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TOWARD EQUIVARIANT IWASAWA THEORY, IV
JURGEN RITTER AxD ALFRED WEISS
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Abstract

Let | be an odd prime number and K /k a Galois exten-
sion of totally real number fields, with k/Q and K /ko finite,
where k, is the cyclotomic Z;-extension of k. In [RW2] a “main
conjecture” of equivariant Iwasawa theory is formulated which
for pro-l groups G is reduced in [RW3] to a property of the
Iwasawa L-function of K, /k. In this paper we extend this re-
duction for arbitrary G to l-elementary groups G, = (s)xU,
with (s) a finite cyclic group of order prime to ! and U a pro-l
group. We also give first nonabelian examples of groups G
for which the conjecture holds.

Dedicated to Victor Snaith on the occasion of his 60-th birthday.

Let [ be a fixed odd prime number and K, /k a Galois extension of totally real
number fields with [k : Q)] finite and k., the cyclotomic l-extension of k, con-
tained in Ky with [K @ koo also finite. The respective Galois groups are Go, =
Gk H = Gg__jkoe s Tk = Gi - We also fix a finite set S of primes of k
containing [, oo and all primes which ramify in K., *.

In [RW2,84] we formulated an equivariant refinement of the Main Conjecture of
(classical) Iwasawa theory [Wi]. The main point of this paper is to reduce this

“main conjecture” to a conjectural property of the Iwasawa L-function Lg__ /i s of
K /k.

Theorem (A). The “main conjecture” of equivariant ITwasawa theory for Ko [k is,
up to its uniqueness assertion, equivalent to L 1, s belonging to Det K1 (A(Gwo).)-

The Iwasawa L-function Lg_ (= Lk__/k,s) incorporates all the [-adic (S-
truncated) Artin L-functions of K. /k by assigning to each l-adic character x
of G the Iwasawa power series of the corresponding L-function. This Lk __/x is a
homomorphism from the character ring R;(Gs) to the units of the “Iwasawa al-
gebra” A‘:(Fk) of k, which is Galois equivariant, compatible with W-twisting, and
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which satisfies the congruences Ly __,(x)' = ¥(Lk__/x(11x)) mod IA€(T'g) . These

properties of L/ are the foundation of the proof of Theorem A. For the notation
we refer to the introductory §1 which also contains the map Det : K;(A(Gw).) —

HOM* (Ry(Goo), A°(Tk) ™) .
The technical core of the proof of Theorem A is

Theorem (B). Det K;(A(Go).) NHOM*(R)(G ), A°(T'x)™) C Det K1(A(G o))

When G is an I-group, equivalent theorems are stated in [RW3] with 4 in place
of _; for the proofs in [RW3] the -form of Theorem B is however essential (see

[RW3,86]). We have emphasized here the -form because this technical advantage
persists (e.g. in Proposition 2).

The proof in [RW3,§1] that Theorem B implies Theorem A works not only for
general groups G, but also with o replaced by _: In its fourth paragraph every
« needs to become _. Therefore it remains to use induction techniques to reduce

Theorem B to the [-group case. These techniques are generalizations of those in
[Ty, Fr] for finite groups to the setting of Iwasawa theory.

In the same way we obtain

Theorem (C). Lg_; € DetKi(AM(Gw).) if, and only if, Lgiw €

Det K1 (A(Gkjxr).) whenever Gy is an l-elementary section of G-

Here Gk i is a section of Goo, if kK C k' C K’ C K is such that k’/k is finite
and K. /K’ finite Galois; a section Gy is I-elementary, if Gy /iy = (s) x U for
some finite cyclic subgroup (s) of order prime to [ and some open I-subgroup U.
If G is abelian, then the “main conjecture” holds by the Corollary to Theorem 9
in [RW3]. Theorem C provides first nonabelian examples of the “main conjecture”.
We expect more such examples to follow from the logarithmic methods of [RW3] for

l-elementary groups. In more generality we know only that some I-power of Lg__
is in Det K1 (A(Gw).)-

The paper is organized as follows. Its first section has some background material. In
§2 we discuss K1(A(G)) for Q; -1-elementary groups G and deduce Theorems B
and C for them. Then §3 is preliminary material on Q; - g - elementary groups G,
with ¢ a prime number different from [, which is used for the proof, in §4, of the
full Theorems B and C. In §5 the examples appear.

We remark that because Theorems A and C are based on [RW3] they depend on
the vanishing of Iwasawa’s p-invariant for k_/k’, for which we refer to [Ba).

1. Background

The Iwasawa L-function L __ /i s of Ko /k is defined as follows (compare [RW2,84]).
Let x be a Q;°-character of G, with open kernel and write the l-adic S-truncated
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Artin L-function L; g(1—s, x), for s € Z;, as the fraction L; s(1—s,x) = %

of the Deligne-Ribet power series Gy s(T"), Hy(T) € Q;° ®z, Z;[[T]] associated to
a generator v, of I'y [DR]. Above, u € 1+ [Z; describes the action of 74 on the
[-power roots of unity. Now set

G,y -1
Li_/k,s(x) = m

(which is independent of the choice of ~y).
Recall that Q(G ) is the total ring of fractions of the completed group ring
MGoo) = Zi[[Gc]]

of G over Z; (it is enough to invert the nonzero elements of A(T") for a central open
subgroup I' ~ Z;). The algebra Q(G,) is a finite dimensional semisimple algebra
over Q(T') with T, as before, central open in Gyo.

The map
Det : K1(Q(Go)) — Hom™(Ry(G o), Q°(Tx) ™)
is now defined as follows (compare [RW2,§3]).

