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THE BIDERIVATIVE AND A,-BIALGEBRAS
SAMSON SANEBLIDZE anp RONALD UMBLE

(communicated by James Stasheff)

Abstract
An A,.-bialgebra is a DGM H equipped with structurally
compatible operations {w’ : H®* — H®7} such that (H,w'")
is an Ag-algebra and (H,w’!) is an A-coalgebra. Struc-
tural compatibility is controlled by the biderivative operator
Bd, defined in terms of two kinds of cup products on cer-

tain cochain algebras of pemutahedra over the universal PROP
U= End(TH).

To Jim Stasheff on the occasion of his 68th birthday.

1. Introduction

In his seminal papers of 1963, J. Stasheff [22] introduced the notion of an A.-
algebra, which is (roughly speaking) a DGA in which the associative law holds up
to homotopy. Since then, A -algebras have assumed their rightful place as funda-
mental structures in algebra [12], [19], topology [5], [10], [23], and mathematical
physics [6], [7], [13], [14], [27], [28]. Furthermore, his idea carries over to homo-
topy versions of coalgebras [15], [21], [25] and Lie algebras [9], and one can deform
a classical DG algebra, coalgebra or Lie algebra to the corresponding homotopy
version in a standard way.

This paper introduces the notion of an A,.-bialgebra, which is a DGM H equipped
with “structurally compatible” operations {w?®: H®" — H®J }i,j>1 such that
(H, wlvi)l}l is an A-algebra and (H, wj’l)j>1
of this project, the proof of which appears in the sequel [18], is the fact that over
a field, the homology of every A..-bialgebra inherits an A..-bialgebra structure.
In particular, the Hopf algebra structure on a classical Hopf algebra extends to an
Ao-bialgebra structure and the A,,-bialgebra structure on the homology of a loop
space specializes to the A.-(co)algebra structures observed by Gugenheim [4] and
Kadeishvili [5]. Thus loop space homology provides a primary family of examples. In

is an A,.-coalgebra. The main result
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fact, one can introduce an A,-bialgebra structure on the double cobar construction
of H.-J. Baues [1].

The problem that motivated this project was to classify rational loop spaces that
share a fixed Pontryagin algebra. This problem was considered by the second author
in the mid 1990’s as a deformation problem in some large (but unknown) rational
category containing DG Hopf algebras. And it was immediately clear that if such a
category exists, it contains objects with rich higher order structure that specializes
to simultaneous A..-algebra and A..-coalgebra structures. Evidence of this was
presented by the second author at Jim Stasheft’s schriftfest (June 1996) in a talk
entitled, “In search of higher homotopy Hopf algebras” [26]. Given the perspective of
this project, we conjecture that there exists a deformation theory for A,,-bialgebras
in which the infinitesimal deformations of classical DG bialgebra’s observed in that
talk approximate A..-bialgebras to first order. Shortly thereafter, the first author
used perturbation methods to solve this classification problem [15]. The fact that
Ao-bialgebras appear implicitly in this solution led to the collaboration in this
project.

Given a DGM H, let U = End(TH) be the associated universal PROP. We
construct internal and external cup products on C* (P;U), the cellular chains of
permutahedra P = L,,>1 P, with coefficients in a certain submodule U CTTU.
The first is defined for every polytope and in particular for each P,; the second is
defined globally on C* (P;U) and depends heavily on the representation of faces
of permutahedra as leveled trees (see our prequel [17], for example). These cup
products give rise to a biderivative operator Bd on U with the following property:
Given w € U, there is a unique element d,, € U fixed by the action of Bd that
bimultiplicatively extends w. We define a (non-bilinear) operation ® on U in terms
of Bd and use it to define the notion of an A..-bialgebra. The paper is organized
as follows: Cup products are constructed in Section 2, the biderivative is defined in
Section 3 and A..-bialgebras are defined in Section 4.

