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EQUIVARIANT VERSIONS OF REAL AND COMPLEX
CONNECTIVE K-THEORY

J.P.C. GREENLEES

(communicated by J.F. Jardine)

Abstract
We survey available results on the construction and calcu-

lation of equivariant versions of real and complex connective
K-theory.

Dedicated to Victor Snaith on the occasion of his 60-th birthday.

1. Introduction.

The article describes equivariant versions of the familiar complex connective K-
theory with coefficient ring ku∗ = Z[v] where v is the Bott element of degree 2, and
of its real counterpart, ko. The theory ku∗(·) is very familiar, but we should pause
to recall why it is useful. First it arises through algebraic K-theory, or from index
theory, it is the topological realization of the multiplicative formal group law, and it
is the output of infinite loop space machines. Perhaps more pragmatically, its mod
p cohomology is a very simple module over the Steenrod algebra, so it is easy to
compute but rather a powerful invariant. As for constructions, we can use infinite
loop space theory, bundle theory or even just truncate periodic K-theory as the
name suggests (since periodic K-theory can be constructed using formal group laws
and the Landweber Exact Functor Theorem, this connects to one of the theoretical
justifications).

Since it is such a natural construction, it is natural to expect there to be an
equivariant version. In fact there are several, and the purpose of this note is to
describe the one which the author believes to be most natural, both in theoretical
and calculational terms. Before going further, we must emphasize that this version
is not connective in the most naive sense: its equivariant coefficient groups are non-
zero in arbitrarily large negative degrees (it is therefore essential to refer to an
equivariant connective K-theory rather than a connective equivariant K-theory).
Nonetheless we hope to convince the reader that the theory is natural.

As far as applications are concerned, the groups ko∗(BG) play a central role in
the Gromov-Lawson-Rosenberg conjecture [14, 17] about the existence of positive
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scalar curvature metrics on spin manifolds with fundamental group G. We have
been able to use the calculations described here to verify the conjecture for dihedral
2-groups [5].

The point of publicizing this construction is that similar truncation phenomena
appear elsewhere, chromatically [1] and in equivariant algebraic K-theory [6]. We
hope the rather complete picture for connective K-theory may be illuminating for
these other more complicated cases.

This paper is a survey of the results of [11, 3, 13, 12, 4], and the author is
grateful to R.R.Bruner for many calculations and insights.

2. Desiderata.

We should begin with the known: Atiyah-Segal G-equivariant complex K-theory
for a compact Lie group G [2] is represented by a strictly commutative ring G-
spectrum KU [15], and its coefficient ring is

KU∗
G = RU(G)[v, v−1]

where RU(G) is the complex representation ring and v ∈ KU2 is the Bott periodicity
element (it is usual to omit the U , but we will retain it throughout for clarity, since
we need to discuss the real case as well).

We seek a ring valued, complex orientable, Noetherian cohomology theory ku∗G(·)
which is well related to the known Atiyah-Segal periodic equivariant K-theory in
the sense that

kuG
∗ (X)[1/v] = KG

∗ (X),

and to the known non-equivariant theory in the sense that

ku∗G(G×X) = ku∗(X).

Indeed, the relationship to the non-equivariant theory should be even tighter. In
cohomology it should have a completion theorem

ku∗(BG) = (ku∗G)∧J

where J is the augmentation ideal ker(ku∗G −→ ku∗), but may be replaced by the
ideal generated by the first Chern classes of simple representations. In homology it
should have a local cohomology theorem

H∗
J(ku∗G)⇒ ku∗(BG),

where H∗
J(M) is local cohomology in the sense of Grothendieck. This is graded

homologically, so that Hs
J gives the −sth column, and the dr differential is of the

standard homological bidegree (−r, r − 1). Local cohomology vanishes above the
Krull dimension, so this is a finite spectral sequence. Since local cohomology only
depends on the radical of the ideal, we may often replace J by a convenient smaller
ideal.

Similarly, for the real theory we begin with the Atiyah-Segal real equivariant K-
theory, which is represented by a strictly commutative ring G-spectrum KO [15],
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and has coefficient ring
KOG

∗ = M [β, β−1]

where β ∈ KO8 is the Bott periodicity element and M is concentrated in degrees

0, 1, 2, 3, 4, 5, 6, 7

where it is
RO, RO/RU,RU/RSp, 0, RSp, RSp/RU,RU/RO, 0

(where we use a natural abbreviation, so that, for example, RU/RO stands for the
cokernel of complexification RO(G) −→ RU(G)). The equivariant version of the
connective theory, ko∗G, bears the same relation to this as in the complex case.

