.2)
These properties are all standard in a 2-groupoid. They indicate that Go(V, X) has the struc-
ture of a track category in the sense of [Baul].

Moreover, G2 (V, X) is a bifunctor, covariant in X and contravariant in V': given pointed maps
E': V"=V and f': X — X' there are associated 2- groupoid morphisms

(") :G2(V,X) > Go(V',X) and f'.:Gy(V,X) = Go(V, X').

We conclude this section with a brief review of interchange 2-tracks. These play a significant
role in the remainder of the paper. We begin by recalling that Lemma 1.3 depends for its valid-
ity on the construction of an interchange homotopy. Specifically, suppose that f; : A — C and
gt : C — B are homotopies. Then there is an associated 2-track, an interchange, depending
only on f; and g; and inhabiting the diagram

gt f g1 f
gofo —> g1 fo ——

‘ {hlﬁ,s}iL
gofo . gofi .

g1f1
‘ . (2.3)
g1f1

o ft ¢ f1

Various essentially equivalent versions of the interchange can be found in the literature but a
rather convenient construction, via ‘lens collapse’, has recently been described by M. Grandis
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[G]: an adjoint map to hy s is suggested by the following sketch.

| 7
I L

The outer square is first retracted on to the inner square by collapsing the triangles vertically

on to its edges. The inner square is then mapped to B4 by applying the adjoint of the com-
posite 2-homotopy ¢;fs : A — B. We denote the relative homotopy class of h; s by [g:, fi]- A
proof of the following proposition is given in [HKK].

2.4. Proposition. The 2-track g, ft] € Ga2(A, B)({g1f: ® 9:fo), (gtf1 ® goft)) depends only
on the classes {g:) and (fi). The following properties hold.
(i) For a constant homotopy ct, [gt,ct] =0 = [et, fi];
(ii) [heoge, ] = (gefo) The, fi] + (hefr).lge, fil;
(iii) [ge,ke o fi] = (gike).lge. fe] + (90fe) e, kel;
(iv) [gi—t, fe] = —(g1—tfo) (gr1—tS1).[9e, fi];
(v) 96> fime] = —(gofi-e) (g1 fi-e).[9e fo];
(vi) Givenk:A' = A, fi: A— C, g; : C — B then [g¢, fik] = k[, ft]-
(vii) Given fy: A— C, g : C — B, h: B — B’ then [hg:, ft] = h.[gt, ft].
(viii) Given f: A— B, g: B — C, hy : C — D then [htg, ft] = [ht, gf2].
(iz) [ge, ] ™" = —lg1—¢, frd] -
(z) If fo = f1 = and go = g1 = * are trivial maps then [g:, f:] = 0.
(xi) Given 2-tracks

welf) = () f— [ A B,

vi{g) = (g;):9—~9 :B=>C

then
(9e )" (9" 1) + (g ) (Fv) + L9t f1] = [ge, fo] + g fe)" (Fv) + (gt f) (g-10)

in G2(A,C)((g'fr @ 9:.f), (9:f ® 9f1) -

3. A bicategory bTop*

A bicategory is a structure consisting of objects, I-morphisms and 2-morphisms (for details
see [Bé; (1.1)(i)-(vi)]). The objects of bTop* are the same as the objects of ht Top* namely
the pointed continuous maps. The 1-morphisms of bTop™*, analogously to htTop* are of
types 0 through 3. They consist of diagrams of similar form to the morphisms of htTop*,
the only difference being that they are inhabited by semitracks instead of tracks. Thus the
morphism of type 0, k& — k is a diagram inhabited by the semitrack (k) of the constant
homotopy. A morphism of type 1, (m;) : k — h, is only defined if codomain(k) = domain(h)
and my : hk ~ . For maps h : U — Z and f : Y — X morphisms of type 2 and type
3, (rt) : h — f are always defined, corresponding to composites of two (respectively three)