2. Cochain Algebras Over the Universal PROP

Let R be a commutative ring with identity and let H be an R-free DGM of finite
type. For z,y € N, let U, , = Hom (H®*, H®Y) and view Uy = End(TH) as the

bigraded module
Ui = P Uya-

z,yeN
Given matrices X = [z;;] and Y = [y;;] € N9*P_ consider the module

Uyx = Uyon, @ QUyp21,) @ @ (Uyyr o ® - @ Uy
c (U®)® c TTU.

qpqup)

Represent a monomial A € Uy x as the ¢ x p matrix [A] = [y, 5,,] with rows
thought of as elements of U®P C TU. We refer to A as a ¢ X p monomial; we often
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abuse notation and write A when we mean [A]. Note that

@ Uyx = (U®;D)®q;

X,YeNaXp

in Subsection 2.1 below we construct the “upsilon product” on the module

M = @ Uyx = @ <U®p)®q.

X,Y eNIXP p,q=1
P,q=1

In particular, given x = (z1,...,2,) € NN and y = (y1,...,yq) € N, set X =
(@ij = 2j)1cicgr ¥ = Wij = i), and UL = Uy x. A monomial A € UY is
represented by a g X p matrix

92/171?1 e eyl,a:p
A= : :
01!:1@1 eyqazp
We refer to the vectors x and y as the coderivation and derivation leaf sequences of
A, respectively (see Subsection 2.3). Note that for a,b € N, monomials in UY and

UY appear as ¢ x 1 and 1 x p matrices. Let

U= ¢ uL

xXy€ENP x N4
p,q=1

We graphically represent a monomial A = [‘gyj,zi} € UY two ways. First as a
matrix of “double corollas” in which entry 6, ., is pictured as two corollas joined
at the root—one opening downward with x; inputs and one opening upward with y;
outputs—and second as an arrow in the positive integer lattice N? (see Figure 1).
The arrow representation is motivated by the fact that A can be thought of as an
operator on N2. Since H has finite type, A admits a representation as a map

A (H®x1 ®_._®H®xp)®q _ (H®y1)®p®_“® (H®yq)®p.

For u=(u1,...,ux) € N¥, let [u| = uy + --- + uy and identify (s,t) € N? with
the module (H®*)®" . Let Osyt (H®)®" = (H®)®® be the canonical permuta-
tion of tensor factors and identify a ¢ x p monomial A € UY with the operator

(0y1p®-- @0y, ) oAon N ie., the composition

(H®|x|>®q ~ (H®x1 Q--- ®H®mp)®q ﬂ) (H®y1)®10 Q- ® (H®yq)®1?

Uyl,P(g'_”‘)X)ayq’P (H®p)®yl R ® (H®p)®y‘1 ~ (H@P)®|y‘ ,

where ~ denotes the canonical isomorphism that changes filtration. Thus we rep-
resent A as an arrow from (|x|,q) to (p,|y|). In particular, a monomial A € U?
“transgresses” from (a,1) to (1,b).
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Y x|

AeUD; « o

X

Figure 1. Graphical representations of a typical monomial.

2.1. Products on U
We begin by defining dual associative cross products on U. Given a pair of
monomials A ® B € UY ® UY, define the wedge and cech cross products by

A® B, ifv=x,
0, otherwise,

A® B, ifu=y,

AxB= { and A x B = { 0, otherwise.

Then UY X U C UY* and UY X UY C UY,_; denote U = (UQ) and U = (U&)

Non-zero cross products create block matrices:
A%XB=[4] and AxB=][AB].

In terms of arrows, A X B € UY" runs from the vertical 2 = |x| to vertical z = p
in N2 and A x B € UY

¥ .x runs from horizontal y = ¢ to y = |y|. Thus an n x 1

monomial AX" € Ub? initiates at (a,n) and terminates at (1,nb) ; a 1 xn monomial
N4

b

A*r e U .,

We also define a composition product on U.

initiates at (na, 1) and terminates at (n,b) .