In the periodic case, it is well known that the real and complex theories are
related by a long exact sequence involving multiplication by η, complexification
and realification. The analogous thing holds in the connective case. More precisely,
there is a long exact sequence

· · · −→ koG
n−1(X)

η−→ koG
n (X) c−→ kuG

n (X) R−→ koG
n−2(X) −→ · · ·

where c is complexification and vR is realification. This is related to the well-
known corresponding exact sequence of the periodic theories by inversion of the
Bott element, β. Interpreting this η-c-R sequence as an exact couple, we obtain the
Bockstein spectral sequence

kuG
∗ (X)[E]⇒ koG

∗ (X)

where E is a polynomial variable of bidegree (1, 1) and corresponds to η. The dif-
ferential di has bidegree (−1, i), and the spectral sequence collapses at E4 since
η3 = 0.

The point of this article is to publicize the fact that there are theories with all
these good properties, and to give some calculations.

3. Bundle theory.

We should begin by considering something geometric. We are familiar with the
fact that BU × Z classifies complex vector bundles. We then have the sequence of
covers

BU × Z←− BU ←− BSU ←− · · ·
Indeed, BU classifies bundles of virtual dimension 0 and BSU classifies bundles of
virtual dimension 0 and determinant 1. Furthermore there is a fibration

BSU −→ BU
Bdet−→ BU(1)

realizing this latter description, where BU(1) is the classifying space for line bundles.
From the last fibration we deduce that Ω2BSU ' BU .

All of this applies equivariantly without change, provided we continue to define
these spaces as the classifying spaces of appropriate types of complex bundles, ex-
actly as in the previous paragraph (with due attention to basepoints, one sees that
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it is still true equivariantly that Ω2BU(1) ' Z). Now

[∗, X]G = πG
0 (X) = π0(XG)

so that in each case we may read off πG
0 by considering the appropriate sort of bun-

dles over a point. Thus, since an equivariant bundle over a point is a representation,
we find

πG
0 (BU × Z) = RU(G),

the complex representation ring,

πG
0 (BU) = JU(G),

its augmentation ideal and

πG
0 (BSU) = JU2(G),

the ideal of representations of virtual dimension 0 and determinant 1. Similarly

πG
0 (BU(1)) = Rep1(G),

the 1-dimensional representations of G under tensor product.
None of this should be surprising, but one may be misled by the fact that if G is

the trivial group, all of these spaces except the first are connected. Indeed it is well
known that BU is non-equivariantly the 1-connected cover of BU × Z and BSU is
non-equivariantly its 3-connected cover. The above calculations show this is special
to the trivial group.

A well-behaved equivariant form of connective K-theory will be represented by
a G-spectrum, and it is natural to expect that the first few terms in a Ω-spectrum
will be the classifying spaces described above

ku0 = BU × Z
ku2 = BU
ku4 = BSU

(because of compex orientability, we need only discuss terms indexed by integers).
In short, we predict that above degree −5 the homotopy groups of ku will be in
even degrees with

kuG
i =





0 i > 0 odd
RU(G) i > 0 even
0 i = −1
JU(G) i = −2
0 i = −3
JU2(G) i = −4

This turns out to be correct, and in fact kuG
−5 = 0 as well, but below this degree

the situation is more complicated. Indeed, kuG
−6 may contain Z-torsion, and kuG

∗
may be non-zero in every odd degree 6 −7.

In the real case the 8-fold periodicity means we do not have such a convenient
argument from the covers, but if we accept

Ω4BSp ' BO × Z
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we obtain the prediction

koG
i =





0 i = 8k + 7 > 0
RU(G)/RO(G) i = 8k + 6 > 0
RSp(G)/RU(G) i = 8k + 5 > 0
RSp(G) i = 8k + 4 > 0
0 i = 8k + 3 > 0
RU(G)/RSp(G) i = 8k + 2 > 0
RO(G)/RU(G) i = 8k + 1 > 0
RO(G) i = 8k > 0
0 i = −1
JU(G)/JO(G) i = −2
JSp(G)/JU(G) i = −3
JSp(G) i = −4

In any case, the moral of this section is that it should have been natural to expect
kuG
∗ and koG

∗ to be non-zero in negative degrees.

