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We consider invariants of a finite group related to the number of
random (independent, uniformly distributed) conjugacy classes
that are required to generate it. These invariants are intuitively
related to problems of Galois theory. We find group-theoretic ex-
pressions for them and investigate their values both theoretically
and numerically.

1. INTRODUCTION

A well-known method to compute the Galois group H

of a number field (e.g., of the splitting field of a polyno-
mial P ∈ Z[T ] with integral coefficients) can be described
roughly as follows: (1) find a group G that contains H,
e.g., of symmetry considerations (such as the fact that
the field generated by the �-torsion points of an elliptic
curve has Galois group that embeds in GL(2, F �)); (2) try
to prove that H = G by computing the Frobenius auto-
morphisms modulo successive primes, which gives conju-
gacy classes in the Galois group H, and hence conjugacy
classes in G. If the guess in (1) was right, and if the con-
jugacy classes observed in (2) are compatible only with
the Galois group being our candidate G, then we have
succeeded.

This method is particularly simple when G is
“guessed” to be the symmetric group acting on the roots
of a polynomial P , since the Frobenius conjugacy class
in the symmetric group can be read off quickly from the
factorization pattern of P modulo primes.

In practice, however, this is not very efficient; com-
puter algebra systems use other techniques. Still, this
method is well suited for certain theoretical investiga-
tions, for instance, for probabilistic Galois theory (see,
e.g., [Gallagher 73]), and it can be surprisingly efficient
even for fairly complicated groups (see our joint works
[Jouve et al. 08, Jouve et al. 10] with F. Jouve, involv-
ing the Weyl group of a reductive algebraic group; this
led to the first explicit examples of integral polynomials
with Galois group W (E8).)

In view of this, it is somewhat surprising that no gen-
eral study of the efficiency of the underlying algorithm
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seems to have been performed. Among the very few ref-
erences we know is [Dixon 92], which considers symmetric
groups Sn and mentions some earlier work of McKay.1

On the other hand, there has been a fair amount of in-
terest in the question of determining the probability that
a tuple of elements generates a finite group, which is
the analogous problem in which conjugacy is ignored;
see, for instance, [Kantor and Lubotzky 90]. The paper
[Pomerance 01] considers the question for abelian groups,
when the conjugacy issue is also irrelevant, and those re-
sults do apply to our setting. The current paper provides
the beginning of the theoretical analysis of this type of
algorithm for general finite groups. Specifically, we prove
the following result (Theorem 6.1 gives the precise state-
ment using the definitions of Section 2).

Theorem 1.1. (Boundedness of Chebotarev invariants for
symmetric groups.) There exists a constant c > 0 such
that for all integers n ≥ 1, the average number of inde-
pendently and randomly chosen conjugacy classes2 of the
symmetric group Sn that one must pick to ensure that
any tuple of elements taken from each of these classes
generate Sn is at most c. In fact, for any k ≥ 1, there
exists ck ≥ 0 such that the average of the kth power of
this number is bounded by ck for all n.

Here is a rough outline of this work: We consider prob-
abilistic models in Section 2 and define invariants, which
we call the Chebotarev invariants, of a finite group us-
ing such a model (the name, based on the Chebotarev
density theorem, is justified in Section 8); it makes pre-
cise the informal notion in the statement of Theorem 1.1
and takes into account information about mean-square
averages.

In Section 3, we indicate how to compute this invari-
ant for abelian groups (based on Pomerance’s work), and
in Section 4, we consider solvable groups of a certain “ex-
tremal” type. In Sections 5, 6, and 7, we consider theoret-
ical and numerical examples for nonabelian, often non-
solvable, groups, in particular alternating and symmetric
groups, proving Theorem 1.1. Finally, Section 8 makes
some informal remarks concerning the applicability of our
results to arithmetic situations (our original motivation).
A longer version of this paper is available from arXiv; see

1 After the first version of this paper appeared as a preprint, some
new results appeared in [Kantor et al. 10]; see the remarks at the
end of Section 4.
2 This means distributed in proportion to the size of the conjugacy
class.

[Kowalski and Zywina 11]. It includes more data, ques-
tions, and remarks, and details of some computations
that are not included in full here.

Notation 1.2. As usual, |X| denotes the cardinality of a
set, and F q a field with q elements. If G is a finite group
and H ⊂ G, we write νG (H) = ν(H) = |H|/|G|. We write
G� for the set of conjugacy classes of G, and for C ⊂ G� ,
we also write νG (C) or ν(C) for ν(C̃), where C̃ ⊂ G is
the union of all conjugacy classes in C.