Definition 1. A monomial pair A7* @ B™P = [0, 4,1 ® [Nu,;.2,,] € MOM 'is a

(1) Transverse Pair (TP) if s =t =1, u1; = q and vg1 = p for all j,k, i.e.,
setting x; = x1,; and Yr, = Yr,1 gives

9?!1717
A®B = ®[77q,x1 nq,mp]eU%(@Ui.
0

Yq,P

(ii) Block Transverse Pair (BTP) if there exist t X s block decompositions A =
[A}.,] and B = [Bl{j,] such that A, ® Bl, is a TP for alli,¥.

Note that BTP block decomposition is unique; furthermore, A® B € UYy ® U¥ is a
BTP if and only if y € NI*! and x € NI if and only if the initial point of arrow A
and the terminal point of arrow B coincide.
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Example 1. A pairing of monomials A**? @ B?*3 ¢ Ué:?"l’s ® U?é:,, is a2 x2
BTP per the block decompositions

C 77777 I 77777\\
I o I
! 0 [ 0 I
B
I o I ‘ L ‘
1 Do 1 ! 73,1 7]3,2; ! 73,3 !
I o I
‘ 0572 - 9571 | and | T e
I o I e
I o I | o I
| o | ) | ‘771,3 |
: 94,2 : : 9471 : I .1 n,2 o I
S T [
032 ! Osa)

k ,,,,,,,,,,,, J

As arrows, A initializes at (6,2) and terminates at (3,4); B initializes at (3,4) and
terminates at (2,13).

When x xy € NP x N7, every pair of monomials A ® B € Uy @ Uf is a TP.
Define a mapping
v: Uy @ UL — uP

x|
by the composition

Y o U 2 ylyl ap 9700 iyl o yra 2, gl
UpoUy — UpgoUy — Ug oU, — Uy,
where ¢, and ¢, are the canonical isomorphisms. Then for A = [0, ,] € UY and
B = [14,2,] € U%, we have

Y(A®B) = (eyl,p Q- eyq,p) Oq,p (77qm Q- ® 77q7€1/’p> )

denote this expression either by A- B or v(0y, p,.--,0y,p;Mg,215- - "Mg,z,). The ¥-
product on matrices of double corollas is typically a matrix of non-planar graphs

(see Figure 2). Note that v agrees with the composition product on the universal
preCROC [20].

More generally, if A ® B is a BTP with block decompositions A = [A],] and
B = [B],|, definey (A ® B),, = v (A}, ® Bl,). Then v sends A7”**®@B"*? € U¥@UY
to a t X s monomial in U§:7 where x’ and y’ are obtained from x and y by summing
s and t successive coordinate substrings: The length of the i* substring of x is the
length of the row matrices in the i** column of B’; the length of the ¢! substring of
y is the length of the column matrices in the ¢** row of A’. In any case, v (A ® B)
is expressed as an arrow from the initial point of B to the terminal point of A.
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A
*YY:
A

Figure 2. The y-product as a non-planar graph.

Define the upsilon product T : M @ M — M on matrices A, B € M by

v (4, ® Bl,), if A® BisaBTP
T(A® B)y =
0, otherwise

and let A- B = T(A® B). Note that T restricts to an associative product on U.

Example 2. The y-product of the 2 x 2 BTP A**? @ B**3 in Ezxample 1 is the
following 2 x 2 monomial in Ué%’g :

C 77777 I \77777\\

Or2) G| o

I I I I

| o | 73,1 13,20 1713,3 ! 7(01,2,05,2,04,2;1m3,1,m3,2) ¥(01,1,05,1,04,1573,3)
105,00 10500 | | toiooe L _

| [ | L I e T T =

304723 304713 3771,1 771,23 3771,33 (03,25 1m1,1,M1,2) ¥(03,15m1,3)

| S PRI E

103,00 1051,

,,,,,,,,,,,, gy

The row matrices in successive columns of the block decomposition of B have re-
spective lengths 2 and 1; thus x' = (3,3) is obtained from x =(1,2,3). Similarly,
the column matrices in successive rows of the block decomposition of A have respec-
tive lengths 3 and 1; thus y’ = (10, 3) is obtained from y = (1,5,4,3) . Finally, the
map A- B : (H®3 ®H®3)®2 — (H®10)®2 ® (H®3)®2 is expressed as an arrow
ingtializing at (6,2) and terminating at (2,13).

