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ON REDUCTION MAP FOR ÉTALE K-THEORY OF CURVES

G. BANASZAK, W. GAJDA and P. KRASOŃ

(communicated by J.F. Jardine)

Abstract
In this paper we investigate reduction of nontorsion elements
in the étale K-theory of a curve X over a global field F. We
show that the reduction map can be well understood in terms
of Galois cohomology of l-adic representations.

Dedicated to Victor Snaith on the occasion of his 60-th birthday.

0. Introduction

Assume that X is a smooth, proper and geometrically irreducible curve of genus
g, defined over a global field F. Let l be an odd rational prime different from the
characteristic of the field F. In the function field case we fix the set of places at
infinity. Let n > 0 and let Sl be the set of places of F which consists of places of
bad reduction of X, places at infinity, and in the number field case, primes lying
over l. Denote by X a smooth and proper model of X over the ring of Sl-integers
of F. Let Ket

i (Y ) denote the étale K-theory group of a scheme Y over SpecZ[ 1l ] cf.
[DF]. For places v 6∈Sl, we consider the reduction map:

Ket
2n(X ) → Ket

2n(Xv)

induced on étale K-theory by the injection Xv ↪→ X of the special fiber at v.

Theorem . Let J be the Jacobian variety of X and assume that End (J) = Z. Let
P1, P2, . . . , Pr ∈ Ket

2n(X ) be nontorsion elements which are linearly independent
over Zl. Fix a partition {1, 2, . . . , r} = I ∪ J and let lM be a power of l. There exist
infinitely many primes v 6∈ Sl such that Pi, for each i ∈ I, reduces in Ket

2n(Xv) to
an element of order at least lM and Pj , for each j ∈ J, reduces in Ket

2n(Xv) to zero.
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The assumption that End (J) = Z, in the theorem, is implied by the fact that
Ket

2n(X ) does not support, for n > 0, any suitable action of End (J) bigger than
Z. In our previous work on the reduction map for abelian varieties [BGK3] we
investigated in the present context the maps

J(F ) → Jv(kv)

for v /∈ Sl where Jv is the Jacobian of Xv and J(F ) (resp. Jv(kv)) is the group of
F (resp. kv) points of J (resp. Jv ). This map is an essential part of the map

K0(X ) → K0(Xv).

Note that according to the Beilinson conjectures the Quillen K-group Km(X ) is
expected to be finitely generated. The Quillen-Lichtenbaum conjecture (cf. [FW] p.
57) predicts that the Dwyer-Friedlander map [DF]:

Km(X; Z/lk) → Ket
m(X; Z/lk)

is an isomorphism for m > 3 since the cohomological dimension of X is no bigger
than 4 by [Mi], Corrollary 1.4, p 221. Hence by the localization sequences in K-
theory the conjectures imply that for m > 3 there is an isomorphism:

Km(X )⊗Z Zl → Ket
m(X ).

Provided these conjectures hold true, our Theorem implies the corresponding state-
ment for the even dimensional Quillen K-groups of X . Note that if X is a curve over
an algebraically closed field then the Quillen-Lichtenbaum conjecture is supposed
to hold for m > 2 since the cohomological dimension of X is no bigger than 2 cf.
[Mi] Remark 1.5, p.222.

In section 1 of the paper we introduce intermediate Jacobians and Kummer theory
for l-adic representations which will be used in section 2 in the proof of the Theorem.

1. Kummer Theory and intermediate Jacobians

Let F be a fixed separable closure of F. For a finite place v in F and a finite
extension L/F contained in F, let w be a finite prime in L over v. To indicate that
w is not over any place in the set Sl, we will write w /∈ Sl.

Let Tl be a free Zl-module of finite rank d. Let Vl = Tl ⊗Zl
Ql and Al = Vl/Tl.

Consider an l-adic representation ρl : GF → GL(Tl) unramified outside Sl. For
w /∈ Sl we denote by Gw the absolute Galois group G(L̄w/Lw) of the completion
Lw of L at w. Let kw be the residue field for the place w and gw=G(kw/kw). The
Galois group gw has a topological generator Frw : kw → kw defined by the formula
Frw(x) = xqw , where qw = |kw|. The inertia group Iw is defined as the kernel of
the natural map Gw → gw. We put H1

f (Gw; Tl) = i−1
w H1

f (Gw; Vl), where

iw : H1(Gw; Tl) → H1(Gw; Vl)
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and the group H1
f (Gw; Vl) is defined as follows:

