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Abstract
In this paper we give an elementary derivation of a 2—groupoid from
a fibration. This extends a previous result for pointed fibrations due to
Loday. Discussion is included as to the translation between 2—groupoids
and cat!-groupoids.

0. Introduction

In his 1982 paper [L], Loday noted that if F — FE L. B was a fibration sequence of
pointed spaces then 71 (F) — 71 (E) had the structure of a crossed module. If A — X is
an inclusion of pointed spaces then factoring it as

A1 x

where f is a fibration and ~ a homotopy equivalence, then m; (fibre of f) = m» (X, A) and
one obtains the other usual basic example of a crossed module

ma (X, A) — w1 (4).

An elementary proof that this is a crossed module can be found in Hilton’s book [H] and was
originally due to J.H.C. Whitehead.

Again Loday considered the equivalence relation corresponding to f : E — B namely

ExE = E
B

and noted that on applying m; one obtained a cat'—group

T (E X E) 5 ™ (E)
B
which was seen to be the cat'-group associated in the usual way to the crossed module
7T1(F) — 7T1(E).

Since the crossed module of the pair (X, A) exists in a many pointed, groupoid version, it
was clear there should be a groupoid version of the fibration result. The groupoid version of a
cat'—group is equivalent to a 2-groupoid, so we sought an elementary direct proof that there
was a 2-groupoid that could be constructed from a (non pointed) fibration. The resulting
2—-groupoid is, as one might expect, given by

I,(Ex E,AE) = 1II(E)
B

where AE C E x E is the diagonal and Iy (E x E,AE) is the fundamental groupoid of
B B
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relative homotopy classes of paths in F x E, that start and end on the diagonal. The proof
B

that this does form a 2—groupoid is fairly elementary but does need a new result on fibrations.
Furthermore, the algebraic structure of the homotopy bigroupoid of a topological space
developed in [HKK 2] has been exploited systematically. The pleasing aspect of the proof
given here is, we feel, that it shows the geometry of what is going on in a very transparent
way.

Recent work on related areas seems to have concentrated on the study of 2—groupoids or
bigroupoids either associated to a single space, cf. work by Hardie, Kamps, Kieboom [HKK
1,2] or to a space X relative to subspaces S C A C X as in the Whitehead 2—groupoid of
Moerdijk—Svensson, [M, MS]. Viewing 2-groupoids as cofibred categorical groups, Cegarra
and Fernandez [CF]| introduced a variant of the Moerdijk—Svensson construction for a longer
filtration S C B C A C X. We will briefly compare these latter constructions with ours when
the fibration is that obtained by factoring A — X as a homotopy equivalence followed by
a fibration as above. A 2—groupoid from a fibration, but dependent only on a single space
(i.e. no filtration by subspaces) can be obtained by using the construction given in Steiner’s
paper, [St]. This does not seem to give the ‘same’ 2—groupoid as the Hardie-Kamps—Kieboom
construction for trivial reasons, however a variant of the Steiner method does give a closely
related 2—groupoid.

We should also mention relevant papers by Gilbert [G], Porter [P 2] and Bullejos,
Cegarra and Duskin, [BCD]. Those papers suggest ways of describing higher dimensional
analogues of our results. The exact formulation is still to be done however.

We would like to acknowledge the comments and questions of Ronnie Brown, Keith Hardie
and Rudger Kieboom, which have clarified several points for us during this work. We would
like to thank the referee for some useful comments. The first author acknowledges the welcome
of the School of Mathematics of the University of Wales Bangor. The second author would
like to acknowledge the support of the Fachbereich Mathematik of the FernUniversitit at
Hagen during visits as Gastprofessor in 1997 and 1998.

1. 2—groupoids and related models

A 2—groupoid is a 2—category such that all 1—cells and all 2—cells are invertible. Thus it will
be a groupoid—enriched category with invertible 1—cells, i.e. a groupoid—enriched groupoid.
The 2—cells will have vertical and horizontal compositions obeying an interchange law.

One of our purposes here is to link the Loday [L] and Brown—-Loday [BL 1,BL 2] results into
the 2-groupoid setting, so as an illustrative example we define a cat!-groupoid generalising
the cat'—groups of Loday [L] and show how to construct a 2-groupoid from it.