4. Connection with formal group laws.

The notion of an equivariant formal group law is introduced in [7]; the present
section is based on [13].

In the non-equivariant setting it is well known that the multiplicative formal
group law is obtained by applying KU∗ to the map ⊗ : BU(1)×BU(1) −→ BU(1)
classifying the tensor product of line bundles. Indeed KU∗(BU(1)) = KU∗[[y]]
where y ∈ KU2(BU(1)) is the Euler class of the natural representation, and the
coproduct is given by

∆(y) = y ⊗ 1 + 1⊗ y − vy ⊗ y.

Indeed, the coefficient ring KU∗ = Z[v, v−1] is universal for formal group laws
with coproduct of this form provided we insist that the parameter v is invertible.
However, if we want to allow degenerate forms (such as the additive formal group
with v = 0) we do not want to insist v is invertible, so we must instead state that
ku∗ = Z[v] is the universal ring. The advantage of the periodic form is that we may
use the Landweber Exact Functor Theorem to construct KU∗(·) from MU∗(·). The
hypotheses are not satisfied by the connective theory.

We have phrased the discussion above to apply equivariantly. For an abelian
compact Lie group G, there is a notion [7] of an equivariant formal group law,
and any complex orientable theory gives an example by applying the theory to the
classifying space for line bundles. In this case it is no longer true that the cohomology
of BU(1) is a power series ring, modelled on the ring of functions on the completion
of a one dimensional group at the identity. Instead it is modelled on the ring of
functions on the completion of a one dimensional group at a subgroup which is the
image of the character group G∗. Nonetheless the coproduct is determined by a
coordinate around the identity, and therefore by its value on a single orientation
class y. Therefore, we may still refer to an equivariant formal group with the form
above as multiplicative. If we insist on the variable v being invertible, we once again
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find that the coefficient ring KU∗
G = RU(G)[v, v−1] is universal. By Costenoble’s

equivariant Conner-Floyd theorem [8] we can recover the periodic theory from MU ,
but at present the absence of an Exact Functor Theorem prevents us using this as
a definition. If we do not insist that v is invertible then we may still describe the
universal ring Lm

G for multiplicative G-equivariant formal group laws [13, 4.1]. First
suppose G∗ ∼= Cn is cyclic, generated by α. If n is finite then

Lm
G = Z[v][e(α)]/([n](e(α))

where [n](x) = (1− (1− vx)n)/v is the multiplicative n-series. If n is infinite

Lm
G = Z[v][e(α), e(α−1)]/(e(α) + e(α−1)− ve(α−1)e(α−1)).

The general case follows since

Lm
A×B = Lm

A ⊗Z[v] Lm
B .

There is a natural map

Lm
G −→ Lm

G [1/v] = KU∗
G = RU(G)[v, v−1]

and the image is the Rees Ring (i.e., RU(G) in each positive even degree and
JU(G)n in degree −2n) [13, 4.4]. However if G is of p-rank > 2 for some p then Lm

G

contains p-torsion [13, 4.5].
In fact one may show that ku∗G(·) is complex orientable and multiplicative, so

there is a comparison map

Lm
G −→ ku∗G.

Theorem 4.1. [12, 2.8 (ii)] The classifying map induces an isomorphism

ku∗G ∼= Lm
G

if G is the product of a torus and one or two finite cyclic groups.

Since Lm
G is in even degrees, we shall see that the map is not an isomorphism for

G an elementary abelian 2-group of rank > 3.

5. Constructions of the cohomology theory.

It turns out that there is a very easy homotopical construction of the theory [12],
but I do not know how to give a geometric construction. We consider the complex
case; the real case is precisely similar.

We are motivated by the properties saying the completion should be

ku∗(BG) = πG
∗ (F (EG+, ku))

and that if we invert the Bott element we should get KU∗
G. One may make a

heuristic argument that these are like completion at and localization away from the
same ideal, and that therefore the theory itself should be deducible from a Hasse
square. In fact, since we can perform both constructions at the level of representing
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spectra, we define the representing G-spectrum by the homotopy pullback square

ku −→ KU
↓ ↓

F (EG+, infG
1 ku) −→ F (EG+,KU).