We recall that a geometric random variable X with
parameter p ∈ [0, 1] on a probability space is a random
variable taking values in the set of positive integers al-
most surely, with

P(X = k) = p(1 − p)k−1 ( 1–1)

for k ≥ 1. We then have

E(X) = p
∑
k≥1

k(1 − p)k−1 = p−1 ,

E(X2) = (2 − p)/p2 , ( 1–2)
V(X) = (1 − p)/p2 .

By f � g for x ∈ X, or f = O(g) for x ∈ X, where
X is an arbitrary set on which f is defined, we mean
synonymously that there exists a constant C ≥ 0 such
that |f(x)| ≤ Cg(x) for all x ∈ X. The “implied con-
stant” refers to any value of C for which this holds. Sim-
ilarly, f � g means that f � g and g � f . On the other
hand, f(x) ∼ g(x) as x → x0 means that f(x)/g(x) → 1
as x → x0 .

2. THE CHEBOTAREV INVARIANT OF A FINITE
GROUP

In this section, we describe a natural probabilistic model
for the recognition algorithm described previously. Fix
a finite group G. We first remark that whereas it does
not make sense to say that a conjugacy class lies in a
certain subgroup unless the latter is a normal subgroup,
it does make sense to say that it lies in a conjugacy class
of subgroups. With that in mind, we make the following
definition.

Definition 2.1. Let G be a finite group, and let C =
{C1 , . . . , Cm} ⊂ G� be a subset of conjugacy classes in
G. Then C generates G if for any choice of represen-
tatives gi ∈ Ci for 1 ≤ i ≤ m, the elements of the tuple
(g1 , . . . , gm ) generate G. Equivalently, C generates G if
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and only if there is no (proper) maximal subgroup H of
G that has nonempty intersection with each of the Ci .3

The equivalence of the two definitions is quite clear:
if there are gi ∈ Ci that generate a proper subgroup H1 ,
then each Ci intersects any maximal proper subgroup H

of G that contains H1 , and conversely. Note also that the
second condition can be stated by saying that there is a
conjugacy class of maximal subgroups containing C.

The following well-known lemma (due to Jordan; see
[Serre 02]) is the basic fact underlying the whole tech-
nique.

Lemma 2.2. Let G be a finite group. Then the set G� of
conjugacy classes generates H. In other words, there is
no proper subgroup of G that contains a representative
from each conjugacy class.

Now let (Ω, Σ,P) be a fixed probability space with a
sequence X = (Xn )n≥1 of G-valued random variables

Xn : Ω → G,

and let X�
n be the conjugacy class of Xn in G� : those are

G� -valued random variables.
Intuitively, those (X�

n ) are the conjugacy classes that
we see coming “one by one”; the Chebotarev invariant
measures the threshold after which one can conclude that
those conjugacy classes cannot all belong to some proper
subgroup of G.

We now define a random variable τX,G (a waiting
time) by

τX,G = min{n ≥ 1 | (X�
1 , . . . , X

�
n ) generate G}

∈ [1, +∞].

This depends on the sequence X = (Xn ), and it may al-
ways be infinite (e.g., if Xn = 1 for all n). But it is, in
an intuitive sense, the “finest” invariant in terms of this
probabilistic model. To obtain more compact and purely
numerical invariants, it is natural to take first the expec-
tation, which takes values in [1, +∞].

Definition 2.3. Let G be a finite group, X = (Xn ) a
sequence of G-valued random variables, and τX,G the
waiting time above. The Chebotarev invariant of G with
respect to X, denoted by c(G; X), is the expectation
c(G; X) = E(τX,G ) of this random variable.

3 Alternatively, following [Dixon 92], one says that elements
(g1 , . . . , gm ) invariably generate G if their conjugacy classes gener-
ate G in the above sense.

To have an unambiguously defined invariant, we must
use a specific choice of sequence (Xn ). The natural model
is that of independent, uniformly distributed elements
in G: if (Xn ) are independent and identically uniformly
distributed G-valued random variables, so that

P(Xn = g) =
1
|G| for all g ∈ G and all n ≥ 1,

and hence

P(X�
n = g�) =

|g� |
|G| , for all g� ∈ G� and all n ≥ 1,

then we call c(G; X) the Chebotarev invariant, and we
write simply c(G).

Other numerical invariants may of course be derived
from τX,G , starting from the higher moments E(τk

X,G )
for k ≥ 1. In particular, it is probabilistically most im-
portant, when the expectation of a random variable is
known, to have control over its second moment as well,
since that can be used to control to some extent the “con-
centration” of the random variable around the average.

Definition 2.4. Let G be a finite group, X = (Xn ) a se-
quence of G-valued random variables, and let τX,G be the
waiting time above. The secondary Chebotarev invariant
is the second moment c2(G; X) = E(τ 2

X,G ). If (Xn ) is a
sequence of independent uniformly distributed random
variables, then we write c2(G) and call it the secondary
Chebotarev invariant.