A cat'-group (G, s,t) consists of a group G and two endomorphisms s, ¢ of G such that

(1) ss=s, tt=1t, st=1t, ts =s,
and
(ii) [Kers,Kert] =1

where [Kers, Kert] denotes the subgroup generated by the commutators zyz~ly~!, = €
Kers, y € Kert.
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Generalising this to a groupoid setting, take G to be a groupoid with object set, O, and s,
endomorphisms of G leaving objects fixed. Finally for (ii), the interpretation requires that 1
denotes the subgroupoid of G consisting just of the identities. The other conditions remain
the same.

The conditions (i) above guarantee that the images of s and ¢ coincide giving a subgroupoid,
N, of G. Both Ker s and Ker t are subgroupoids of G consisting of disjoint families of
subgroups of the vertex groups of G itself.

We can define the 2-groupoid G corresponding to (G, s,t) as follows. The objects of G are
the objects of the groupoid G. The 1—cells of G are the arrows of the subgroupoid N, whilst
the 2—cells are arbitrary arrows of GG. Note this considers 1—cells as degenerate 2—cells, namely
their own identity 2—cells. The composition of 1—cells is that within the groupoid N. The
composition within G also gives the horizontal composition in G. The source and target
1-cells of a 2—cell, g, are given by s(g) and t(g) respectively and the vertical composition
of g and h is defined if s(h) = t(g) when we set goh = gt(g) 'h. It is simple to check
s(goh) = s(g),t(geh) = t(h). Finally the interchange law holds:

(g9')°(hh") = (goh)(g'h')
for g,g', h, h' such that the composites are defined. This is easily reduced to checking
g't(g") " t(9) " h =t(g) " hy't(g") !
which follows from [Kers, Kert] = 1 on noting that t(g) = s(h).

We thus have a 2-groupoid derived from a cat'-groupoid. The process is clearly reversible
and sets up an equivalence between the categories of the two types of structures.

If O is the set of objects of a 2—groupoid G, then for any S C O we can consider the full
2-subgroupoid of G with objects S. If moreover a subgroupoid of the 1-cells is given we can
further restrict to obtain a new 2—groupoid.

If we have that G corresponds to a cat'-groupoid (G,s,t) then we can define
M = Kers and N as before Ims and 9 to be the restriction of ¢ to M. The groupoid
N then acts on M by conjugation within G and we get a crossed module (of groupoids)

0: M — N,

corresponding to the 2—groupoid G. Of course the usual semidirect product construction
allows one to rebuild G from (M, N, 0).

We should mention that 2-groupoids resp. cat'-groupoids are also equivalent to double
groupoids with thin structure and crossed modules over groupoids ([BS, Spe, SW, BH, P 1,
Br]).

2. Tools from homotopical algebra

In this section we recall the necessary tools from 1- and 2-dimensional homotopical algebra.
We shall make use of the algebra of the homotopy bigroupoid of a topological space developed
in [HKK 2].

If X is a topological space and x and y points of X, then a path, f : z ~ y, in X from z to
Y, is a map f from the unit interval I = [0,1] into X such that the initial point of f, f(0), is
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x and the final point of f, f(1),isy. If f:x ~y and g : y ~ z are paths in X, we denote by
g e f:x >~z their concatenation, i.e.

(21) (9+H() = f(25), 0<s</Z (92 Hls) =g2s—1), 1/2<s< 1L

The constant path at © € X will be denoted c,. If f is a path in X, we denote by f~! the
path reverse to f, i.e. f~1(s) = f(1 — s).

Let f, f' : x ~ y be paths. A relative homotopy fi : f ~ f' : x ~ y is a homotopy f; : f ~ f'
such that the initial and final points remain fixed during the homotopy.