2.2. Cup products on C* (P, U)

Let C, (X) denote the cellular chains on a polytope X and assume that C, (X)
comes equipped with a diagonal Ay : C, (X) — C, (X) ® Cx (X). Let G be a
module (graded or ungraded); if G is graded, ignore the grading and view G as
a graded module concentrated in degree zero. The cellular k-cochains on X with
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coefficients in G is the graded module
C*(X;G)=Hom ¥ (C, (X),G).

When G is a DGA with multiplication p, the diagonal A x induces a DGA structure
on C* (X; G) with cup product

f—g9=pn(f®g)Ax.

Unless explicitly indicated otherwise, non-associative cup products with multiple
factors are parenthesized on the extreme left, i.e., f — g — h=(f — g) — h.

In our prequel [17] we constructed an explicit non-coassociative non-cocommuta-
tive diagonal Ap on the cellular chains of permutahedra C, (P,) for each n > 1.

A
Thus we immediately obtain non-associative, non-commutative DGA’s C*(P,; U)
and C*(P,; [VJ) with respective wedge and cech cup products A and V. Of course,
summing over all n gives wedge and cech cup products on C*(P;U).

The modules C*(P; IAJ) and C*(P; IVJ) are equipped with second cup products Ay
and Vg, which arise from the Y-product on U together with the “level coproduct.”
Recall that m-faces of P, 11 are indexed by PLT’s with n+ 2 leaves, n —m+1 levels
and root in level n —m + 1 (see [11] or [17], for example). The level coproduct

Ay : CL(P) — C.(P) ® Cu(P)

vanishes on e C P, ;1 and is defined on proper m-faces e™ as follows: For each k,
prune the tree of €™ between levels k and k 4+ 1 and sequentially number the stalks
or trees removed from left-to-right. Let e}, denote the pruned tree; let e} denote the
tree obtained by attaching all stalks and trees removed during pruning to a common
root (see Figure 4). Then

Ny (e™) = Z ey ® ey

1<k<n—m

N N

Figure 3: An(24[1|3) = 112 ® 24|13 + 1 ® 24[1/3.

Obviously, A, is non-counital, non-cocommutative and non-coassociative; in fact,

it fails to be a chain map. Fortunately this is not an obstruction to lifting the -

product on U to a —-product on C*(P; U) since we restrict to certain canonically
N

associative subalgebras of U. For ¢, ¢’ € C*(P; M) define ¢ Ay ¢’ = ¢ —y ¢’ and

for ¢, € C*(P;l\v/I) define 9 Vg 10" = 1) —; 1. Some typical Ay-products appear
in Example 3 below.
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2.3. Leaf sequences

Let T be a PLT with at least 2 leaves. Prune T immediately below the first level,
trimming off &k stalks and corollas. Number them sequentially from left-to-right and
let n; denote the number of leaves in the j** corolla (if T is a corolla, k = 1 and
the pruned tree is a stalk). The leaf sequence of T is the vector (ny,...,n;) € N,

Given integers n and k with 1 < k < n+1,let n=(ny,...,ng) € {x € Nk‘
|x| = n+2}. When k = 1, e, denotes the (n + 2)-leaf corolla. Otherwise, e, denotes
the 2-levelled tree with leaf sequence n. Now consider the DGA U with its y-product.
Given a codim 0 or 1 face e, C P and a cochain ¢ € C*(P;U), let pn = ¢(en).