In this diagram three of the corners are known. At the top right, KU is the represent-
ing G-spectrum for the periodic theory, and at the bottom right, F (EG+,KU) is a
function spectrum obtained from it. Any non-equivariant spectrum, such as ku, may
be inflated to a G-spectrum infG

1 ku by giving it the trivial G-action and then build-
ing in non-trivial representations; this explains the spectrum F (EG+, infG

1 ku) at the
bottom left, and the lower horizontal arises since F (EG+, infG

1 KU) ' F (EG+,KU)
because there is a non-equivariant equivalence infG

1 KU −→ KU . If we use the highly
structured inflation of Elmendorf-May [9], this construction may be performed in
the category of strictly commutative ring spectra.

Proving the properties from this definition involves some work. By comparing var-
ious topologies we may also deduce that taking homotopy gives a pullback square
for coefficient rings showing that we may calculate ku∗G from ku∗(BG) and repre-
sentation theory.

Theorem 5.1. [12, 7.1] For any compact Lie group G there is a pullback square

ku∗G −→ KU∗
G

↓ ↓
ku∗(BG) −→ KU∗(BG)

of rings.

In particular, if G = U(n) this shows that k∗U(n) is the subring of

KU∗
U(n) = RU(U(n))[v, v−1]

generated by the Chern classes ci(V ) ∈ KU2i
U(n) of representations V .

6. Calculating the coefficients.

Extensive experience from [3, 4] teaches us that we should start by calculat-
ing ku∗(BG). This involves using an Adams Spectral Sequence. Thereafter, it is
not usually necessary to do any more homotopy theory! The deduction of ku∗G,
ku∗(BG), ko∗(BG), ko∗G and ko∗(BG) may be made by commutative algebra. We
will illustrate the strategy describe here in Section 7 for elementary abelian groups.

Step 1: ku∗G. We first calculate the completed form, ku∗(BG). Because BG is a
torsion space, we can concentrate on one prime at a time. The additive structure
can be obtained from an Adams spectral sequence. For example, at the prime two
H∗(ku;F2) = A//E(1), where E(1) is the exterior algebra on the Milnor operations
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Q0 and Q1. Thus, by change of rings, the Adams spectral sequence reads

Ext∗,∗E(1)(F2,H
∗(BG;F2))⇒ ku∗(BG)∧2 .

(At odd primes it may be convenient to work first with the Adams summand).
This gives most of the additive structure. To determine additive and multiplicative
extensions we call on character theory. Indeed, the Atiyah-Segal completion theo-
rem states KU∗(BG) = RU(G)∧J [v, v−1], so that the map ku∗(BG) −→ KU∗(BG)
(which may be checked to be inversion of v) gives valuable information about addi-
tive and multiplicative structure. Once ku∗(BG) is calculated, and the representa-
tion ring is understood, we may find ku∗G by using the pullback square from Section
5.

In any case we have a short exact sequence

0 −→ TU −→ ku∗G −→ QU −→ 0

where QU is the image in KU∗
G = RU(G)[v, v−1], and TU consists of v-power tor-

sion. The universal case shows that QU always contains the subring generated by
the Chern classes in their natural degrees (i.e., ci(V ) ∈ KU2i

G ), and QU is often
equal to this Chern subring (though not, for example, when G = A4). The v-power
torsion subgroup TU is Z-torsion, and quite often detected in ordinary cohomology.

Step 2: ku∗(BG). The homology ku∗(BG) may be calculated from the cohomology
ku∗(BG) by using the local cohomology spectral sequence

H∗
J(ku∗(BG))⇒ ku∗(BG)

(the original proof of [10] deals with a complex oriented, Noetherian ring spectrum
such as ku). The ideal J is the augmentation ideal ker(ku∗(BG) −→ ku∗), but may
be replaced by the ideal generated by first Chern classes of all simple representa-
tions; if G is a p-group J may be replaced by the ideal of Euler classes of simple
representations. Note that local cohomology is a covariant functor of ku∗(BG), so
the calculation of ku∗(BG) is covariant, whereas the Universal Coefficient Theorem
is contravariant. Thus the local cohomology theorem shows that ku∗BG is isomor-
phic to a type of dual of itself, and we obtain a duality property for the commutative
ring ku∗(BG) closely related to Gorenstein duality.