By II; X we denote the fundamental groupoid of X. The morphisms, [f], of II; X, which we
shall call 1-tracks, are classes of paths, f, in X, two paths f and f’ belonging to the same
class if the initial (resp. final) points of f and f’ coincide and if there is a relative homotopy,
ft, between f and f'. Composition in II; X, denoted e , is induced by concatenation of paths.
The class, [c;], of the constant path is the identity at x € X, the class, [f~'], of the reverse
path is inverse to [f]. In order to prove the groupoid properties of IIX one makes use of
certain canonical relative homotopies

(2.2) ar:he(ge f)y=(heg)e f:x~u (rescaling)
(where f:x~y, g:y~z, h:z~u are paths in X)
(2.3) lireys ffra~y, ri:fec,~f:xx~y (dilation)
(2.4) Jiiftefrce x>, gl fe fT~c, iy ~y (cancellation)
which are indicated by the following figures.
f 9 h f Ca
at It f
Jt
Fo9 e 7 f

Explicit formulae are given in [Spa, pp. 47, 48]. If A is a subset of X, the fundamental
groupoid of X based on the set A, denoted by II; (X, A), is defined to be the full subgroupoid
of T} X with A as set of objects.

Let fe, fi : f = f': & =~ y be two relative homotopies. We may consider f; and f{ themselves
to be relatively homotopic, if they are homotopic via a homotopy I x I x I — X which is
constant on the boundary of I x I. The relative homotopy class {f;} of f; will be called a
2—track. In that case we will use the notation

{fi}:f=f 12 ~yorsimply {fi:}: f= [

We are now in a position to recall the essential features of the homotopy bigroupoid, 1o X, of
a topological space X as defined in [HKK 2].

(i) The objects (0—cells) of II5(X) are the points of X.
(ii) The 1-morphisms (1—cells) of II5(X) are the paths in X.
(iii) The 2-morphisms (2—cells) of II5(X) are the 2—tracks.
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(Horizontal) composition of 1-morphisms is given by concatenation of paths. Relative
homotopies can be pasted vertically and horizontally in the obvious way by formulae of type
(2.1). More precisely, let f, f', f" : @ ~ y be paths, let f; : f ~ f', f{ : f' ~ f" be relative
homotopies we define the vertical pasting f; + f] - f = f" : x ~ y to be the relative homotopy
h; such that

he = for, 0<t<1/25 hy=fyq, 1/2<t<1L

Iffi:f~f:x~yand g :g~g :y =~ z are relative homotopies, then we obtain the
horizontal pasting g: * fr : g f ~ g’ * f' : © ~ 2z by concatenation of the respective paths
at each stage of the homotopy. Vertical and horizontal pasting of relative homotopies gives
rise to wertical resp. horizontal composition of 2—tracks, denoted + resp. e . Vertical and
horizontal composition are related by the interchange law: Let

p:f=flax~y o f=fry Yv:9g=4g :y~=z, ¢V :¢d =9¢":y~=z
be 2—tracks. Then we have that
W+ ) e (p+¢) =@ p)+ @ ).

For each pair (z,y) of points in X we have a groupoid II, X (z,y). The objects are the paths
f, f' etc. from z to y. The morphisms are the 2—tracks {f;} : f = f' : « ~ y. Composition is
given by vertical composition, 4, of 2-tracks. The identity element 0f : f = f is the 2-track
of the constant homotopy at f. Inverses are obtained by reversing relative homotopies.

Composition of 1-morphisms is not strictly associative, but associative only up to coherent
isomorphism. If f:x ~y, g:y~ =z, h:z~u are paths, then the associativity isomorphism

a:he(gef)=(heg)*f
is defined as 2-track of the rescaling homotopy a; (2.2).

Identities and inverses exist up to coherent isomorphism. If f : x ~ y is a path, we have left
and right identities

Nicysf=1f, p:fece=Ff

defined as 2-tracks of the respective dilation homotopies (2.3). Furthermore cancellation (2.4)
gives rise to cancellation isomorphisms

viftef=c,, V:fefl=¢,

The constraints a, A, p, ¢,¢’ satisfy three coherence conditions (AC) (associativity coherence),
(IC) (identity coherence) and (CC) (cancellation coherence) (see [HKK 2]).