A A
Example 3. Let ¢ € C°(P;U) and ¢ € C*(P;U). When n = 1, the proper faces
of Py are its vertices 1|2 and 2|1 with Ap(1]2) = 1 ® 1|2 and Ay(2]1) = 1 ® 2]1.
Evaluating Ng-squares on vertices gives the compositions
¢*(12) = a2 ¢*(21) = p2i012.

When n = 2, the proper faces of Ps are its edges and vertices (see Figure 4).
Evaluating quadratic and cubic Ng-products on edges and vertices gives

@*(123) = @30an1 ©*p(1213) = apn@an
?%(2113) = @3p1n ©*@(1132) = @ap12p211
@*(3[12) = @3p112 ©*P(2(113) = papaPin
ep(12[3) = 2Pz ©*p(2[3]1) = 20120101
ep(13[2) = wap22 ©*p(3[112) = o pii2
ep(23[1) = pag3 ©*B(312|1) = pap12P112.
3)1)2 3[12 32/1
132 23|1

132 ¢ 123 ¢ 23]

1/23 2|13

1]2]3 12[3 2|1]3

Figure 4: The permutahedron Ps.

3. The biderivative

The definition of the biderivative operator Bd : U — U requires some nota-
tional preliminaries. Let x; (r) = (1,...,7,...,1) with » > 1 in the i*" position;
the subscript ¢ will be suppressed unless we need its precise value; in particular, let
1 = x (1) € N*. Again, we often suppress the superscript and write 1 when the
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context is clear. Let

Ug = @Ui and U, =U/U, = EB UY;

x,y=1 x#1 or y#1

also denote the submodules

_ 1 _ y
Uuo - @ Ux U710 - @ Ul
x€ENP; [x[>p>1 YENT; |y|>g2>1
v, = @ u U = @ U
x€eNP; |x|>1 yeN?: |y|>1
p,q=1 p,q>1

and note that

Uyny =U,NU, = P UL

P,q=2

Monomials in U, and U, are respectively row and column matrices. In terms of
arrows, Ug consists of all arrows of length zero; U consists of all arrows of positive
length. Arrows in U, initiate on the x-axis at (]x|,1), |x| > 1, and terminate in
the region z < |x|; in particular, arrows in U, lie on the z-axis and terminate at
(p,1). Arrows in U, initiate in the region y < |y| and terminate at (1,]y]), |y| > 1;
in particular, arrows in U,, lie on the y-axis and initiate at (1,¢). Thus arrows in
Uyny “transgress” from the x to the y axis.

3.1. The non-linear operator BD

Recall that n is a leaf sequence if and only if n # 1; when this occurs, e, is a
face of Pjy—1 in dimension [n| — 2 or [n| — 3. Let

TOp(U+) ccr (P; @xﬁﬁl or y#1 Ui)

be the submodule supported on ex when x # 1 or on ey otherwise. Dually, let

%op(UJr) C C*(P;@ U3)

x#1 or y#1

be the submodule supported on ey, when y # 1 or on ex otherwise. When x,y # 1, a

monomial A € UY is identified with the cochains p4 € YA’op(UJr) and ¥y € Tv’op(U+)
respectively supported on the codim 0 or 1 faces of P with leaf sequences x and y
(see Figure 5). Let

7:0%*(P;Uy) — %op(U+) and 7:C*(P;Uy) — %op(U_,.)

be the canonical projections.
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\%2_4

¢¢A

€1,3 —

- 1Y
Y

Figure 5: The monomial A is identified with ¢4 and 4.

For x;(n),yi(n) € N4, let

[010); = [d -+ 01, Id] € U, () C Uy,
and
Id
[0na], = | On1 | € vy ™ cu,,.
Id

Given ¢ € C*(P;U,) and n > 2, consider the top dimensional cell e, C P,
and components ¢, (e,) € UL C Uy, and ¢,,1 (e,) € U C Uy, of ¢ (ey). The

coderivation cochain of ¢ is the global cochain ¢¢ € IA“op(UJr) given by
$(ex) = [b1nlen)],, fx=x;(n), 1<i<q n>2
* 0, otherwise.
Dually, the derivation cochain of ¢ is the cochain ¢ € %0p(U+) given by

¢a(e ): [d)n,l(en)]?, lfYZYl(n)v 1 glgqv TL}Q
Y 0, otherwise.