If [P, o represents an element in K7 (Q(Gw)), with P a finitely generated projective
9(G o )-module and o an Q(G )-automorphism of P, then

Det [P, a] is the function in Hom™ which takes the irreducible x to
detoe(ry)(a [ Homgepm) (Vy, Qi ®q, P)) -

Here, Q°(Tx) = Q;° ®q, Q(T'x), and V,, is a Q;°-representation of G with char-
acter x (always with open kernel). The * on Hom requires G, ,q,-invariance and
compatibility with W-twists; these properties are inherited from the representation

theory of Q(G).

Restricting Det to K1(A(G)), it takes values in Hom™(R;(G o), A°(Tx) ™), with

A°(Ty) = Z,°®z, A(T'k), and indeed Det zz = f has values satisfying the congruences
FO)' = 2(f(ix)) mod IA(Ty),

which define the subgroup HOM*(R;(Gw), A°(T') ™) of Hom* (see [RW3,§2]).
Above, ¥ is the Z; -algebra endomorphism of A°(T;) induced by v ~— ~! on ', and
1y is the I-th Adams operation on R;(Go).

However, the values Lg__/i(x) are not in A°(T%)™ but in AS(T'y)™, where AS(T}) =
Zi° ®@z, A(T'y), with A(T'), the localization of A(T'y) at I. We work with the com-
pletion A(T'y),. of A(T'x), at I because logarithmic methods apply to K1 (A(Gw).)

(see [RW3, beginning of §5]). We arrive at
Det : K1 (A(Gx).) = HOM™(R;)(Goo), A°(T) ™),

with Af(Fk) =7 Kz, A(Fk),\, and now LKoo/k € HOM*(RZ(GOO),AS(F]C)X) .

The induction techniques that we are going to apply will also involve AP (G) =
O ®z, A(G) and AP (G),, where O is the ring of integers of a finite unramified

~
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extension N/Q;. All that has been said so far remains true except that the G, Q-

invariance on Hom" gets replaced by Gg,c/y-invariance to define Hom®™ and that
the Frobenius automorphism Fr of N/Q; appears (see [RW3, Proposition 4]).

2. Q-[-elementary groups G,

In this section the Galois group Go, = Gk __ /i is assumed to be Q; - [ - elementary,
i.e., a semidirect product G, = (s) x U of a finite cyclic group (s) of order prime
to | and an open [-subgroup U whose action on (s) induces a homomorphism U —
Go,(¢)/q,> where ( is a root of unity of order |{s)|.

We fix a set {3; } of representatives of Gg, q,-orbits of the Q;-irreducible characters
of (s) and denote the stabilizer group of §; by U; = {u € U : g = 5;}. Note that
U; <U and set A; = U/U; < Gy, jq,, with N; the field of character values of 3;

Theorem 1. 1. There are natural maps r,v’" so that
K1 (AMGo)) = [T, K1 (A (U))
Det | Det |

Hom™ (Ri(Gao), A(T)) 5 [T, Hom™ (Ri(U), A(Ts,) ™)

commutes and ' is injective. Here k; = KooVt and O; is the ring of integers
of N;. Moreover, r induces an isomorphism

Det K1 (A(Gso)) — [ [(Det Ky (A2 (U;)) A .

2. The same holds in the completed situation, i.e., with A replaced by A _.

Proof. (Compare [Ty, p.67-71] or [Fr, p.89-96].) In order to use subscripts we
abbreviate G by G.

Set G; = (s) xU;,e; = ﬁ 25 mod |(s)] TTN: /@ (Bi(s77))s? € Zi(s) and let
R{*)(G) C Ri(G) be the span of the irreducible y € R;(G) with x(e;) # 0. Observe
that e; is a central idempotent of A(Gw).

We first glue the following squares together

K1 (A(G)) ey K1 (A(G)))
Det | Det |

G;
res a

Hom*(Ry(G),A°(T}) ) —2 Hom™*(R;(G:), A°(Ty,)”™)

Ki1(AGy)) — Ki(eiA(Gi))
Det | Det |
Hom* (Ry(Gi), A°(T,)*)  —  Hom"(R{*)(G;),A°(Ty,)™)

Actually, both diagrams should have the field k] = K% in place of k;; however,
[y, and T, get identified as subgroups of I'y, since [k; : k{] = [(s)| is not divisible
by 1.
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The upper diagram commutes by [RW2, Lemma 9], and A(G;) = ¢;,A(G;) x (1 —
e;)A(G;) implies the commutativity of the bottom one. Note that there is no ambi-
guity in writing Hom* (Rl(ei)(Gi), A°(Tk,)™) because x(e;) = (xp)(e;) for characters
p of G; of type W.

There are natural actions of A; = G/G; on K;(A(G;)) and on

Hom* (R;(G;), A°(T,)™);

i

moreover,
res & (K1(A(G))) € K1 (A(G)™,
res g (Hom* (R;(G), A°(T%)™)) C (Hom*(R;(G;), A(Tx,) ).

The maps in the bottom diagram are all A;-equivariant. For this we only need to
check the A;-equivariance of Det : K7 (Q(G;)) — Hom™(R;(G;), Q°(Tx,) ™) :
Set H; = ker(G; — T,). Further, let [P, a] represent an element of K;(Q(G;)),
with a an automorphism of the projective module P. If a € A; has pr?image g €@,
then [P,a)* = [P, al9]] where P9 = {[p] : p € P} with y[p] = [y p] for y € G;
and al9([p]) = [a(p)]. Taking V = Vi1, 80 Vsl =V, | it suffices to show that

Homg,e(,)(V, Qi° ®q, P) — Homg,esr,) (V. Q¢ ®q, P9),
¢ = [io] with [p]([0]) = [#(v)]

is a Q°(T', )-vector space isomorphism which is natural for the respective actions of

a. Now,
—1

WD (D) = ([Pl [e]) = w([elly=7 o))

=ylply™9 )] =y (p(y=? )] = 9))],

and taking y € H; implies that [¢] € Holec[Hi](V[g],Qlc ®q, PW¥!). Reading the
above for y € I'y,, we see the map is Q°(T'y, )-linear.