Homology, Homotopy and Applications, vol. 1, No. 4, 1999 127

morphisms of type 1, however, the analogous composition operator A is not associative. In
contrast to the use of the plus operator for a track obtained by concatenation of homotopies
as in

{re} +{a} = {re + i}

we prefer to use the bullet notation for semitracks from section 2:

(re + ai) = (qe) ® (re) -
Note that this gives rise to a reversal of order in certain formulae.
3.1. Lemma.
(1) (neyA(my) = k*(ng) o g_(mt>71 ({(m¢) : k= h, (ng) : h — g of type 1)
(i) (r)A(mg) = k*(r)) " ({m¢) : k — hof type 1, (r¢) : h — f of type 2 or 3)
(iil) (pryA(re) = f.(re) ({pe) : g — f of type 1, (r¢) : k — g of type 2 or 3)
(iv) (se)A(re) = (%) ({r¢) : k — g of type 2 or 3, (s¢) : ¢ = e is of type 2 or 3)
As in htTop*, the A composition of two morphisms of type 2 or 3 is trivial (i.e. is the
semitrack of the constant homotopy of the trivial map). However, in bTop* the composition

of a morphism of type 3 with a morphism of type 1, yields a morphism of type 2 which (in
view of the failure of associativity) need not be trivial.

In a bicategory the 2-morphisms and their composition endow each 1-morphism set with the
structure of a category. In bTop*, for sets of type 0, e.g. hom(k, k) the category is the trivial
one with one object 1; and an identity 2-morphism 0 = Oy. Suppose that (m;), (m}) : k — g
is a parallel pair of morphisms of (the same) type greater than zero, where k : V' — U and
g : Z — Y. Recall that the semitracks (m:) and (m}) are 1-morphisms of the 2-groupoid
G2 (V,Y). We identify the 2-morphism (i.e. 2-track) sets

bTop™ ((my), (my)) = G2(V.Y)((me), (my))
and retain the notation + for vertical composition so that bTop*(k, g) has the structure of a
groupoid.

As part of the bicategory structure, for each triple (k, h,g) of objects of bTop* we have to
have a composition functor

bTop*(k, h) x bTop*(h, g) — bTop*(k, g)

denoted ((my), (nt)) — (n.)A(my), (G, H) — H AG on 1-morphisms respectively 2-morphisms.
The definition on 1-morphisms has already been given. The definition on 2-morphisms has to
be given casewise. Suppose (m.), (m}) : k — h and (n:), (n}) : h — g are morphisms of type 1
and M : (ms) = (m}), N : (ny) = (n};) are 2-tracks, then we define

NAM =k'NegM~' (M, N of type 1) (3.2.1)

(compare with 3.1, note that the type of a 2-track is defined to be the type of its domain and
codomain), where M~ : (m;) " — (m}) " is the relative homotopy class of the 2-homotopy
mi—,s when M = {my }. In this case the functoriality is a consequence of the functoriality
of e in the appropriate 2-groupoid.

Suppose instead that (m¢), (m}) : k — h are of type 1 and that (q;), (q;) : h — f are of type 2
or of type 3, with given 2-tracks M : (ms) — (m}), Q : (@) — (¢;) then we define

QAM =kQ " (Q of type 2 or 3, M of type 1) (3.2.2)

(compare with 3.1). Similarly if (u;), (u}) : k — g are of type 2 or of type 3 and (p:), (pi) : g = f
are of type 1, we define

PAU = fU (P of type 1, U of type 2 or 3) (3.2.3)
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(compare with 3.1).
We also define QAU =0, (Q, U of type 2 or 3) and HAO = H, 0OAH = H (0 of type 0).

The functoriality of A is a consequence of the following interchange law for A which can be
checked by considering cases:

(G+G)A(F + F') = (GAF) + (G'AF"),

where G : (g1) = (g}), G' : (gf) = (gt'), F: (fo) = (£}, F' = (f1) = (f"y and (g0}, (g}), (9') :
h — 9, (ft): <ftl>7 < t”> ik — h.