Thus ¢¢ is supported on the union of the ey, (,)’s and takes the value

¢°Co (P)= > [Id-+ puy(en) - Id]™9 € Uy,
1<i<q —

1 ith
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and dually for ¢°.
Finally, define an operator 7 : C*(P;Uy) — C*(P;U,) on a cochain £ €
C*(P;UY) by
Elex), ife=ey; x,y#1,
T(€)(e) =4 Eley), ife=ex; x,y#1,

0, otherwise.

Note that 7 is involutory on f’op(U+) N %op(UJr).
We are ready to define the non-linear operator BD. First define operators

BD: C*(P;IALF) — C’*(P;IALF) and BD : C’*(P;IVLF) — C*(P; IVJ+)

by
BD(p) =@ and BD(¢) = ¢,
where
P=C A+ ENE A+ 1\2):C0+<U\/<U+..._|_C5L+...
and
£:<P+<P/\€<P+"'+<Pn+"' <:1/1+1/)\/£1/1+"‘+¢n+""
Then define

BD: C*(P;UL) x C*(P;Uy) — C*(P; UL ) x C*(P; UL )
on a pair ¢ X ¥ by
BD(QO X 1/}) = (%OéD)(gpc +7"l/)) X (/]VroéD)(wa +TQO)

Theorem 1. Given > On.m € U, there is a unique fized point
(m,n)EN2\1

o % b= BD(p x ) (3.1)
such that
@uo(em> = 917m7 m = 2
Wuﬁv(em) = Zn>2 9n,m; m 2> 2 (3 2)
¢v0(en) = 971,17 nz=2 '
wuﬁv(en) = Zm}Q en,m; n = 2.

Before proving this theorem, we remark that the existence of a fixed point
@ x 1 for BD is a deep generalization of the following classical fact: If a map h is
(co)multiplicative (or a (co)derivation), restricting h to generators and (co)extend-
ing as a (co)algebra map (or as a (co)derivation) recovers h. These classical (co)multi-
plicative or (f,g)-(co)derivation extension procedures appear here as restrictions
(3.1) to Py (a point) or to P» (an interval). Restricting (3.1) to a general permuta-
hedron P, gives a new extension procedure whose connection with the classical ones
is maintained by the compatibility of the canonical cellular projection P, — I"~!
with diagonals. Let us proceed with a proof of Theorem 1.
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Proof. Define BDY) = BD and BD"t) = BD o BD™, n > 1. Let
F, U= P Uy and F,U= P L.
n<|x| n<ly]

A straightforward check shows that for each n > 1,
BD™+Y) = BD™ modulo F,C*(P; U) x F,C*(P;U).

So define
D = lim BD™.

Clearly, BDo D = D.

Let wunw € ZA“op(U+) and Yyny € Jv“op(U+) be the two cochains uniquely defined
by (3.2) and supported on the appropriate faces. Then

P X Y= D((QDC + <puﬂv) X Wa + wuﬂ’u))

is the (unique) solution of (3.1). O

3.2. The biderivative operator on U
Let Bd : U, x U; — Uy x Uy be the operator given by the composition
U, x U, B4, U, x U,
| I
Top(U+) x Top(Uy)  — Top(Us) x Top(U-),

where the vertical maps are canonical identification bijections and BD is its restric-
tion to %0p(U+) X fop(U+). For A € Uy, let A} x Ay = Bd(A x A) and define
operators éd, Bd : U, —- U, by

A V
Bd(A) = A; and Bd(A) = A,.