By composing the above two squares we arrive at
K1(A(G)) - [T, Ki(eiA(Gi)) ™
(D1) Det | Det |
Hom* (R)(G),A°(T%)”) — [, Hom*(R“)(G;), A°(Ty,) ).
We claim that the lower horizontal map in (D1) is injective. To see this we first
observe that it is also the composite

Hom™ (Ry(G), A°(Tx) ) — [ ] Hom* (R{*(G), A°(T)")
— T Hom* (R{*)(Gi), A°(Tk,) )

and that R;(G) = P, Rl(ei)(G) . Hence, as induction on characters is restriction on
Hom™, we are done once we know ind g“ (Rl(e")(Gl-)) = Rl(ei)(G). However, if x €
R;(G) is irreducible, then Clifford theory [CRI, 11.8, p.265] implies x = indg (ﬁfﬁ)

k3
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for some irreducible £ € R;(U;) and the i and 0 € Gy, /g, so that 37 appears in
res <Gf> (x); here 3; € R)(G;) is defined by §;(s7u) = B;(s7).

Note that e;A(G;) = e;Zi(s) ®z, A(U;) is, via (3;, isomorphic to 9; ®z, A(U;) =
AP (U;) . We next show that the square

K1 (e;A(Gy)) B, Ky(A24(Uy))

(D2) Det | Det |

*
i

Hom™ (R[*(Gi), A°(Tx)*) = Hom™ (Ri(U;), A°(T,)")
commutes, with the top horizontal map induced by §; and (; defined by f —
f', f1(€) = f(Bi€). The map (* is injective because Rl(e")(Gi) is spanned by the
B7E.

Turning to the commutativity of (D2), it suffices to show that (Det(«)) =
Det (8;(«)) for units a € e;A(G;), by [CRIIL, p.76]. Now, with V; denoting a Q;°-
realization of & € R;(G),

Det (8;(a))(€) = detge(r,,)(Bi(e) | Homg,e(ay (Ve, Qi @n, QY (U3)))  and

Det (@) (8:€) = detge(ry,) (v | Homg,e(r,1(V,e, Qi ®q, (:Qi(s) ®q, Q(Gi))))
where H;, as before, equals ker(G; — T'y,) and H] = H;/(s); see [RW2, §3]. Hence
it suffices to exhibit a Q°(T'k,)-isomorphism

HoleC[Hz{](V‘év QC(UZ)) I HomQLC[Hi](VBif’ (Qlc ®q el@l<s>) Qe QC(UZ))
which is natural for the respective actions of . Such a map is given by multiplying
¢" € Homg, e[z by the idempotent ; = HlTH Zj mod |(s)| Bi(s77)®e;s? of Qi° ®q,
e;Q;(s). This map is surjective since &; acts as the identity on V3,¢» hence every
¢ € Homg,[y,) has image in ;(Q;° ®q, e;Qi(s)) ®q,c Q°(Us) = ;i ®g,e Q(Us)

Combining (D1) and (D2) gives the commutative square in 1. of the theorem. To
complete the proof we are left with showing

Det K1 (A(G)) ~ [ [(Det K1 (A2(U;)))*.

We first check that the maps in (D2) are all A;-equivariant. The left Det has already
been dealt with. The right Det will follow since (3; is an isomorphism.

1. The natural embedding a — o0, : A; — Gy, /g, is determined by Bi(s)
B:(s)?+ and we transport the conjugation action of G on e;Z;(s) ®z, A(U;
to AD7(U1) by ﬂi, hence 61 N Kl(eiZl<8> ®Zl A(UZ)) — Kl(AD"' (Uz)) iS Ai
equivariant.

2. We show that (3} is A;-equivariant, with the action of A; on ¢ € Hom™ (R;(U;),
A(T,)) defined by ¢(€) = @(¢% )7, where o, € G N, /q,is extended to
Q€ so that it is the identity on [-power roots of unity; this is possible since
N;/Qy is unramified. Note that ¢ is well-defined since changing o, to oo,
with 0 € Gge/q, the identity on N;(Ge), gives p(6% )77 = p(£¢ 7)% =

| ~—
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©(£977)%a as €7 is a character of the I-group U;. Moreover, ¢@ € Hom™: :

If o € Goen,, then g2(£7) = 9§70 7)% = (€ 7)™ = (£ )77 =
(p(£% )77 )7 = ©1(£)7 | because co,0 L is also an admissible extension
of o,.
-1
The Aj;-equivariance of the map 3 now follows from 3¢ = 8/ (which is a
reformulation of B;(s® ) = Bi(s)°= ). Namely, let f € Hom™ be the image
of f € Hom* and let f” € Hom" be that of f* Then f”(&) = f*(3:if) =
P ] ~ 1 ~ 1 -1
fF@B €0 ) = f((Bi€* )7) = f(Big" )7 = f1(§* )7 = (f)(E)-
For 1. of Theorem 1 it now remains to show that 7’ induces an epimorphism
Det K1 (A(G)) — [[;(Det K1 (A (U;)))4 . From
G;
K1 (A(G)) S Ki(AGY))
{ i

G;
res o

Ki(6A@) 9 Ki(eAG) 25 KA (W)

and the surjectivity of the left vertical arrow we deduce

im (r) D H Bires & (K (e;A(G))) D H Bires Ziind & (K1(e;A(Gy))) -

Hence, by [RW2, Lemma 9] and [RW3, Lemma 1],
' (Det K1(A(G))) D 1, B/ res giindg (Det K1 (e;A(G))

i

= 11, BN, (Det K (e:A(G1))) = [T, N, (Det K (A2 (U1)))
where = is due to Mackey’s subgroup theorem and G/G; = A;:
res ¢'ind &, (f:)(57€) = firesGind &, (7€) = (JT £(576) = Na N)(F7€).
acA;

All arguments above apply to 2. of Theorem 1 without changes.