Step 3: ko∗G. Moving to real K-theory, ko∗(BG) may be calculated from ku∗(BG)
using the Bockstein spectral sequence associated to the η-c-R exact couple. Using
this and representation theory, the uncompleted theory ko∗G may be calculated using
the pullback square.

The best way to describe ko∗G seems to be to use two exact sequences. First we
define T by the exact sequence

0 −→ T −→ ko∗G −→ QO −→ 0

where QO is the image in periodic complex K-theory KU∗
G. Next define TO by

0 −→ τ −→ T −→ TO −→ 0
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where τ consists of the η-multiples. Surprisingly often, TO is detected in ordinary
cohomology.

Step 4: ko∗(BG). Finally, for ko∗(BG) there are two routes:

ku∗(BG) 7−→ H∗
J(ku∗(BG)) ⇒ ku∗(BG)

BSS ↓ ↓ BSS
ko∗(BG) 7−→ H∗

J (ko∗(BG)) ⇒ ko∗(BG).

In principle we could apply the Bockstein spectral sequence to ku∗(BG), but in
practice this is not the best method. Instead we should calculate ko∗(BG) from
ko∗(BG) using the local cohomology spectral sequence

H∗
J (ko∗G)⇒ ko∗(BG),

where J is the augmentation ideal ker(ko∗(BG) −→ ko∗) (although ko is not com-
plex oriented, there are enough ko-orientable representations to use the usual con-
struction of the local cohomology spectral sequence).

7. Elementary abelian examples.

One of the points of this article is to show the shape of the calculations without
getting bogged down in too much complexity. Many of the phenomena referred to
above are illustrated by elementary abelian 2-groups V of ranks 1, 2 and 3. The
reader should not be misled by the simplicity of these examples, since qualitatively
new phenomena occur until rank 6, even disregarding the indefinite increase in
combinatorial complexity.

For elementary abelian groups the answers were previously known additively
[16, 18]. However the method described here gives answers natural in the group,
and gives cohomological answers as rings and homological answers as modules over
the ring.

7.A. The complex cohomology, ku∗V .
To start, in arbitrary rank r, the ring ku∗V (whose completion at 2 agrees with

that of ku∗(BV )) belongs in a short exact sequence

0 −→ TU −→ ku∗V −→ QU −→ 0

Here QU is the image in periodic K-theory, and in fact it is the Rees ring. In
concrete terms QU is

. . . , J3, 0, J2, 0, J, 0, R, 0, R, 0, R, 0, . . .

where R = RU(V ), J = JU(V ) and Jn is in degree −2n. The v-power torsion is
annihilated by v itself, and detected in mod 2 cohomology. This means TU is a mod-
ule over QU/(2, v), which may be identified with the ring PC = F2[y1, y2, . . . , yr],
which is polynomial in first Chern classes yi of degree −2. In fact we have a splitting

TU = TU2 ⊕ TU3 ⊕ · · · ⊕ TUr,
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of modules over PC. One can be completely explicit, but here we will content
ourselves with the first few examples.

To start with, in rank 1, we have TU = 0 and in rank 2 we have TU = TU2 =
PC(−6) (i.e., PC shifted so that its top degree is −6). In rank 3 we have TU =
TU2 ⊕ TU3. The easy part is TU3 = PC(−7) and there is a resolution

0←− TU2 ←− 3PC(−6)←− PC(−8)⊕ PC(−10)←− 0.

From this it is easy to write down the Hilbert series: if t is of degree −1 the Hilbert
series is

HTU2(t) =
t6(3− t2 − t4)

(1− t2)3
.

We may display ku∗V in a range of degrees, using 2k to denote an elementary
abelian 2-group of rank k.

Degree rank 1 rank 1 rank 3
4 R R R

0 0 0
2 R R R

0 0 0
0 R R R

0 0 0
−2 J J J

0 0 0
−4 J2 J2 J2

0 0 0
−6 J3 J3 ⊕ 2 J3 ⊕ 23

0 0 2
−8 J4 J4 ⊕ 22 J4 ⊕ 28

0 0 23

−10 J5 J5 ⊕ 23 J5 ⊕ 214

0 0 26

−12 J6 J6 ⊕ 24 J6 ⊕ 221

7.B. The complex homology, ku∗(BV ).
Next we consider ku∗(BG). First we must calculate the local cohomology, which

we approach by applying local cohomology to the short exact sequence

0 −→ TU −→ ku∗G −→ QU −→ 0

. It is convenient to display the local cohomology of TU and QU as an E1-term for
the local cohomology spectral sequence, since the connecting homomorphism has
the appropriate bidegree for d1.