In a bicategory, for each quadruple of objects (k, h, g, f) there are required to be associativity
isomorphisms: given (mg) : k — h, (ng) : h — g and (p;) : ¢ — f, we need a natural
isomorphism

Ap.nm < (o) A((ne)A(my)) = ((pe) A(ne)) A(me) -
Moreover these isomorphisms have to satisfy the following

(AC) Associativity coherence: Given
(me) k= b, (ne) :h =g, (pe) g = [ (@) : f e

then the following diagram commutes.

0ghdp nom

(ge) A(((pe) A (1)) A(me))

Aflvpnamﬂ

((ge) A(pe)) A((ne) A(my)) ((qe) A((pe) A (1)) A ()

k%

(((ge) A(pe)) A(ne)) A(me)

It is necessary to consider cases for the definition of A, .

q,p,mm

(q0) A((pe) A () A ()
A

If (my) : k— h, (nt) : h = g, (pt) : ¢ = f are morphisms of type 1, note that

(o) A((ne) A(mi)) = f.k(ne) @ f.g.(my i) and ((p) A(ne)) A(me) = kf.(ne) @ k*he(p1 ), so we
may define

Apnm = =(fhne) [pe,me] ™ € Ga(V, X)(f.k (ne) o fg.(mas), fh(ne)ok h(piy)). (3.3.1)
If (m.) is of type 2 or 3, with (n;) and (p;) of type 1 then (p:)A((n:)A(my)) = f.g.(m:) and
((pe) A(ne)) A(me) = (¢ ) = *(pr), s0 we may define

Apnm = —=[pe;ma] - (3.3.2)

Similarly if (p;) is of type 2 or 3 with (n;) and (m;) of type 1 then (p:)A((n:) A(my)) = (%) =
x.(my) and ((p:)A(n.))A(m;) = k*h*(p;) and so we may again define A, ,, », via 3.3.2.

If (n¢) is of type 2 or 3, with (m;) and (p:) of type 1 then (p:) A((n:) A(my)) = ((pr) A(ne)) A(my) =
f-k(ni_.), so that we may define 4, , ,, = 0.

If two or more of (m;), (n:) and (p;) are of types 2 or three, we define A4, ., = 0.

Finally, if one (or more) of (m:), (n:) and (p;) is an identity element we define A, ,, ,», = 0.
3.4. Proposition. The associativity coherence (AC) holds in bTop*.

Proof Case 1: (mg) : k — h, {nyy :h — g, (pt) : 9 = f, {qr) : [ — e of type 1.
We have

OqAApm’m + Aq,pn,m + Aq’p’nAOm = —e.(f.k'nt>*[pt, mt]fl +0—- k'((e.h'pl,t>*[qt, nt])
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and
Aq,p,nm + qu,n,m = —[Qt; nik e gmlft] - [th ® EP1—t, mt]
= —({efgmi_s)"[qr, nek] — [q, gmi—t] — [ep1—t, mi] — (ep1—thk) (g, gma].

Since —[q¢, gm1_¢] = {efgmi_¢) [qr, gms] and —[ep1 ¢, my] = {ep1_thk)"[ep:, m¢], it follows
that

_(OQAAPynvm + Aq,pn,m + Al]vpynAOm) + Aq,p,nm + qu,n.m

is the composite 2-track contained in the diagram:

(ep1—¢hk) efghk‘ (g ghk)

‘U' [eptamt]il ‘U’ [Qt,ntk]

(efgmi—¢) efghk (efnik) *

U’ 0 U’ _[qtantk]
* (efgmi—¢) efghk (g ghk)

40 (3 [qtagmt]
*4><efgml_i> efghk4><€fgmt> * - (3.4.1)
U —[eps, ma] " U —lepr, m4]

(ep1—thk) efghk (ept hk) ‘

‘U’ 0 ‘U’ [eptamt]

(ep1—thk) efghk (efgme) *

0 I —lae, gmy]

(ep1-thk) (gt ghk)

efghk

Note that the 2-tracks in the cells of the fourth row (which cancel by horizontal composition)
have been inserted deliberately to facilitate cancellation of the remaining 2-tracks that orig-
inate from the expansion of the expression. In view of the interchange property for 2-tracks,
we may add first the 2-tracks in the separate columns. However these cancel achieving the
desired result.