The proposition below now finishes the proof of Theorem 1. O

Proposition 2. Ny, (Det K1(A9:(U;))) = (Det K1 (AP:(U;)))A and the same with
A replaced by A_.

Since the U in G, = (s)xU will not occur in the proof of the proposition, we drop
the index i throughout, so U (= U;) is now a pro-I group and we need to consider
the A-module Det K1 (AP (U)). Recall that A acts on U by group automorphisms
and on O by A — Gn/q,-

Let a denote the kernel of A(U) — A(U?") and set A = O ®z, a.
By surjectivity of (AP (U))* — K (A®(U)) (see [CRII, p.76]) we have
Det (A2 (U)™) = Det K, (A (U)).
We start out the proof of the proposition from the diagram
1+2 —  A2(U)” — A9 (UP)*
Det | Det | Det |
Det (1+2) — Det(A2(U)*) — Det (A2 (U ))*)
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with the top row exact because a is contained in the radical of A(U). The right square
of the diagram commutes [RW2, Lemma 9] and the right Det is an isomorphism
(see [CRII, 45.12, p.142]). Therefore the whole diagram commutes and its bottom
sequence is exact.

We claim that Det (1 + 21) ~ 7(21) with 7() the image of 2 C A®(G) in
T(AP (Gso)) = AP (Goo)/[AP(Goo), AP (Goo)] (see [RW3,83]) . Since L : Det (1 +
A) — Tr(r(A)) is an isomorphism by the Corollary to Theorem B_ in [RW3], it
remains to see that L and Tr are A-equivariant. For L this follows as ¥ is induced
by v+ ~! for 4 € T'y,. For Tr it follows from Lemma 6 and Proposition 3 of [RW3] :
Letace A, we D, and u e U. Then

—1 -1

Tr(wu)*(x) = Tr(wu)(x* )7 = trace(wu [ T, .-1)7 = (wx* (w)u)’"

= wx(u*)T = trace(wu® | Uy ) = Tr(wu®)(x).
Collecting everything so far, the starting diagram gives the exact A-module sequence

7(2) — Det (A2(U)™) — A2 (U*)" .
So the proof of the proposition will be finished once we have shown that
() and A2 (U2P)™ are A-cohomologically trivial .

For 7(2) this holds because 7(A) = O ®z, 7(a) has diagonal A-action and O is
Z;[A]-cohomologically trivial, as O/7Z; is unramified. By [Sel, Theorem 9, p.152]
then the tensor product is cohomologically trivial as well.
The proof of the cohomological triviality of A® (U ab)X uses the following fact:

If (X, fn: X» — X,—1) is a projective system of A-modules with surjective maps
fn, then X = lim X, is cohomologically trivial if all the X, are. This holds be-

cause of the exact sequence X — [[ X, — [[X, in which (---,zp,---)
(-, fa+1(@ns1) —xn, - - ) is the second map. Note that the X, are cohomologically
trivial, if X; and all ker(X, 1 — X,,) are so.

Set g = ker(A(U??) — A(T},)) and & = O ®z, g. Since some power of g is contained
in [A(U?P) (compare the beginning of the proof of [RW3, Theorem 8]), A(U2P) is
complete with respect to its g-adic topology. Also, 1 +g C A(U?*")*, and thus the
short exact sequence 1+ & »— AP (U2P)* — AP (I';)* implies the cohomological
triviality of A® (Uab)x7 if 1 + & and A®(T'y)* are A-cohomologically trivial.

Setting X,, = 11;%671 , ker(X,q1 — Xp) ~ O ®g, gg%, which is cohomologically

trivial by [Sel, loc.cit.].

For the right term of the above short exact sequence we identify A2 (T;,) and O[[T]],
as usual, and set X,, = H’%[Li%; so X7 = O and ker(X, 11 — X,,) = O, which
both are cohomologically trivial.

Adding A_ at the appropriate places, Proposition 2 is established.

Corollary (to Theorem 1). Let Goo be Q; -1 - elementary. Then
Det K1 (A(Gs).) NHom*(Ry(Goo), AS(T'x)™) C Det K1 (A(Gop)) -
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Namely, by Theorem 1,

Det K1 (A(Goo).) N Hom* (Ry(Gao), A°(T) )
C [1;(Det Ky (A2 (U;).)4 N T, Hom™ (Ry(U;), A°(T,) )™

¢TI, (Det K (A% (1)) N Hom™ <R1<Ui>,Ac<rki>*>)A
C I1;(Det K1 (APi(U;)))4 C Det K1(A(G))

with C by [RW3, Theorem B,].

Proposition 3. Let G be Q;-1-elementary. Then Ly s, € Det Ki1(A(Gwo).)
if, and only if, Lg /i € Det Ki(A(Ggrjir).) whenever Ggyp is an l-elementary

section of G .