Given an operator F' : U — U and a submodule U, C U, denote the composition
of F' with the projection U — U, by F,. Define the operator Bd, : Uy — U, as
the sum

Bdy = Idyny + Bduge + Bdyeu,-

Note that gduO (0) is the cofree coextension of § € Uy . as a coderivation of T°H;

dually, édvo (n) is the free extension of € U, 1 as a derivation of T*H.

On the other hand, observe that U N Ug = U;1. Given A € Uy, 1 <4 < ¢ and
1<j<p let AP = (are) € U1, be the ¢ x p monomial such that

_ { A, i (k0) = (i,4),
(4277

Id, otherwise.
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Define Bdy : U1,y — TTU; 1 by
_ axp
Bdo(A)= Y = AL

1<igq, 1<j<p
p,q=1

Then Bdg (A) is the free linear extension of A as a (co)derivation of TTH.
We establish the following fundamental notion:

Definition 2. The biderivative operator
Bd:U—-U
associated with the universal PROP U is the sum
Bd=Bdy+ Bdy : Uy U, - Uy Uy
An element A € U is a biderivative if A = Bd(A).

Restating Theorem 1 in these terms we have:

Proposition 1. Fvery element w = Zij>1‘*’j,i € U has a unique biderivative
d, €eTTU.

Thus the biderivative can be viewed as a non-linear map d_ : U — TTU.

3.3. The ©-product on U
The biderivative operator allows us to extend Gerstenhaber’s (co)operation [3]
0:U,1®U; . — U to a (non-bilinear) operation
©:UxU—-U (3.3)

defined for @ x n € U x U by the composition

0 UxUZTUuxuLuny,

where the last map is the canonical projection. The following is now obvious:

Proposition 2. The ® operation (3.3) acts bilinearly only on the submodule U, 1 &
Ui «.

Remark 1. The bilinear part of the © operation, i.e., its restriction to U, 1 ® Uy «,
is completely determined by the associahedra K (rather than the permutahedra) and
induces the cellular projection P, — K, 1 due to A. Tonks [24].

Example 4. Throughout this example the symbol “1” denotes the identity. Con-
sider a DGM (H,d) together with maps p = 012, 0 = 025, A =021 € End(TH).
Let us compute the biderivative of w = d+ u+ 6 + A and its ©-square. Consider

A v
the pair of cochains p x 1 € Top(Uy) x Top (Uy) supported on ey X e such that
plea) =u+0 and ¥ (e3) =0+ A. Then
o (eat+eanteat - )=p+ [l +[1pu+- €Uy,
Y (e2+ea tept- ) =A+ [ﬂ + [i] +---€ U, and

7 () (€2) = Purw (€2) = 0 = Yunw (€2) = 7 (V) (e2)
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Set a = ¢ + 1Y and B = V* + Ty; then
(aha)(CiP)=(p+0)(p@1+1®pu)+--- and
(BVeB)(CuP) = (AR1+1@A) (0 +A)+---

Furthermore, the projections a,, = « and (8, = @ so that
Su=a+arja+--- and (=0+0LVeB+---.

Then BD (¢ x 1) = ¢ x 1, where
p=Cut &Nt and P=C+ GV Gt

Now @uygw (CoP) = p+p(p@l+1lep) +0+ [+ ]+ ]+ L]+ and

Guswy (CuP) = 0+ [0 0]+ [A 0]+ [0 Al + [A A+ A+ (AR T+1QA) A+
so that Bdy (w) = 6 + ((ﬁuo@@ +1]}u@1)0) (C«P). Finally, we adjoin the linear
extension of the differential d in TTU; 1 and obtain
dp=d+[d+1d+ -+ [+ [+ +p+tA+--
O+ pu(pl+1lou)+ - +A1I+1QA)A+---
+I I+ -+ 100 +[A O +[0 A+ [A A4+
Then (up to sign),

wow=([]+[]) 0+0-(dU+1d)+a-u+[1] 12 4]+
+[0] (A 0+ [0 A +60- (1 p] +[u1]) +

(1) Al + (31 + ) 0+

Some low dimensional relations implied by w ® w = 0 are (up to sign):
(dR1+10d)0+0(d1+1®d) =Ap— (L@ p) o2 (A®A)
(L@ p) o2 (ARI+0RA)=0(p®1+1® p)
(W0+0p) 2 (A®A)=(AR1+12A)6.
In fact, if w®w =0 then (H,w) is an “As-bialgebra.”