Case 2: (my) of type 2, {q:), (n:), (p:) of type 1.

In this case we have 0,AA, nm = —[e.pt, M|, Agpnm = —[9°¢s,m:] but the other three
arrows of the coherence diagram are zero 2-tracks. Applying Proposition 2.4 (x), we have
[e.pt ® g'q1—¢,m¢] = 0, which implies [e.ps, mi] = [g7qe, me].

Case 3: (p;) of type 2, (g), (ne), (my) of type 1.

Case 3 is similar to Case 2.

Case 4: (n;) of type 2, (py), {q:), (m¢) of type 1.

In this case the arrows 0,AAp, pm, Agpnm and Agpnm reduce to identity 2-tracks, but
AgpnAOy and A, nm are both equal to —k*[ge, n1_¢].

Case 5: (p;) of type 2, (g}, (nt), (m:) of type 1.
Case 5 is similar to Case 4.
Case 6: At least two semitracks are of types 2 or 3.

Suppose that (n;) and (m;) are of type at least 2. Then, by the definition of Ay, n m, 0gAAp 1 m,
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Agpn.m and Agp n.m A are zero 2-tracks. Since (n;)A(my) is trivial, Aq p.nm = —[at, *:] = 0 and
Ay pnAOp =0, by the definition of A. The remaining cases (including those that arise when
one or more of the 1-morphisms are identities) may now be checked via similar arguments,
completing the proof of Proposition 3.4.

There is one further requirement in a bicategory that needs to be mentioned. For each pair of
objects of bTop*, k and g we need two natural isomorphisms

Al A(my) = (my),  p:(me)Aly = (my),

where (m;) : k — ¢ is a 1-morphism. We may choose A and p to be identity 2-tracks. It is then
clear that these satisfy the following

(IC) Identity coherence: Let (m;) : k — g and (p;) : ¢ — ¢ be 1-morphisms of bTop*. Then
the following diagram commutes.

AP,I.m

(pe) A(LgA(my)) ((pe)ALy) A(my)
k pPAO,
(pt) A(my)

We may now define the homotopy relation in bTop*. Let (m.), (m}) : k — g be 1-morphisms
of the same type. Then (m;) and (m}) are homotopic, denoted

(me) = (mi) k=g
if and only if there exists a 2-morphism from (m;) to (m}). We have the following:
3.5. Theorem. bTop* is a bicategory, ~ is a natural equivalence relation in bTop* with
quotient category htTop™.

Proof We have already verified the first assertion.

If (m:) ~ (my) and (¢:) ~ (g;) and if codomain({m;)) = domain({(g:)) then we have to
show that (q:)A(m:) ~ (q;)A(m}), regardless of the types of (m;) and (g:). Suppose that
(my), (my) - k — h and (@), (¢;) : b — g are morphisms. and let G € bTop™*({(m.), (m})), H €
bTop*({g:), {q;)) be 2-tracks. We need merely note that HAG € bTop*({q:) A(m4), (g;) A(m})).

In view of the existence of the 2-tracks A, , m, the composition A in the underlying weak
category of bTop* is associative up to homotopy. It follows that the homotopy category ob-
tained by factoring out by the homotopy relation is isomorphic with ht Top*, giving rise to a
quotient functor

p: bTop* — htTop™.