H1
f (Gw; Vl) = Ker ( H1(Gw; Vl)

Resw−−−−→ H1(Iw; Vl) )

where Iw is the inertia subgroup of Gw. Define

H1
f,Sl

(GL; Tl)

to be the kernel of the natural map:

H1(GL; Tl) →
∏

w/∈Sl

H1(Gw; Tl)/H1
f (Gw; Tl)

Note that as far as H1 is concerned, the l−adic cohomology is the same as the
continuous cohomology. This follows from the simple ”lim1 argument”, since Tl/lkTl

is finite.
As in [BGK2, Definition 2.3] we define the intermediate Jacobian:

Jf,Sl
(Tl) = lim−→

L/F

H1
f,Sl

(GL; Tl).

To understand the action of GF on Jf,Sl
(Tl) note that for L/F Galois we have

a standard GF -action on continuous cochains defining Hn(GL, Tl) which induces
the action on Hn(GL, Tl), in particular on H1(GL, Tl). Similarly, with a little more
care, one sees that GF acts on

∏
w/∈Sl

H1(Gw; Tl)/H1
f (Gw; Tl). These actions are

compatible in the sense that the map defining H1
f,Sl

(GL; Tl) is GF -equivariant. In
addition, the corresponding GF -actions are compatible with direct limits yielding a
GF -action on the intermediate Jacobian.

Proposition 1.1. Assume that for any finite extension L/F and any place w of
OL, w 6∈ Sl, we have TFrw

l =0. The following statements hold.

1 The group Jf,Sl
(Tl) is divisible.

2 There is an isomorphism of GF -modules Jf,Sl
(Tl)tor

∼= Al

3 H1(GL; Tl) ∼= J(Tl)GL ,

Proof. For the number field case it is [BGK2, Prop. 2.14, Prop. 2.16]. In the function
field case the same argument works.

Proposition 1.1 shows that we can do Kummer theory in the GF−module Jf,Sl
(Tl).

Note that by definition of Al there is a compatible in k, GF− isomorphism
Tl/lkTl

∼= Al[lk]. For any k > 0 we consider the residual representation

ρlk : GF → GL(Al[lk]),

induced by ρl. Let Flk = F (Al[lk]) denote the global field F
kerρ

lk . For
P̂ ∈ H1

f,Sl
(GF ; Tl) we have the Kummer maps [BGK3, (2.3)]:

φ
(k)

P̂
: G(F/Flk) −→ Al[lk] (1.2)
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φ
(k)

P̂
(σ) = σ(

1
lk

P̂ )− 1
lk

P̂ ,

which are well defined due to Proposition 1.1 (1), (2) and due to the fact that
G(F̄ /Flk) acts trivially on Al[lk] by definition of Flk . These maps are compatible
with the natural maps G(F̄ /Flk+1) → G(F/Flk), therefore they induce a map:

φ
(∞)

P̂
: G(F̄ /Fl∞) −→ Tl,

where Fl∞ =
⋃

Flk . Denote by Λ̂ the Zl-submodule of H1
f,Sl

(GF ; Tl), generated by
P̂1, . . . , P̂r and define

Φ(k)

Λ̂
: G(F̄ /Flk) −→

r⊕

i=1

Al[lk]

Φ(k)

Λ̂
= (φk

P̂1
, . . . , φk

P̂r
).

Similarly define

Φ(∞)

Λ̂
: G(F̄ /Fl∞) −→

r⊕

i=1

Tl

Φ(∞)

Λ̂
= (φ∞

P̂1
, . . . , φ∞

P̂r
).

We use the notation T r
l =

⊕r
i=1 Tl. Let O be a ring with identity which is a finitely

generated Z-module. Assume that the ring O acts on Tl and the actions of O and
GF on Tl commute. Assume also that Λ̂ is O− equivariant and that P̂1, . . . , P̂r

are independent over O ⊗Z Zl. In [BGK3, Lemmas 2.12 and 2.13] we proved the
following generalization of the theorem of Bertrand [Be, Theorem 2].

Proposition 1.3. Let Gl∞=G(Fl∞/F ) and Vl be a semisimple Ql[Gl∞ ]-module
such that the group H1(Gl∞ ; Vl) vanishes. Then the image of Φ(∞)

Λ̂
is an open

subset of T r
l in the l−adic topology.

Observe that by definitions GF acts on Vl via its quotient Gl∞ .
Note that the proofs of Lemmas 2.12 and 2.13 in [BGK3] were done for the number
field case, but the function field case can be treated analogously.