(AC) Associativity coherence: Let

nn

fix~a, g:ax'~2", h:2'"~2", k:2"~zx

be paths in X. Then the following diagram commutes.
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0k°a N
ke(he(gef) 7 ke((heg)ef)
(keh)es(gef) (ke(heg)ef
« ae0f

((keh)eg)ef
(IC) Identity coherence: Let f : x ~ y, and g : y ~ z be paths in X. Then the following
diagram commutes.

ocy).f

@ \,
ge(cy*f) 7 (9
Og A %f
gef
(CC) Cancellation coherence: Let f : z ~ y be a path in X. Then the following diagram
commutes.

fe(f=ef) > (fef)ef
Of.L\H/ \H/L"Of
fece cy* f
p A
f

Finally, we note that the Poincaré category in the sense of [Bé,(7.1)] associated to the homo-
topy bigroupoid, I, X, is the fundamental groupoid, IT; X, of X described above.

3. The construction of the homotopy 2—groupoid

3.1 Idea of construction

Let p: E — B be a fibration and form the pullback E x E of p along itself.
B

E; E={(z,y) € E x E|p(z) = p(y)}

Note that E x E is just the equivalence relation in E derived from p. The equiv-
B
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alence relation gives rise to a groupoid in the usual way. The objects are the ele-

ments of E. If (z,y) € Ex E we have a unique morphism (z,y) : z — y from
B

x to y. The three structural maps are s(z,y) = =z, t(r,y) = y and the diagonal

A:E— Ex E, A(z) = (z,z). The groupoid composition is given by the formula
B

(3.1.1) (z,y) + (y,2) = (x, 2).

Form the fundamental groupoid IT; (E x E, AE) of E x E based on the diagonal AE, so ob-
B B

jects are elements (x,z) whilst an arrow from (z, z) to (y,y) is a 1-track (path class) [f] where
f = (f1,f2), fi,f> paths in E from z to y and pf; = pfe. Next form II; E. The structure
maps s, t, /\ induce groupoid morphisms

=
Hl(E X E,AE) —*> HlE
? ‘A

This is over the set E of basepoints, i.e. these are groupoid maps that are the identity on
objects. Now a 2—dimensional structure is in sight. The ingredients are in

— dimension 0 (0—cells, objects): the elements of E
— dimension 1 (1-cells, arrows): the morphisms of 1Ty £

— dimension 2 (2—cells): the morphisms of II; (E x E,AE).
B

Horizontal composition of 1—cells resp. 2—cells is given by groupoid composition in II; E resp.

I, (E x E, AE). Vertical composition + is induced by the groupoid composition given above
B

(3.1.1) and will be made precise later.

Theorem. With the above structural data, we get a 2—groupoid.

3.2 The detailed structure

Denoting the overall structure by G2(E) where E is the fibration p : E — B, we have: The
set of objects is just the set E. Let z,y be points of E. Then G»(E)(z,y)

denotes the collection of 1-tracks (path classes) in F x E between (z,z) and (y,y). This has
B

the structure of a category as follows. The set of objects is the set of 1-tracks (path classes)
from z to y in E with source and target maps from Ga(E)(z,y) given by:

if [f] = [(f1, f2)); then s[f] = [fil, t[f] = [f2).

The identity Opy,j at a 1-track [f1], f1:2 ~yin E, is [(f1, f1)]-

It remains to specify the composition. Suppose [f] = [(f1, f2)], [9] = [(91,92)] are in
G2(E)(z,y) and [f2] = [g1]- The initial idea is that we should use a homotopy from f> to
g1, but the obvious way is not evidently independent of the choice of the homotopy. That
method also fails to use the fact that we can change both f and g within their path classes.
The method that works is the following variant of the vague idea sketched in section 3.1.

(i) Postcompose f with (g1 » g7', 91 * g7") to get
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1= =g 90) o fr(gr e o) s )l =[(gr (90" * fi), g1 0 (g * f))].

(ii) Precompose g with (g;7" ® f2,g7" * f2) which is null homotopic by the assumption,
[f2] = [g1], i-e. t[f] = s|g]; as this is done to both components of g,

9] =[(91,92)1 = (g1 * (97" * f2)92 ¢ (97" * f2))]-

Finally use the + composition of the equivalence relation to get

(3.2.1) [F1+19) =[(g1 = (97" * f1),92 ¢ (91" = f2))].
Note that + is well defined and we have
s([f1+19]) = [g1] * [91] 7"  [f1] = [f1] = sf]
t([f1+[g]) = [g2]  [n] " [fo] = [g2] = t]g].