4. A, -bialgebras

In this section we define the notion of an A,,-bialgebra. Our approach extends the
definition of an A,-(co)algebra in terms of Gerstenhaber’s (co)operation. Roughly
speaking, an A,.-bialgebra is a graded R-module H equipped with compatible A .-
algebra and A,.-coalgebra structures. Structural compatibility of the operations
in an Ao.-bialgebra is determined by the ® operation (3.3). Before stating the
definition, we mention three natural settings in which A..-bialgebras appear (details
appear in the sequel [18]).

(1) Let X be a space and let C.(X) denote the simplicial singular chain complex
of X. Although Adams’ cobar construction QC,(X) is a (strictly coassociative) DG
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Hopf algebra [1], [2], [8], it seems impossible to introduce a strictly coassociative
coproduct on the double cobar construction Q2C,(X). Instead there is an A.-
coalgebra structure on Q2C,(X) that is compatible with the product and endows
O2C,(X) with an A-bialgebra structure.

(2) If H is a graded bialgebra and p : RH — H is a (bigraded) multiplicative
resolution, it is difficult to introduce a strictly coassociative coproduct on RH in
such a way that p is a map of bialgebras. However, there exists an A,-bialgebra
structure on RH such that p is a morphism of A..-bialgebras.

(3) If A is any DG bialgebra, its homology H(A) has a canonical A..-bialgebra
structure.

The definition of an A, -bialgebra H uses the ©®-operation on Uy to mimic the
definition of an A..-algebra.

Definition 3. An A, -bialgebra is a graded R-module H equipped with operations
(" € Hom™ =5 (™ H™)}, 121
such that w = 3=, .o, w’* € U satisfies w © w = 0.

Here are some of the first structural relations among the operations in an A..-
bialgebra:

dw?? = W2lul2 _ (w1,2 ® w1,2) 02’2(w2,1 ® W)

dw?? = WPwl? + (Wl @1 — 1@ wr!)w??
— (W @w?® w1’2)03,2 [w?”l ® (1@ wHw?! + (W ® 1w ® w?”l]
+ [(wz,z Qwh? — w2 g wz,z)} 0272(002,1 ® w?l)

dw?? = —w?lwld 4 w22 (1@ wh? — w2 ®1)

B @ w3 (1 @ wh?) + w3 (W2 © 1) @ whP]oy 5 (! ® w?! @ W)
FW'? ® wh?) oy a (WPl ® w?? — w2 @ wl).

Example 5. The structure of an Ao -bialgebra whose initial data consists of a

strictly coassociative coproduct A : H — H®? together with A -algebra operations

m; + H® — H, i > 2, is determined as in Ezample 4 but with o (e;) = my,

P (e2) = A. This time the action of T is trivial since all initial maps lie in Uyyao,

and we obtain the following structure relation for each i > 2:

(gu/\gu)(ez) ' [A A] :Aml
i factors
Indeed, the classical bialgebra relation appears when i = 2.

We conclude with a statement of our main theorem (the definition of an A.-
bialgebra morphism appears in the sequel [18]).

Theorem 2. Let A be an Ax-bialgebra; if the ground ring R is not a field, assume
that the homology H = H(A) is torsion-free. Then H inherits a canonical bialge-
bra structure that extends to an A-bialgebra structure {w?'}; ;51 with wb! = 0.
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Furthermore, there is a map of As-bialgebras

F={F"}ijs1: H= A,

with F7* € Hom'™I=2(H®! A®7), such that F''' : H — A is a map of DGM’s
inducing an isomorphism on homology.
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