If Lg__/k € Det K1(A(Gwo).) and if Gy = GKw/k//GKOO/K/ is an [l-elemen-

’

. . G ! - G !’
tary section of G, with k C ¥’ € K’ C K, then deﬂgi /* ,resGZ‘”/’“ Lg. /=

/k

Licrj (see [RW2,84]). And by [RW2, Lemma 9], L/ /s € Det K1 (A(Grerjir).)-

For the converse it may help to review the notation of that part of the proof of
Theorem 1 where (D2) appears. The point is that G; dof G,/ ker B; = (3;) x U;, with
(3;) = (s)/ ker 3;, is an l-elementary section. And as G; = (s) x U,,

Hom" (Ry(Go), AS(T) ") == T Hom™ (Ri(G:), AT,) )4 =5
[ ] Hom" (Ru(@i), A(Tw,) )™

takes Ly /i to [, L1k, where k= K% and K| = K. k"8 Note here that
the ith deflation map is A;-equivariant since (s) — (5;) is so.

By assumption, Lg//i; = Dety; where y; € Ki(A(G;),) and so Dety; €
(Det K1(A(G;).))% . Projecting to e;(A(G}))., Lk:/k; induces a function in
Hom*(R\*(G;), ATk, ) )4, But ¢;(A(G))). = &(A(G))). = eZi(s) @z, AU,
so &y; € Ki(e;Z(s) @z, AU;),) and Det (e;y;) € (Det Ki(e;Zy(s) ®z, A(U;).))™.
Now [[,(Det K;(e;Zi(s) @z, A(U;).))? = Det K1(A(G).), by Theorem 1, and the

proof is finished.

Remark. In Proposition 3, the Iwasawa L-function Lg__/, may be replaced by any
function f € Hom"(Ri(Goo), A°(T')™) on setting frr/p = deﬂgil/ljl res gf:"/k/f

k!

for all l-elementary sections Gg//pr of Goo.
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3. Q-q-elementary groups G,
In this section ¢ is a prime number # [.

We say that the Galois group Goo = Gk is a Q; - q- elementary group, if Go, =
H xT for some central open I' < G, and a finite Q; - ¢ - elementary group H. Recall
that a finite group H is called Q; - ¢ - elementary if it is a semidirect product (s) x H,
of a cyclic normal subgroup (s) of order prime to ¢ and a g-group H, whose action
on (s) induces a homomorphism H, — G, (¢)/q,, Where ¢ is a root of unity of order

[(s)]-
Lemma 4.

1. If T is a central open subgroup of G so that (the finite group) Goo /T is a
Qq - q - elementary group, then G is Q; - q - elementary.

2. Let Goo be Qp-q-elementary, Goo = H xT', H = (s) x H,. Then each ir-
reducible character x € R;(Gs) can be written as x = p - ind Gee (&) with an

abelian character p of Go, of type W and an abelian character £ of a subgroup
G' D (s) xT of G s0 that € =1 onT.

In order to see 1. we pick a Sylow-I subgroup U of G, containing the central open
I'. Then U/T is an l-subgroup of the finite Q; - ¢-elementary group G /T", hence
cyclic and normal in G, /T. We conclude that U is an abelian normal subgroup of
G, and, moreover, that G, = U x H' with a finite Q; - ¢- elementary group H' of
order prime to [. Writing the abelian U as U = H; x I'y with H; finite (cyclic) and
Iy ~ 7, so H; <G, the usual Maschke argument provides a Z;[H']-decomposition
U = H; x 'y with Ty ~ Z;, by |H'| € Z;*. We infer from ' ¢ Ty for some
n that H' acts trivially on I'y. Thus Goo = H x I's with H = H; x H' a finite
Qy - g-elementary group and I's central open in Gy.

For 2. we first restrict x to I' and obtain res gwx = x(1) - p1 for some abelian
character p; of I'. Via Goo/H = 'y, p1 is the restriction of a type W character p
of Go. Since xp~! is trivial on I', we may henceforth assume that y is trivial on
I, whence is inflated from an irreducible Q;°-character of H. By Clifford theory
[CRI, p.265] the Q;°-irreducible characters of H are of the form indg(f~ - w) with
an abelian character §~ of some subgroup H > (s) and an irreducible character w
of H/(s) (inflated to H). The group H/(s) is a g-group, so monomial, from which
we deduce an equality ind (£ - w) = ind J7,(€) with (s) < H' < H and an abelian
character £ of H'. Setting G’ = H’ x T finishes the proof of 2. and of the lemma.

Lemma 5. Assume that Go, = H X T with H of order prime to l. Then Q(Gw) is
the group algebra of the finite group H over the field Q(I') and each f €
Hom™(R;(Goo), A°(Tx)™) is a Det z for some z € A(Go)™.

This is straightforward: Q(Gs) = Q(I')[H] = Q(I") ®qg, Q;[H] is isomorphic to a
product of matrix rings over the character fields Q(T')(x) (see [CRII, 74.11, p.740]),
where x runs through the Q;°~irreducible characters of H modulo Gg,«/qg,-action. By
lt]H|, A(T)[H] = A(T') ®gz, Z;[H] is a maximal order in Q(I')[H], hence a product
of matrix rings over the integral closures of A(T") in the centre fields Q(T")(x).



Homology, Homotopy and Applications, vol. 7(3), 2005 165

Proposition 6. Assume that G is Q; -q-elementary. Let f € Hom™(R;(Geo),
AS(T) ) satisfy (res g;cf)(x’)l = U((res g;of)(z/)lx’)) mod [A¢(T'y/) for all open
subgroups G' of Goo (with k' = KOOG,) and all X' € Ri(G"). Then there exists a
z € Det K1(A(Gy)) such that ((Detz)™1f)" € Hom*(R;(Gs), 1 4 IAS(T'y)) for
some power ™. The same holds with A replaced by A_.