For each triple of points z,y,z € E we can define a mapping

G2(B)(2,y) x G2(E)(y, ) — Ga(B)(z, 2),
([f],[h]) — [h] * [f], making use of the groupoid composition e in II;(E x E,AE) by
B

[h] o [f] = [(h1 ® f1,h2 * f2)].

Note that + can be expressed by e in the following way.
(3:2.2) [f]+ [9] = [(91, 92)] * [(91,90)] " *[(f1, f2)] = [g] (91, 90)] " * [f] = [9]* 07, ¢ [f]

3.2.3. Lemma. For any points z,y € E, G2(E)(z,y) is a groupoid.
Proof. Associativity is fairly easy. If [f] + [g] and [g] + [h] are defined then by (3.2.2)
([f] + 1g]) + [h] = [A] * [(h1, h1)] ™" * [g]  [(92,90)] " * [f]
whilst
[f1+ (gl + [a]) = [B] * (R, 7)] ™" @ [g] @ [((hy @ Bpt) @ gu, (R o By t) @ gu)] 7" o [f]

which are clearly equal.

If [f] = [(f1, f2)] then
Oty + AT = U] o [ fOI o [(Fr, f0)] = L)
Similarly; [f] + (1, = [f]. Hence Of, = [(f1, f1)] serves as an identity.
That + has an inverse is not trivial. The obvious candidate for an inverse of [f] = [(f1, f2)] is

—[f1=[(fo, f)]-
By (3.2.1) we obtain

1= = 1+ (o ST =12 o (F 0 f1), fos (F5h 0 f2)))

Each individual part is homotopic to fi, but the two homotopies are not the same, although
linked by cancellation coherence. More precisely, we have the following composite 2-track
between fo ¢ (f5 " f1) and f; ® (f; ' ¢ f2) involving the constraints o, A, p,¢,¢' for the ho-
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motopy bigroupoid II; E of E.

fre(fyt o fr) = (oo ) fu ‘g cyofi = fi =2 fiee, _OégLfl‘(ffl'fz)

Projecting down by p : E — B, by cancellation coherence (CC) we obtain the identity 2-

track O(pf,) o ((pf1)-1 ® (pfr)) at (Pf1) * ((pf1) ' ¢ (pf1)). (It is at this point that we get the
‘pay off” for working in the setting of a bigroupoid where coherence has to be taken seriously.)

We now invoke a corollary, (3.4.2), to a fibration lemma which we shall prove in section 3.4
This gives us a relative homotopy from fo o (f5' ¢ fi) to fi * (f;' * f2) over B. Hence

[(foo(fs e fu), fre(Fy o fo))] = [(fre(F2 o fo), Fro(fs o f2))] = Opyjepsay-1ogsa] = Orpa-
This proves [f] — [f] = Of4,]. Similarly —[f] + [f] = Ofs,]. This completes the proof of Lemma
3.2.3. O
3.3 The interchange law

The 1-dimensional substructure of G2(E) clearly being a groupoid the only remaining part of
the verification that G2 (E) is a 2-groupoid is to check the interchange law for the compositions

G2(E)(z,y) x G2(E)(y,2) — G2(E)(x, 2).

Suppose given [f],[g] € G2(E)(z,y), [h],[k] € G2(E)(y, z) so that [f] + [g] and [h] + [k] are
deﬁned, i.e. [fg] = [91] and [hg] = [k‘l]
Then

([h] + [k]) » ([f] + [9]) = [K] * [(kr, k2)]™" o [h] * [g]  [(g1,90)]7" = [f]
whilst
[h] o [f1+ (K] » [g] = [k] * [g] * [(k1 g1, K1 ® g0)] 71 o [B]  [£],
so for equality it suffices to have that
(3.3.1)  [(k1, k)]~ o[R]o[g]o[(91, 90)] ™" = [((ky " oha)*(giegi ), (ki “oh2)e(g20gr )]
and
(3.32) [g]*[(g1,90)] el(kr, k1)) Fo[h] = [((g1097 ")o (kT oha), (92097 " )*(ky ' *h2))]

are equal. In order to check this, first choose a relative homotopy v; : ki Ve hy o~ cy giving rise
to a 2—track in Il F

v={v}: k' e hs = ¢,
Then consider the composite 2-tracks in [, E
(ki eh)o(gregr) = (g1 090) 0 (k' o )
resp.
Wkt e ha) o (920 00) = (922 97) * (ki @ o)

given as follows.