2. Proof of the theorem

Let GF,Sl
be the Galois group of the maximal, unramified outside Sl, extension of F .

The diagrams (3.1) and (3.2) of [BGK1], for v 6∈ Sl give the following commutative
diagram:

Ket
2n(X ) −−−−→ Ket

2n(Xv)y '
y

H1(GF,Sl
; Tl(J)(n)) rv−−−−→ H1(gv; Tl(J)(n))

(2.1)
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in which the left vertical arrow is surjective with finite kernel and the right vertical
arrow is an isomorphism. Let P̂i denote the image of Pi via the left vertical arrow
of (2.1). In order to prove the Theorem it is enough to show the corresponding
statement in Galois cohomology for the reduction map rv of the diagram (2.1).
Now we apply the results of section 1 for Tl = Tl(J)(n) and O = Z. Observe that
all assumptions imposed on Tl in section 1 are fulfilled. Namely, by Ogg-Shafarevich
criterion cf. [ST], Theorem 1 the set of primes Sl contains primes of bad reduction
for J. Moreover, TFrw

l =0 for w 6∈ Sl by the Weil conjectures for J proven in [De].
Note that by the Weil conjectures, all eigenvalues of Frw acting on Tl(J) have

absolute values q
1
2
w , and Frw acts on Zl(n) via qn

w. Moreover, the Ql[GF ]−module
Vl is semisimple in the number field case by [Fa] and in the function field case
by [Za1], [Za2]. In addition, in both cases, H1(Gl∞ ; Tl) is finite by [Se, Cor. p.
734, and remarque 2, p. 734], for n = 0 and [J1, p. 338] for n > 0. Note that
for Tl = Tl(J)(n) we have H1

f,Sl
(GL; Tl) = H1(GL,Sl

; Tl) for every F ⊂ L ⊂ F.
Actually this is true for every representation unramified outside Sl and to see this
consider the localization exact sequence

0 −−−−→ H1(GL,Sl
; Tl) −−−−→ H1(GL; Tl)

⊕w /∈Sl
∂w−−−−−−→ ⊕w/∈Sl

H0(gw; Tl(−1))

Note that ∂w can be factored as follows

H1(GL; Tl) −−−−→ H1(Gw; Tl)
∂̃w−−−−→ H0(gw; Tl(−1))

On the other hand for w /∈ Sl by Lemma 2.8 (3) [BGK2] there is an exact sequence
which comes from the restriction-inflation exact sequence

0 −−−−→ H1
f (Gw; Tl) −−−−→ H1(Gw; Tl)

Resw−−−−→ H1(Iw; Tl)gw

In addition

H1(Iw; Tl)gw ∼= Homgw (Iw; Tl) ∼= Homgw (Zl; Tl(−1)) ∼= H0(gw; Tl(−1))

and we check that the map Resw can be identified with the boundary map
∂̃w : H1(Gw; Tl) → H0(gw; Tl(−1)). This shows that H1

f,Sl
(GL; Tl) ∼= H1(GL,Sl

; Tl).
Now the Theorem follows by the next proposition.

Proposition 2.2. Let {1, 2, . . . , r} = I ∪ J be a partition, where I={i1, i2, . . . , is}
and J={j1, j2, . . . , jr−s}. Given a fixed power lM , there exist infinitely many places
v 6∈ Sl such that rv(P̂i) is an element of order at least lM , for i ∈ I and rv(P̂j)=0,
for j ∈ J.

Proof. We apply the method of the proof of Theorem 3.1 of [BGK3]. For the con-
venience of the reader we divide the proof into five steps. Define Λ̂I and Λ̂J in a
similar way as Λ̂. We define 1

lk
Λ̂I (resp. 1

l∞ Λ̂I) to be the submodule of Jf,Sl
(Tl),

generated by all elements R̂ such that lkR̂ = P̂i for some i ∈ I with k fixed (re-
spectively, by all elements R̂ such that lkR̂ = P̂i for some i ∈ I and all k). The
modules 1

lk
Λ̂I and 1

l∞ Λ̂I are well defined by Prop. 1.1 (1). Let Nk (resp. N∞)
be the subgroup of G(F/Flk) of such elements that act trivially on the submodule
1
lk

Λ̂I (resp. 1
l∞ Λ̂I) of Jf,Sl

(Tl). Set Flk( 1
lk

Λ̂I) = F
Nk (resp. Fl∞( 1

l∞ Λ̂I) = F
N∞)

and put
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Dk = G(Flk( 1
lk

Λ̂I)/Flk)

D∞ = G(Fl∞( 1
l∞ Λ̂I)/Fl∞).