4. Suspension and Hopf invariant

We show that the (reduced) suspension endofunctor ¥ of Top* gives rise to an endofunctor
of htTop*. If m : k — h is a morphism of type 1 and m = {m;}, then ¥m; : Th¥k ~ % is a
nullhomotopy of (Xh)(Xk) and we set ¥m = {¥m,} : ¥k — Xh. If s : k — ¢ is a morphism of
type 2 or 3 and s = {s;}, where s; : * ~ %, then we set £s = {Zs;} to be the corresponding
morphism of type 2 or 3 from Xk to Xg.

4.1. Proposition. As defined, ¥ is an endofunctor of ht Top*.
Proof Suppose that m : kK — h and n : h — g are morphisms of type 1. Then
YnAYm = —(2g).(Xm) + (£k)'(¥n) = —X(g.m) + X(k'n) = X(nAm).

The argument in the remaining cases is similar.
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The good behaviour of suspension with respect to A may be contrasted with the following
formula for morphisms of type 1

f(XnAYm) = —¥6(nAm) . (4.1.1)

Here the change of sign arises through an interchange of suspension coordinates giving rise to
the classical (cf. [T; Proposition 1.3])

—E{B,v,6} C{EB, Ev, Ed} .
In similar vein we can recognise the following analog of the formula (0.3) involving Toda’s
subscript bracket.
f(nAYXm) € {3,%v,X6h (4.1.2)
We now turn to formulae involving the Hopf-James invariant. Recall that the suspension

functor X is left adjoint in Top* to the loop functor €2 and that for a large class of spaces X
a James space X and an associated homotopy equivalence can be defined [J]

Xoo = QXX (4.2)
inducing a canonical isomorphism
O :n(EV,EY) 5 7(V,Yso) -
The Hopf-James invariant is a homomorphism
H=0"x.Q :7(ZV, TX) = 7(ZV, (X A X))
induced (via the homotopy equivalence (4.2) and the ¥ — Q adjunction) by a James map
Jx i Xoo &> (XA X))o -

Moreover there is an inclusion map ix : X — X with the property that the composition
jxix = . It follows that the constant homotopy of the trivial map defines a track Hx and a
morphism

HX :ix—)jx (421)

in htTop* which has many useful properties. For example we recall from [H; section 3] that
there is a partially exact sequence

— 7(TY, X) = 7(22Y,5X) 25 7(22Y, B(X A X)) & n(Y, X) —
which can be regarded as a generalised form of the EHA sequence [T]. Here A* is a partial
function (defined with a degree of indeterminacy) via a Toda bracket
AT = -0 lixh {ixha} € 7(SV,S(XAX)) | (4.2.2)

where the little circle decorating the bracket indicates that only the preferred (trivial) null-
homotopy of jxix is permitted, thus reducing the indeterminacy. For the cases in which the
A operator is defined, A< coincides with A~!. Note that in terms of the A composition the
definition can be restated

A (u) =~ *0(Hx Aq) , (4.2.3)

where q is the track of a nullhomotopy of a representative of ¢ x .
As an illustrative application we indicate a proof of the following result due to Toda, cf. [T;
Proposition 2.6].
4.3. Proposition. Suppose that « € n(Y, X), B € n(Z,Y) and v € n(U, Z) satisfy X(aof) =
0 and B oy =0 then

H{Sa,$4,57} = ~A(aof) oy .
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Proof Suppose that n: h — g and p : ¥g — X f be morphisms of htTop*, where h, g and
f are representatives of vy, § and « respectively. According to Toda, [T; 2.4 and Proposition
1.3],

H{Ea>26)2’y}l = _Hﬂfl{in)g)h} = _Qfle-{in>g>h} .
Now a typical element of jx.{ix f,g,h} is of the form #jx.(DAn), where p : ¢ — ixf and
n:h— g, but
jx.(pAn) = Hx A(PAn) = (HxAp)An = —h'(Hx AD)
Hence —Q;'0jx.(pAn) = Q7 '0h (HxAp) € —A“ (a o 3) 0 £2v, as required. The proof may
be completed by the observation, as in [H], that the two sides of the equality have the same
indeterminacy.