’

©: (b ohy)s(g1097 ) B (b Lohy)ec, =2 ki tohy = cyo (ki tohy) == (grogr e (ky Lohy)
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(A%

_ — v®0 _ A 1 - _ — _ _
U (ky toha)o(g20g; ) == cyo(g2091 1) = googy b =5 (g2ogy )oey = (92091 o (ky toha)
Projecting down by p : E — B we have that in II, B
(3.3.3) p® = p¥.

The idea to prove (3.3.3) is to manipulate p¥ in such a way as to produce a situation where
pv and —pv cancel. This can be achieved by factoring p¥ through cp, and making use of the
naturality of p, A and the fact that A = p: ¢,y ® ¢,y = ¢py. The details are left to the reader.
We now invoke the fibration lemma, (3.4.1), which will be proved in section 3.4. This gives us
relative homotopies

gr:(krt ehy) e (gregr) = (g1 ogr) s (ki o h)
resp.

Gr (ki e ha) o (g2 0 97") = (922 97") » (k" ® ho)
such that pg; = pi);. This proves that the expressions in (3.3.1) and (3.3.2) are equal.
Thus the interchange law holds and we get

3.3.4. Theorem. G>(E) is a 2—groupoid.

Remark. In section 3.2 the existence of vertical inverses has been proved in a geometrical way.
Alternatively, using the interchange law, one can prove that the vertical inverse is determined
by the horizontal inverse in the following way (cf. [BCD], section 1).

—[(f1, f2)] = Oy ® [(fr, f2)] 7 @ Oy = [(fos f1)]
3.4 A fibration lemma

In this section we state and prove a fibration lemma needed for the results of sections 3.2 and
3.3. We note that the fibration lemma and its corollary may be of interest in their own right.

3.4.1. Lemma. Let p: E — B be a fibration. If f, f',9,9' : ¢ ~ y are paths in E such that
pf =pg, pf ' =pg and fi: f ~ f', g+ : 9~ ¢ are relative homotopies such that the 2—tracks
{pfi}, {pg:} : pf = pf' coincide, then there is a relative homotopy f; : f ~ f' such that

pfi = pg:.

If we apply the lemma to the case f' = g = ¢’ and g; the constant homotopy at g, then we
obtain the following corollary.

3.4.2. Corollary. Let p : E — B be a fibration. If f,f' : x ~ y are paths in E such that
pf =pf' and fi : f ~ f' is a relative homotopy such that {pf:} : pf = pf is the identity
2—track Ops at pf, then there exists a relative homotopy f{ : f ~ f' over B.

Proof of Lemma 3.4.1. Let ¢ : [ x I x I — B be a relative homotopy between pf; and pg;,
i.e. we have

@(O)S)t) :pft(5)7 (p(]-)syt) :pgt(s)

o(r,0,1) = pz, o(r,1,t) = py

¢(r,s,0) =pf(s), o(rs,1)=pf'(s).

Since p is a fibration we can lift ¢ to a map ® : I x [ x I — E such that

®(0,s,t) = fe(s), ®(r,0,t) =z, ®(r,1,t) =y
®(r,s,0) = f(s), ®(r,s,1) = f'(s).
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Now define f] by f{(s) = ®(1,s,t). O

4. Examples and discussion

4.1 The 2—groupoid of a map

In [G], Gilbert discusses the case of a fibration induced from a map in the usual way, in order
to get a cat'—group from a ‘l-cube’ of pointed spaces. Here, of course, we use spaces not
pointed ones, but the theory is very similar.