We will now give formulas for the two Chebotarev in-
variants (in the independent case), which are expressed
purely in terms of group-theoretic information.

To state the formulas, we must introduce the following
data and notation about G. Let max(G) be the set of
conjugacy classes of (proper) maximal subgroups of G

(if G is trivial, this is empty); for a conjugacy class of
maximal subgroups H ∈ max(G), let H� denote the set
of conjugacy classes C of G that “occur in H,” i.e., such
that C ∩ H1 �= ∅ for some H1 in the conjugacy class H.4

Moreover, if I ⊂ max(G) is a set of conjugacy classes of
maximal subgroups, we let

H�
I =

⋂
H∈I

H�

denote the set of conjugacy classes of G that appear in
all subgroups in I.

4 Note that this depends on the underlying group G.
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Proposition 2.5. Let G be a nontrivial finite group. With
notation as above, we have

c(G) =
∑

I⊂max(G)
I �=∅

(−1)|I |+1

1 − ν(H�
I )

(2–1)

and

c2(G) =
∑

I⊂max(G)
I �=∅

(−1)|I |

1 − ν(H�
I )

(
1 − 2

1 − ν(H�
I )

)

=
∑

I⊂max(G)
I �=∅

(−1)|I |+1 1 + ν(H�
I )

(1 − ν(H�
I ))2

. (2–2)

Probabilists will have noticed that the first formula
(at least) is very similar to that for the expectation of
the waiting time for a general coupon collector problem.
There is indeed a link, which is provided by the next
lemma, where independence of the random elements Xn

is not required.

Lemma 2.6. Let G be a nontrivial finite group and X =
(Xn ) a sequence of G-valued random variables. The wait-
ing time τX,G is equal to

τX,G = max
H∈max G

τ̂H,

where

τ̂H = min
{
n ≥ 1 | X�

n /∈ H�
}

. (2–3)

In other words, τX,G is also the maximal n such that
we need to look at Xi for i up to n before we witness,
for every conjugacy class H of maximal subgroups, some
Xn that is incompatible with the groups in this class H.
This is very close to a coupon collector problem (see,
for example, [Flajolet et al. 92] for a general description
of this type of problem). Because of this, we state and
prove the following general abstract result, which may
have other applications.

Proposition 2.7. Let (Ω, Σ,P) be a probability space, D
a finite set. Let (Zn ) be a sequence of D-valued ran-
dom variables. Let E be a nonempty finite collection of
nonempty subsets of D, and let

τE = min{n ≥ 1 | for all E ∈ E, there exists
some m ≤ n with Zm ∈ E}

be the waiting time before all subsets E ∈ E have been
witnessed in the sequence (Zn ). For I ⊂ E nonempty, let

TI = min{n ≥ 1 | Zn ∈ E for some subset E ∈ I}.

(1) Assume that TI < +∞ almost surely for all
nonempty subsets I ⊂ E. Then we have

τE =
∑

∅ �=I⊂E
(−1)|I |+1TI . (2–4)

(2) Assume that the Zn are independent and identically
distributed random variables and let µ be their com-
mon law. We have

E(τE) =
∑
I⊂E
I �=∅

(−1)|I |+1

P(Zn ∈ ⋃E∈I E)
=
∑
I⊂E
I �=∅

(−1)|I |+1

µ(
⋃

E∈I E)
.

(2–5)

(3) We have

E(τ 2
E ) =

∑
I⊂E
I �=∅

(−1)|I |

µ(
⋃

E∈I E)

(
1 − 2

µ(
⋃

E∈I E)

)
. (2–6)

When E is the set of singletons in D, where we have
exactly the coupon collector problem, the formulas for
the expectation are well known; we have not seen general
formulas for the second moment in the literature.

Proof of Proposition 2.7. To simplify notation, define

EI =
⋃
E∈I

E (2–7)

for each I ⊂ E . Formula (2–4), which implies in particular
that τE is finite almost surely, can be checked easily by
inclusion–exclusion.

We can then finish the computation of E(τE) in (2)
in the case of independent random variables. Indeed, in
that case, the random variable TI is distributed like a
geometric random variable with parameter p = P(Zn ∈
EI ) (see (1–1)) for any nonempty subset I ⊂ E , so that
taking the expectation in (2–4) and applying (1–2), we
obtain the result.

Finally, to compute the second moment in the inde-
pendent case, we start with the same formula (2–4) to
get

E(τ 2
E ) =

∑∑
∅ �=I⊂E
∅ �=J⊂E

(−1)|I |+ |J |E(TI TJ ).