__ For the proof (compare also [Ty, p.94/95]) we set G = Goo/H; = H x T with
H finite of order prime to I. In particular, A(G) = A(T")[H]. We proceed from the
commutative square (see [RW2, Lemma 9])

defl

K1(A(G)) — K1(A(G))
Det | Det |

HOM*(Ry(Goe), A°(T%)*) %% HOM*(Ri(G), A°(Tx)™)

and consider deflf. By Lemma 5, deflf = Det Z is solvable for some Z € A(G)*. Lift
Zto aunit 2 € A(Go)”™, which is possible as H; = ker(Go, — G) is an [-group, and
read this z in K1(A(Gs)) (via A(Goo)™ = K1(A(Gs))). Then f def (Detz)~1f €
Hom*(R;(Goo), A°(T'x)™) and defl(f) = 1.

Next, pick an irreducible y € R;(G ) which is trivial on T'. So x = ind & (£), with
a Q%-irreducible character { of G’ which is trivial on T, by 2. of Lemma 4. We
define Y = ind g;”° (§) where £ = & -  has been decomposed into its I-singular and
l-regular components &, £, respectively. As £ is trivial on Hj, X is inflated from G.
Now, f/(x=X) = f/(ind &= (¢ — &) = (res §_f)(€ —&).

The assumption on f and the above Remark imply that

=" =1 mod IAS(Ty)

if m is big enough so that ¥ (§) = ¢ (&) :

F=x)" = (es G )= =0 (es § SN (W6 —w"€)  mod IA°(T) -
And since defl(f') = 1 and Y is inflated from G, f'(¥) = 1, we arrive at (f')!" (x) = 1
mod lAC(Fk/).

By 2. of Lemma 4 every irreducible character of G, is of the form yp with a x as

above (i.e., y is trivial on T') and p of type W. Hence (f)!" (xp) = p*((f)*" (x)) = 1
mod [A°(T'/) (see [RW2, Definition in §2]).

m

Remark. Observe that the above hypothesis is satisfied by f = Lk, (see
[RW3, 2. of Corollary to Theorem 9; RW2, 2. of Proposition 12]) and by every
f € Det K1(A(Gxo)) (see [RW2, Lemma 9; RW3, Proposition 4, 1. of Proposition
11)).

4. Proofs of Theorem B and C

In this section we prove Theorems B and C in full generality. This is done by
using character actions on K7 and Hom™ (as well as the Corollary to Theorem 1
and Proposition 3).
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For an open subgroup U of G, we denote by Rg,(U) the ring of all characters
of finite dimensional Q;-representations of U with open kernel. We view Rg, as a
Frobenius functor of the open subgroups of G in the sense of [CRII, 38.1].

We make Hom* (R (U), A¢(Ty,,)*), with ky = K.Y, into an Rg, (U)-module by
(rf)(x) = f(kx) for fe€Hom", x € Ry (U), x € Ri(U),

with £ the contragredient of x.

We make K7 (A(U)) into an Rg, (U)-module as follows. If  is a character in Rg, (U),

and if [P, a] represents an element in K7 (A(U)), then choosing U’ C ker k, an open
subgroup of U, and a Z;[U/U’]-lattice with character x, we define

(*) H'[P,@]Z[M®Zl PaldM ®Zl Oé]
(compare [CRII, p.175]).

Lemma 7. Det : K1(A(—)) — Hom™(R;(—), A°(T_)*) is a morphism of Frobenius
modules over the Frobenius functor U — Rg,(U).

The lemma is shown in the same way as its analogue in the case of group rings of
finite groups. We only need to observe that the A(U)-module structure of M ®z, P
is derived from the diagonal action of U on M ®z, P:

First, the A(U’)-module structure on P gives M ®z, P a Z;[U'] — Z[U]
A(U")-structure. The pushout diagram then determines a 1 1
unique A(U)-module structure. AU — AU)

In order to check A(U)-projectivity of M ®z, P, it suffices to take P = A(U) and
then Frobenius reciprocity M ®g, ind &, (A(U”)) = ind ¥, (res Y (M) @z, A(U")) takes
care of this, since M is Z;-free.

We next recall Swan’s theorem (see [CRII, 39.10, p.47]) which implies the indepen-
dence of (x) from the choice of the lattice M. Indeed, given x and U’ C kerk as
above, then two Z;[U/U’]-lattices My, My with character  induce the same element
in the Grothendieck group G5! (Z,[U/U"]) of finitely generated Z;[U/U’]-lattices (see
[CRI,§16B]). Moreover, it is readily checked from [CRII, 38.20, 38.24, p.14,16] that
[My ®z, P,idnr, @z, ] = [May ®z, P,idy, @z, of in K (A(U)).

It remains to show that Det is a Frobenius module homomorphism. Let x € R;(G )
and let [P,a] € K1(A(Gw)), [M] € G5H(Z4[U/U")) as in (x); set Q;° @z, M = V.
Then

(Det [M ®z, P,1®z, a a])(x)

= detoe(r,) (1 @z, a | Homg,e(m)(Vy, Q° ©z, (M @z, P)))

= detoe(r,) (1 @z, a [ Homg,e(m)(Vy, (Vi @i (Q° @2, P))))

*detQ (Fk)(a | Hole °[H ](vaHoszc(Vkv@lC Rz, P)))

2 detge(r, (o | Homg,e() (Vi ®gye Ve, Q1 ®2, P))

= (Det [P, a])(kx) = (HDet [P, al)(x)

with = and = due to the naturality on H-fixed points of the isomorphisms [CRI,
10.30, 2.19], respectively.
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Corollary. SK1(Q(Gw)) =0 if SK1(Q(G’) = 0 for all open Q;-elementary sub-
groups G' of Geo.