Suppose f : A — X is a map of spaces, then one factorises it as A —» Ey L5 X withpa
fibration and ~ a homotopy equivalence. The construction is standard:

By ={(@,\)|A: T — X,\(0) = f(a)} C A x X!

and p(a,A) = A(1). We will want to consider A as a subspace of E; via the embedding
a — (a,cy(q)) where as before cy(q) is the constant path at f(a) within X. This embedding
is part of the deformation retraction giving A ~ E;. We will write E¢ for this fibration and
G2(Ey, A) for the full subgroupoid

(By x By, 04) = (B, 4)

based at the subspace A. A point of E¢ x E; can be represented as
X

with A(1) = M'(1) and so a path in Ey x Ef starting and finishing on AA C AE; can be
X

represented by a diagram

a Cf(a) Cf(a) a
q T p
[

[

[

f | f
A | — X I X <~ | A
[

[

[

[

L i >
a' Cf(a") Cf(a’) a'

and hence by a lens shaped diagram
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a f(a) a

The homotopy relation is then given by relative homotopies through similar lens diagrams.
One composition is via concatenation of lens diagrams in the direction of composing paths
(i.e. vertically in the pictures we have given). The other is more complex and is where the
‘pre’ and ‘post’ composition trick comes in. We leave the reader to draw suitable diagrams!

If we restrict attention to the case where f is the inclusion of a subspace A and we pick those
elements which start at ¢, for some a € A, then the diagram is

Ca

Ca X A

Ca

and when we take relative homotopy classes, we get a group isomorphic to m (X, A,a). The
intersection of this subgroup with the subgroup of those classes ending at ¢, is then the
2-endomorphism group, G»2(E¢,c,), and is clearly a quotient of my(X,a). It will only be
isomorphic to this second homotopy group if m2(A, a) — 72(X, a) is trivial, since we are now
in the usual situation of the long exact sequence of the pair (X, A)

—)7T2(A,(l) —)7T2(X,(l) —)WQ(X,A,G) —)7T1(A,a) —)7T1(X,(l)

with the crossed module corresponding to the vertex 2-group of G2(Ey, A) at a € A being
exactly the classical Whitehead crossed module of the pair mentioned in the introduction. In
particular if X is a CW—complex and A is its 1-skeleton, we have the well known situation
studied by Whitehead in the reduced case.

4.2 The vertex 2—group at a point in E

Let E be a general fibration p : E — B giving the 2-groupoid G»(E). Pick e € E and
consider the vertex 2—group at e. We have already seen this in a special case. We can
consider E as a pointed fibration with F' = p~1(p(e)) as fibre. The group of 1-cells at e

is clearly 71 (E,e) and the splitting, induced from the diagonal A : E — E x E, gives
B

m(E x E,(e,e)) = Ker s x m(E,e). If [(f1,f2)] € Ker s then f; ~ c., so fs is relative
B
homotopic to a path in the fibre, F, and vice versa.

The vertex 2-group at e is that corresponding to the crossed module
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7r1(F,6) — WI(E)E)'

4.3 GQ (X) and GQ (E)

It would be nice if given a Hausdorff space X we could give a fibration E so that G»(E) was
isomorphic to the homotopy 2—groupoid G2(X) of [HKK 1]. We do not yet know how to do
this, but the nearest we can get is to take the evaluation map from the geometric realisation
of the 1-skeleton of the singular complex of X, that is |sk;Sing(X)| — X and apply to
it the methods of 4.1. This idea in the reduced case is due to Steiner [St]. It has the merit
of being functorial in X but leads to a 2—groupoid which seems much bigger than we really
want.

4.4 G2(E) and function spaces

Here we will work with compactly generated Hausdorff spaces so as to be able to consider
function spaces Y4 etc. If f : A — X is a cofibration and Y is a space then

yX —y4
is a fibration. A path in YX corresponds uniquely to a homotopy

XxI—Y

and so paths in YX XA Y X via this correspondence are pairs of such homotopies agreeing on
\4
the subspace A x I. Using relative homotopy classes of such homotopies leads to a 2—groupoid

IL(Y; XuX) = IL({Y;X)
A

XU x
where T (V; XU X) is IL(Y 4 ,v¥) = mYX X YX,YX). The discussion in
A Y

[HKK 1] raises some interesting points (in section 3) for the possible uses of such machinery.
This also relates to some constructions of Baues [Ba].
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[Ba]

[BH]

[BL 1]

[BL 2]

[BS]

[BCD]

[CF]

[HKK 1]

[HKK 2]
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