Step 1. The argument in this step is as in [KP, Lemma 5]. By Proposition 1.3 there
is an m ∈ N such that lm T s

l ⊂ Φ(∞)

Λ̂I
(G(F̄ /Fl∞)) ⊂ T s

l . Take k > m and consider
the following diagram:

D∞ −−−−→ T s
l /lmT s

ly
y∼=

Dk+1 −−−−→ Al[lk+1]s/lmAl[lk+1]sy
y∼=

Dk −−−−→ Al[lk]s/lmAl[lk]s.

(2.3)

Observe that ker Φ(k)

Λ̂I
= G(F̄ /F ( 1

lk
Λ̂I)) and ker Φ(∞)

Λ̂I
= G(F̄ /F ( 1

l∞ Λ̂I)). Hence

the horizontal arrows in diagram (2.3), induced by Kummer maps Φ(∞)

Λ̂I
, Φ(k+1)

Λ̂I
,

and Φ(k)

Λ̂I
, are well defined. Now the definitions of these Kummer maps, given in

section 1, yield commutativity of the diagram (2.3) immediately. It is clear by an
ascending chain argument that for k À 0 the image of the middle horizontal arrow
is isomorphic to the image of the bottom horizontal arrow in diagram (2.3). Hence
Dk+1 maps onto Dk via the left bottom vertical arrow in (2.3) because for every k
the map Dk → Al[lk]s, induced by Kummer map, is injective by definition of Dk.
So the tower of fields

Flk+1( 1
lk+1 Λ̂I)

Flk( 1
lk

Λ̂I)

ppppppppppp
Flk+1

LLLLLLLLLLL

Flk

OOOOOOOOOOOO

qqqqqqqqqqqq

(2.4)

shows that for k À 0

Flk(
1
lk

Λ̂I) ∩ Flk+1 = Flk . (2.5)

Step 2. By Proposition 1.3 we see that the upper horizontal arrow in the following
commutative diagram has open image:
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G(Fl∞( 1
l∞ Λ̂I ,

1
l∞ Λ̂J)/Fl∞( 1

l∞ Λ̂I)) Â Ä //

²²

T r−s
l

²²²²
G(Flk( 1

lk
Λ̂I ,

1
lk

Λ̂J)/Flk( 1
lk

Λ̂I)) Â Ä // ⊕r−s
i=1 Al[lk].

(2.6)
Hence the order of cokernel of the lower horizontal map in the diagram (2.6) is
bounded independently of k. It follows that for k À 0 we can pick an element
σ ∈ G(Flk( 1

lk
Λ̂I ,

1
lk

Λ̂J)/Flk( 1
lk

Λ̂I)), with the property that all projections onto the
r−s summands Al[lk] of the image of σ via the bottom horizontal map in (2.6) have
orders divisible by lM .

Step 3. Consider the tower of fields:

Flk+1( 1
lk

Λ̂I ,
1
lk

Λ̂J)

Flk( 1
lk

Λ̂I ,
1
lk

Λ̂J)

lllllllllllll
Flk+1( 1

lk
Λ̂I)

Flk( 1
lk

Λ̂I)

lllllllllllll
σ

Flk+1

NNNNNNNNNNN

Flk

id
RRRRRRRRRRRRRRR

h
ooooooooooooo

F
(2.7)

Take k À 0 such that (2.5) holds and such that there is a nontrivial element
h ∈ G(F/F ) and such that ρl(h) is acting on Tl as a homothety 1 + lku0, for some
u0 ∈ Z×l . The element h exists by [Bo, Cor. 1, p.702] in the number field case, and
by [Za 3, Thm. 4.1] in the function field case. By abuse of notation we will denote
the restriction of h to Flk+1 also by h. Using the diagram (2.7) we construct an
element

γ ∈ G(Flk+1(
1
lk

Λ̂I ,
1
lk

Λ̂J)/Flk) ⊂ G(Flk+1(
1
lk

Λ̂I ,
1
lk

Λ̂J)/F ),

such that γ|F
lk

( 1
lk

Λ̂I , 1
lk

Λ̂J ) = σ, γ|F
lk+1 = h, γ|F

lk
( 1

lk
Λ̂I) = id. By the Chebotarev

density theorem [Ne, Theorem 6.4, p.132] there exist infinitely many prime ide-
als v of F such that γ is equal to the Frobenius element for v in the extension
Flk+1( 1

lk
Λ̂I ,

1
lk

Λ̂J )/F. For such a v we fix a place w in Flk+1( 1
lk

Λ̂I ,
1
lk

Λ̂J) above v.