This follows because SK;(Q(—)) is a Frobenius module over Rg,(—), by Lemma
7 with A replaced by Q. Now apply the Witt-Berman induction theorem (see [CRI,
21.6, p.459]) to the finite group G /T where I is a central open subgroup: There
exist j-elementary subgroups G; < Goo/I' and (virtual) Q;°-characters &, of G
such that 1g_ = ), ind gf (&), with G; the full preimage of G; in G, and
& = infl gl (€,). By Lemma 4 the groups G; are Q;-elementary (this is trivial for the
prime number ). Now let z € SK;(Q(Gw)) and apply the above character relation
to get from res ng =0

z=1g,_-z= Zmdgf(fz)z = Zindg;’"(fi -resg;z) =0.

[ %

Lemma 8. Det K1 (A(Gw)) NHom™ (Ri(Goo), 1 + IA(T'k)) 4s a Z;-module, and the
same with A replaced by A _.

It suffices to show (Hom™(R;(Gso), 1 + IA°(T')))™ C Det K1 (A(Gw)) for some non-
zero integer m, as this implies that Det K1 (A(Gw)) N Hom™ (R(Goo), 1 + IA(Ty))
is a Z;-submodule of the Z;-module Hom™ (R;(G o), 1 + IA°(T'y)) :

For if f € Det K1(A(Gx)) NHom™(R;(Go), 1 4+ IA°(Ty)) and ¢ € Z;, then, writ-
ing c = a+mbwith a € Z, b € Z;, f¢ = f(f°)™, and f* € Det K1(A(Goo))N
Hom*(Rl(Goo)> 1+ lAC(Fk))’ fb € Hom*(Rl(GOO)v 1+ ZAC(FIC))) S0 (fb)m €
Det K1(A(Gx)) NHom™ (R (Goo), 1 + IAS(Ty)).

We next prove the containment claimed above when Go, = H x I' is abelian. Let
f € Hom*(R;(Gw),1+1A(Ty)), whence fIHI € Hom*(R)(Guo), 1+ |H|A(T})).
Moreover, by (x) in the proof of [RW2, Theorem 8] and [CRII, 45.12, p.142],

Il = Detq with ¢= Z gpnh in Q(Gs) = Q(I)[H].

heH

Hence, by [RW3, Proposition 3], fI*!(x) = > nem Anx(h) for every irreducible char-
acter x € R;(Gs) which is trivial on I', where ~ is the isomorphism I' — T'. It
follows that

[Hg, =Y ™M00x(h™) =Y x(h™1) =0 mod [H|A(Ty),

X
ie., gn € A(T)N Q(T) = A(T). By [RW3, Lemma 10], ¢ € A(Gw)™.

For the general case we apply Artin induction: If T" is central open of index n in
G, then there exist subgroups I' C 4; C G with A;/T cyclic so that n-1g _ =
>, ind ﬁf(lAi)- It follows that the A; are abelian, and whence, with k; = K.,
Hom™(R;(A;),1 + IA(T,))™ C Det K1(A(A;)) for suitable integers m,;. Setting
m = [], ms;, we get Hom™(R;(4;),1+ IA°(Tx))™ C Det K1(A(4;)). Thus, if f €
Hom™*(R;(Gso), 1 + IA(T'y))™, then the above character relation yields
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frm=T]ind G= (1a) ™ = [ ind G=((res &)™) C Det K1(A(Gw))
by Lemma 7 and [RW3, Lemma 1].

This proves the lemma.

Proof of Theorem B.

Choose a central open subgroup I' and apply the Witt-Berman induction theorem
to G /T. By [Se2, Theorem 28, p.98] there are Q;-1-elementary open subgroups
U; < G containing I' together with characters &; € Rg,(U;) so that we have

(1) n-le, =3, ind5=(&)
for an integer n | [Goo : TI'] prime to I. Now, let d € Det K;(A(Gwo)
Hom™*(Ry(Go), A(T'x)™) and apply this character relation to it :

d" = Hind gf (&)d = Hlnd ({lresc d) .2
But resg_d € Det K1(A(U;),) N Hom™(Ry(U;), A°(T'y,,)*), with k; = KU, and
so, by the Corollary to Theorem 1, res g";}od € Det K (A(U;)). It follows first that
f,reSG d € Det K1(A(U;)) and then, from [RW3, Lemma 1], that

n

~

(2) d" € Det K1(A(Gs0)) .

On the other hand, by 1. of Lemma 4 we find, for each prime number ¢ dividing
n, Q;-q-elementary subgroups Uj of G containing I', characters §; € Rg, (U;)
and an integer n’ | [Go : '] prime to g such that

(3) n o, =3, indg;c(g;).

And, setting f; = resG d € Det K1(A(U).) N Hom*(Rl(U]’»),AC(I‘k;)X), with

k; = KOOUJ/', then f; is a function f as in Proposition 6 (compare the Remark
following the proposition) and so there exist z; € K1(A(Uj})) such that

((Det 2,)~"£;)"" € Hom" (Ri(U}), 1+ IA°(Ty,))

for some power ["™. Combining this with (2), and setting m’ = max;{m]}, we
obtain

((Det zj)*lfj)"lw € Det Kl(A(U]’-)) N Hom™ (Rl(U ), 1+ ZAC(I‘k/))
By Lemma 8 the group on the right is a Z;-module, hence, as [ t n,

(Det z) ;)" € Det K1 (A(U))

2The notation is an additive-multiplicative compromise.
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and consequently I = (resg/_d)!" € Det Ky(A(U})). Now (3) yields d”" e
Det K1(A(Gw)) and then, by (2), d" € Det K;(A(Gy)). Letting g vary we obtain
Theorem B.