Note that the essential mechanism of the proof is the associativity of the A composition.

It is possible to define a dual subscript bracket for which a Hopf invariant formula can be
proved. This formula does not seem to be present in the literature although a hint of its likely
existence can be found in [HK] since it is related to the homotopy pair bracket formula [HK;
Proposition 3.10(i)] and can be obtained from it by appropriate specialisation. The proof given
below in terms of the A composition uses the equality in Lemma 1.6.

Let h : U = Z,9:7Z — Y and f : Y — X be representatives of the classes v, # and «
respectively and suppose that they satisfy e o 3 = 0 and X(8 o y) = 0. Then there exist
morphisms in htTop*, n : Xh — Xg and p : ¢ = f and we define

1{2a,23,5%v} = {0(XpAn)|n:Zh = Xg, p:g— f}. (4.4)

4.4.1. Proposition. H(1{Za,X3,57}) = Z?(aAa)o AT (Bon) .

Proof Consider the sequence of spaces and maps

U h A g9 vy iy YOO foo XOO Jjx (X/\X)oo

and note that this sequence satisfies the conditions of Lemma 1.6. It follows that there exist
morphisms

A . ix D i . ‘Hx . ix P . ‘H .
h—Lsivg =5 fo gh—n>lyf—§JXfoo g lxpfoowf > jx -

By Lemma 1.6 we have
jx.(ix.pAn) + h'(f'Hxaix.p) = (f"Hx)An .
Applying Qp 19 to the terms of the above equality we obtain firstly
Q7 '0jx.(ixpAn) € —H {Za, 23,57} .

Via the commutativity in

Y *
ZXMHX |
Xoo ——> (XA X))o
T
Yooz(;/uf) (X AX)w

(fAf)oo
we have f*Hyx = (f A f)oo-Hy and hence
Q7'0(fHxan) = Q7'0(fA floo.Hyan € —X*(aAa)o AT (Bo7).
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Finally, since ix f = fooiy, the composite morphisms

ix B ‘Hy | ixp . THx .
9—>lxpfooin—>X jx and g TR TN gy

contain equal tracks. Hence
Q0 (fHxAix.p) = h'(HxAix.p) € —Ai (ao0f)oX?y.
However, since awo 3 = 0 this last term belongs to the common indeterminacy of the two sides

of the desired equality, which completes the proof.
We conclude with an example of a bracket whose component classes are elements of homotopy
groups of spheres and which can be shown to be non-trivial via an application of Proposition
4.4.1. With the notation used in Toda’s book [T], we may check (Chapter 5) that vg ong =0
and 8.5 o v5 = 0. Hence the bracket

1{86,v6,m9} € m11(S°)
is defined. We have
4.5. Proposition. 32[i, 1] € 1{8t6,v6,m9} # 0.

Proof Applying 4.4.1, we have H;{8:tq,v5,m9} D 64111 0 A (v5 0mg) C w1 (S). Since 11 =
2x 5+ 1 and 5 is odd the EHA sequence

= m10(S?) 2 w1 (S%) s iy (SM) 25 me(SP) > ..

is exact and A = A~!. Moreover At = [t5,t5] = v5 o g which is of order 2. It follows that
Ail(l/g) 07’]8) =111 + 27(11(511) and H1{8L6, Vg, 779} = 64L+ 128’/T11(Sll). Since H[[,G, [,6] = 2[,11,
we have H32[ig, 1] = 6411;. Since kernel(H) = E(m10(S%)) = 0, [T; Proposition 5.9], it follows
that 32[e, tg] € 1{8t6, V6,19 }. Now the indeterminacy of the bracket is the subgroup

E(m9(S%)) o no + (8te) o m11(S%) = 8t 0 m11(S).

But H (8t o 7T11(56)) = 64H(ﬂ'11(56)) = 12871’11(511), [T; p18] Hence 1{8L6,V6,779} # 0,
completing the proof.
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