Step 4. In Step 4 we prove that for i ∈ I the point P̂i maps to 0 via the bottom
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horizontal arrow in the diagram:

H1(GL,Sl
; Tl)

rw1−−−−→ H1(gw1 , Tl)x
x

H1(GF,Sl
; Tl)

rv−−−−→ H1(gv, Tl)

(2.8)

where L = Flk+1( 1
lk

Λ̂I) and w1 is the place of Flk+1( 1
lk

Λ̂I) below w. The left
vertical map in the diagram (2.8) is injective by Prop. 1.1 (3). The right verti-
cal map is obviously injective. Let lci be the order of rv(P̂i) in H1(gv; Tl). The
group G(F/Flk( 1

lk
Λ̂I)) acts trivially on Q̂i = 1

lk
P̂i ∈ Jf,Sl

(Tl) so by Prop. 1.1
(3) Q̂i ∈ H1(GF

lk
( 1

lk
Λ̂I),Sl

; Tl) ⊂ H1(GL,Sl
; Tl). Hence Q̂i maps to the point

rw1(Q̂i) ∈ H1(gw1 , Tl) of order lk+ci . By the choice of v we see that

h(rw1(Q̂i)) = (1 + lku0)rw1(Q̂i),

where h is the element selected in Step 3. The choice of v cf. diagram (2.7) implies
that rw1(Q̂i) comes from H1(gv, Tl). Hence h(rw1(Qi))=rw1(Qi), so lkrw1(Q̂i)=0
and ci = 0.

Step 5. We prove that for j ∈ J the order of rv(P̂j) in H1(gv; Tl) is divisible by
lM by computing its image in the bottom right corner of the following commutative
diagram:

H1(GF,Sl
; Tl)/lkH1(GF,Sl

; Tl) −−−−→ H1(gv; Tl)/lkH1(gv; Tl)y
y

H1(GF
lk

,Sl
; Tl)/lkH1(GF

lk
,Sl

; Tl) −−−−→ H1(gu2 ; Tl)/lkH1(gu2 ; Tl)y
y

Hom((GF
lk

,Sl
)ab; Al[lk]) −−−−→ Hom(gu2 ; Al[lk]),

(2.9)

where u2 is the place in Flk below w, and Flk,Sl
denotes the maximal extension of

Flk contained in F̄ and unramified outside of Sl. The image of P̂j by the composition
of left vertical maps is the homomorphism φj : (GF

lk
,Sl

)ab −→ Al[lk] induced by the

Kummer map φ
(k)

P̂j
. Let γ̃ denote the extension to Flk,Sl

of the element γ selected

in Step 3. By the choice of σ in Step 2 we obtain that φj(γ̃) has order > lM . The
lower horizontal map in diagram (2.9) sends φj to a homomorphism whose value at
the Frobenius element of gu2 has order at least lM by the construction of γ and the
choice of v in step 3. So the point P̂j maps to a homomorphism of order at least lM

in the lower right corner of the diagram (2.9)
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Zalhkörpern, Inv. Math. 73, (1983) pp. 349-366

[FW] E. Friedlander and C. Weibel An Overview of Algebraic K-Theory,
Proceedings of the Workshop and Symposium: Algebraic K-Theory and
its Applications, H. Bass, A. Kuku, C. Pedrini editors, World Scientific,
Singapore, New Jersey (1999) pp. 1-119

[J1] U. Jannsen On the l-adic cohomology of varieties over number fields
and its Galois cohomology, Galois groups over Q. Proceedings of a Work-
shop Held March 23-27 1987, Y. Ihara, K. Ribet and J.P. Serre (eds),
MSRI Publications 16, Springer Verlag, (1989), pp. 315-353

[KP] Ch. Khare, D. Prasad Reduction of homomorphisms mod p and
algebraicity, Journal of Number Theory 105, (2004), pp. 322-332

[Mi] J.S. Milne Étale cohomology, Princeton University Press, (1980)

[Ne] J. Neukirch Class Field Theory, Springer Verlag, (1986)

[Se] J.P. Serre Sur les groupes de congruence des variéties abéliennes,
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