Proof of Theorem C.

We only check the nontrivial implication and proceed as above. We start with
L /i € HOM*(RZ(GOO),Af(Fk)X) and first use (1). Because resg;LKm/k =

Lk k> it follows from the hypothesis and Proposition 3 that L k€
Det K1(A(Gx).). For each gln we next turn to (3) and use that Ly sk €

Hom*(Rl(U]{),AE(Fk;)X) is a function f as in Proposition 6. Thus there is a z; €
Ky (A(U}).) with ((Det z) " L)' € Hom™(Ri(U}), 1 + IAS(Tys)) . Combin-
ing as before, we see that ((Det zj)‘lLKoo/k;)"lm/ € Det K1(A(Uj}).), whence al-
ready Ll;é;/k; € Det K1 (A(Uj).), by I { n. Now apply (3) and get first L?(/Zl/lk €
Det K1(A(Gx).) and then, from (2), L’;(,m/k € Det K1(A(Gw).). Varying ¢, this

finishes the proof of Theorem C.

Remark 1. The proof shows that the definition of a section of G, could be
strengthened to require K,/K’ to be finite cyclic of order prime to .

Remark 2. As before we may generalize Theorem C by replacing the Iwasawa
L-functions Lk, by the functions fg /- of the Remark after Proposition 3.

5. Complements

We begin this section by presenting some examples :

Example 1. If the Sylow-l subgroups of G are abelian, then Lg_;, €
Det K1 (A(Go).) -

Indeed, Theorem C requires us to check whether Ly c,x v € Det Ki(A(E),)

whenever E' = G _c /v is an [-elementary section of Go. But the assumption
on the Sylow-I subgroups of G, implies that the Sylow-/ subgroup of E is abelian,
whence E itself. Now apply 1. of the Corollary to Theorem 9 in [RW3].

Concerning the full “main conjecture” we have

Example 2. If G, = H xT satisfies 1t |H|, then SK1(Q(G)) = 1. In particular,
the “main conjecture” is true for these groups.

The second assertion holds as the Sylow-/ subgroup I' of G is abelian; moreover,
the first assertion now guaranties uniqueness of O g (see [RW2,8§3, especially Remark
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For the proof of this first assertion, SK;(Q(Gw)) = 1, we may assume that G is
Q;-elementary, by the Corollary to Lemma 7.

If G is Q;-q-elementary with g # [, then G = H x I with H a finite Q;-¢-
elementary group. Since [ { |H|, Lemma 5 implies that Q(G) is totally split.

Next, let G be Q;-1-elementary, so Goo = (s) x I by I { |H|, whence U = T
in the notation of Theorem 1 which we continue to use (in particular, 8; is a Q;°-
irreducible character of (s) with stabilizer subgroup I'; = U; < T, G; = (s) x Iy,
and e; is the idempotent associated to the Gg,c/g,-orbit of ;).

Because SK1(Q(Gw)) = [[; SK1(e;Q(G)), it suffices to show that each e;Q(G o
is a (full) ring of matrices over a (commutative) field. Recall first that e;A(G;) =
APi(T;). Therefore

eil(Goo) = A7 (L) o [I/T]

is the crossed product order of the cyclic group T'/T; over the ring AP (T;), with
the Galois action on O; resulting from I'/T; 5 GNi/Ni’ < GNMQr If v, is a generator
of T';, then by [Re, p.259/260] the algebra QN:(I';) o [['/T;] splits if, and only if, v;
is a norm in QN (T';)/QN:(I;). But ; is already a norm in A9 (T;)/A®i(I;) by
Proposition 2.

Finally we give a bound on the order of Lk _,r mod Det K1 (A(Gw).) -

Proposition 9. Set l* =[G’ : Z(G")], where G’ is a Sylow-l subgroup of G, and
Z(G") is its centre. Then Llfzoo/k € Det K1(A(Go).) -

We first note that obviously a = a(G) is an invariant of G, and that a(G) =
a(Ggr i) for all sections K'/k" of K. /k. Hence, if we can show that Ll;,/k, €
Det K1 (A(Ggrypr).) for all l-elementary sections K'/k' of K. /k, with o' =

a(Ggr /i), then, by Remark 2 following the proof of Theorem C, we have also
verified Proposition 9. Hence, from now on, G, is [-elementary.

In this case I* = [Gw : Z(Gx)] and we proceed by induction on a. If a = 0,
then G is abelian and 1. of Corollary to Theorem 9 in [RW3] gives what we
want. If a > 0, then G is nonabelian and consequently G, /Z(Gs) noncyclic.
We infer the existence of a normal subgroup G’ of G, containing Z(G,) so that
el G /G’ is noncyclic of order I2. From it we obtain the character relation
[ 1§ =) g7ind %( 137) —ind% (17) with M running through the maximal subgroups
of G. Inflation yields I - 1g_ = Zj n;ind fj;(le) with proper open subgroups
M; < G containing Z(G ) and with integers n;. Because a(M;) < a, induction
implies that Ll;:/kj € Det K1 (A(Gk../x,).) for all j (with k; = K. M7), and then

the last character relation gives Ll;w/k € Det K1(A(Go).)-

Proposition 9 is established.
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