To start with H∗
J(QU) = H∗

JU (QU). It is not hard to see that H∗
JU (QU) =

H∗
(y∗)(QU) where y∗ is the character which is 0 at the identity and 2r at other

elements (commutative algebraists would say that the principal ideal (y∗) is a re-
duction of JU(G)). From this we find the answer. Since it turns out TU is of depth
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2, the local cohomology of QU appears as the 0th and −1st columns of the E1-term
of the local cohomology spectral sequence (see Figures 1, 2 and 3 below, where Hs

J

is in the −sth column).
Next we see H∗

J(TU) = H∗
m(TU) where m is the maximal ideal of PC. Since

H∗
m(PC) = PC∨(2r), where (·)∨ denotes graded vector space duality, this gives the

local cohomology in most of the cases we have discussed. The only one of our cases
in which the local cohomology is not in degree r, is TU2 in rank 3, where we obtain
an exact sequence

0←− H3
m(TU2)←− 3PC∨(0)←− PC∨(−2)⊕ PC∨(−4)←− H2

m(TU2)←− 0

In fact the original resolution was a truncation of a Koszul complex, and (by local
duality) the same is true here. Here we see H3

m(TU2) = PC∨(6) and H2
m(TU2) can

be seen in the −2 column of the local cohomology spectral sequence. Remarkably,
the differentials are all forced by the fact that ku∗(BV ) is in degrees > 0.

In fact, by analyzing the local cohomology spectral sequence in detail, one may
see when V is of arbitrary rank r that there is a short exact

0 −→ Start(2)TU∨ −→ k̃u∗(BV ) −→ Start(1)(2r−1H1
J(QU)) −→ 0,

which underlies a Gorenstein-type duality statement. Here Start(n)M is the sus-
pension of a bounded below graded group M with lowest non-zero entry in degree
n. The reader can see this sequence in a range of degrees for V of rank 1,2 and 3
by inspecting Figures 1, 2 and 3.
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Figure 1: The E1-page of the local cohomology spectral sequence for ku∗(BV (1))
[3, 4.11.1]. The symbol [n] denotes a cyclic group of order n.
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Figure 2: The E1-page of the local cohomology spectral sequence for ku∗(BV (2))
[3, 4.11.2]. The symbol [n] denotes a cyclic group of order n, and 2k denotes an
elementary abelian 2-group of order 2k.
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Figure 3: The E1-page of the local cohomology spectral sequence for ku∗(BV (3))
[3, 4.11.3, where Start(8) should read Start(2) on Line −12]. The symbol [n] denotes
a cyclic group of order n, and 2k denotes an elementary abelian 2-group of order
2k.
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7.C. The real cohomology, ko∗V .
When G = V is elementary abelian, it turns out that τ is bounded below (but this

is false for the dihedral group of order 8), and TO is detected in mod 2 cohomology.
The way we prove this and identify the groups concerned is to use the Bockstein
spectral sequence

ku∗V [E]⇒ ko∗V .

We give the polynomial generator E (which corresponds to η) bidegree (1, 1).
The differential d1 is of bidegree (−1, 1), and the E2-term consists of the d1 cycles

on the 0-line and the d1 homology on each higher line. We may almost identify the
d1 in algebraic terms. Indeed, since d1 preserves the torsion subgroup, the sequence
0 −→ TU −→ ku∗V −→ QU −→ 0 is an exact sequence of chain complexes. It is
convenient to pass from E1 to E2 in two stages: first we form “E1 1

2 ” by taking
homology of TU and QU , and then E2 is obtained by including the effect of the
connecting homomorphism, which appears as a late d1 on the E1 1

2 page.
The differential on QU is 1 ± c (the sign is − from degrees 0 mod 4 and +

from degrees 2 mod 4). All representations in our case are real, so 1 − c = 0 and
1 + c = 2. Hence we get QU in degrees 0 mod 4 and 0 in degrees 2 mod 4. The
homology H(QU) is QU4k/2QU4k+2 in degrees 0 mod 4, and 0 in degrees 2 mod
4. In rank 1, the negative part of QU is a principal ideal and hence it is easy to
check that H(QU) is zero in negative degrees. In rank 2, JU2/2JU is of order 2,
but otherwise H(QU) is zero in negative degrees. In rank 3, JU2/2JU is 24, but
otherwise zero in negative degrees.

In our case TU is detected in mod 2 cohomology and d1 corresponds to Sq2. It is
not hard to identify the Sq2-cycles and Sq2-homology of PC. Indeed, PC with the
differential Sq2 may be identified with the Koszul complex of PP = F2[z1, . . . , zr]
where zi = y2

i , provided one takes care about grading (PP stands for polynomial in
first Pontrjagin classes). The homology is thus F2 in degree 0.

For rank 1 the cycles are PP in degree 0.
For rank 2 the cycles are PP in degree 0 and PP (−6) (generated by Sq2(y1y2) =

y1y2(y1 + y2)) in degree 1.
For rank 3 the cycles are PP in degree 0, a copy of I2 (the PP -module generated

by the three elements Sq2(yiyj) = yiyj(yi + yj)) in degree 1 and a copy of PP (−8)
(generated by Sq2(y1y2y3) = y1y2y3(y1 + y2 + y3)) in degree 3.

This is enough to let us write down the E1 1
2 -page of the Bockstein spectral

sequence in each case (see Figures 4,5,6). In rank 1 there is no room for any differ-
entials in negative degrees. In rank 2 there is only room for a d1 and it is forced by
the fact that the E∞-term of the spectral sequence must be on the 0,1 and 2 line
(since η3 = 0 in KO∗). Finally, in rank 3 there is a d1 and a d2, both forced for the
same reason.

This type of argument lets us deduce ko∗(BV ) for V of arbitrary rank r. The
image QO in periodic complex K-theory is generated by JSp in degree −4 and JU4

in degree −8, the η-multiples are hard to describe briefly, but certainly zero below
degree −2r − 2. Finally, TO is precisely the module of Sq2-cycles (although this is
false for the dihedral group of order 8).
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Figure 4: The E1 1
2 -page of the Bockstein spectral sequence for V (1).
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7.D. The real homology, ko∗(BV ).
The process of calculating ko∗(BG) from ko∗(BG) is analogous to the complex

case, but the algebra is considerably more complicated. We just summarize the
answer.

From the explicit identification of QO, one can calculate its local cohomology
in a similar way to that of QU , and again it is in local cohomological degrees 0
and 1. Since the module τ of η-multiples in the torsion is bounded below, the local
cohomology is τ in degree 0, and this leaves the local cohomology of TO. The
strategy is the same as for TU . One may write down a PP -resolution of TO, and
then use local duality. In our range this is fairly straightforward except for TO2 in
rank 3. In this case one may still give a minimal PP -resolution:

0←− TO2 ←− 3PP (−6)⊕ 6PP (−12)←− PP (−10)⊕ 4PP (−16)←− 0,

although the reader may find even this case a challenge to do from scratch. Note
that since PP is in degrees which are multiples of 4, this splits as a sum. In degrees
congruent to 2 mod 4 we have the Koszul complex

0←− TO
≡2(4)
2 ←− 3PP (−6)←− PP (−10)←− 0,

and in degrees congruent to 0 mod 4 we have the more exotic

0←− TO
≡0(4)
2 ←− 6PP (−12)←− 4PP (−16)←− 0.

Full explicit details are in [4]. Apart from TOr in rank r, this is the only reasonably
accessible case.

By this means we can calculate ko∗(BV ), and we tabulate the result in low
degrees below.

Degree rank 1 rank 2 rank 3
12 Z Z⊕ 24 Z⊕ 224

128 64⊕ 1282 32⊕ 643 ⊕ 1283 ⊕ 28

10 22 26 222

22 24 215

8 Z Z⊕ 23 Z⊕ 215

16 32⊕ 162 4⊕ 83 ⊕ 163 ⊕ 23

6 0 2 26

0 0 23

4 Z Z⊕ 22 Z⊕ 28

8 4⊕ 82 2⊕ 43 ⊕ 83

2 22 24 27

22 23 24

0 Z Z Z

The conclusion is that although elementary abelian groups are very simple, and
although algebraic process of calculation is short and systematic, the explicit an-
swer quickly becomes very complicated. The invariant and structural description is
therefore especially valuable.
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