We first transform this by applying the formula

E(TI TJ ) =
1

µ(EI∪J )

(
1

µ(EI )
+

1
µ(EJ )

− 1
)

(2–8)

to compute E(TI TJ ) (this formula is obtained by
a straightforward, unenlightening computation; see
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[Kowalski and Zywina 11] for details if needed). This
gives

E(τ 2
E ) =

∑∑
∅ �=I⊂E
∅ �=J⊂E

(−1)|I |+ |J |

µ(EI∪J )

{
1

µ(EI )
+

1
µ(EJ )

− 1
}

=
∑∑
∅ �=I⊂E
∅ �=J⊂E

(−1)|I |+ |J |

µ(EI∪J )

{
2

µ(EI )
− 1
}

(2–9)

(by symmetry). To continue, consider more generally ar-
bitrary complex coefficients β(I) defined for I ⊂ E , and
the expression

W (β) =
∑∑
∅ �=I⊂E
∅ �=J⊂E

(−1)|I |+ |J |

µ(EI∪J )
β(I).

Note that E(τ 2
E ) is a simple combination of two such ex-

pressions.
We proceed to reduce W (β) to a single sum over I ⊂ E

by rearranging the sum according to the value of I ∪ J :

W (β) =
∑

∅ �=K⊂E

1
µ(EK )

∑∑
∅ �=I ,J⊂E
I∪J =K

(−1)|I |+ |J |β(I).

The inner sum is rearranged in turn as∑∑
∅ �=I ,J⊂E
I∪J =K

(−1)|I |+ |J |β(I)

=
∑

∅ �=I⊂K

(−1)|I |β(I)
∑

∅ �=J⊂K
I∪J =K

(−1)|J |

=
∑

∅ �=I⊂K

(−1)|I |+ |K−I |β(I)
∑
I ′⊂I

I ′∪(K−I ) �=∅

(−1)|I
′ |,

since the subsets J with I ∪ J = K are parameterized by
I ′ ⊂ I using the correspondence I ′ �→ (K − I) ∪ I ′ with
inverse J �→ J ∩ I.

For fixed I, the last summation condition I ′ ∪ (K −
I) �= ∅ is always valid, unless I = K, in which case it
excludes only the set I ′ = ∅ from all I ′ ⊂ I. Since we
have, for any finite set X, the binomial relation∑

Y ⊂X

(−1)|Y | = 0,

it follows that the double sum is simply given by∑∑
∅ �=I ,J⊂E
I∪J =K

(−1)|I |+ |J |β(I) = (−1)|K |+1β(K),

and hence

W (β) =
∑

∅ �=K⊂E

(−1)|K |+1β(K)
µ(EK )

.

Applied to the expression (2–9), this leads precisely
to (2–6).

To deduce Proposition 2.5, we apply this proposition
with

Zn = X�
n , D = G�, E = {G� −H� | H ∈ max(G)},

in the case that the (Xn ) are independent and uniformly
distributed on G, so that the common distribution is µ =
ν. Since for I ⊂ max G, we have

ν
(⋃
H∈I

(G� −H�)
)

= 1 − ν
(⋂
H∈I

H�
)
,

the formulas (2–5) and (2–6) give exactly the claimed
formulas (2–1) and (2–2).

Remark 2.8. As explained in [Serre 02, Theorem 5], we
have

ν(H�) ≤ 1 − 1
|G/H| (2–10)

for any conjugacy class of a maximal subgroup of G (this
is due to Cameron and Cohen).

We now present some easy formal properties of the
Chebotarev invariants that can be useful for theoretical
purposes.

Lemma 2.9. Let G be a finite group and Φ(G) the Frattini
subgroup of G, i.e., the intersection of all maximal sub-
groups of G. Then for any normal subgroup N � G such
that N ⊂ Φ(G), in particular for N = Φ(G), we have

c(G) = c(G/N), c2(G) = c2(G/N).

Proof. Let H = G/N . We have Φ(H) = Φ(G)/N and
hence H/Φ(H) � G/Φ(G). This means that we need only
prove the result when N = Φ(G), the general case follow-
ing by applying this to H.

Let π : G → G/Φ(G) be the quotient map. If (Xn ) is
a sequence of independent random variables uniformly
distributed on G, then the Yn = π(Xn ) are independent
and uniformly distributed on G/Φ(G). Moreover, for any
n ≥ 1, the elements (X�

1 , . . . , X
�
n ) generate G if and only

if the elements (Y �
1 , . . . , Y �

n ) generate G/Φ(G). Indeed,
this follows from the basic fact that a subset S ⊂ G gen-
erates G if and only if π(S) generates G/Φ(G) (this is
applied to all sets S = {x1 , . . . , xn} where xi is conju-
gate to Xi). This gives the result immediately from the
definition of the waiting times.
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Proposition 2.10. Let G1 , G2 be finite groups such that the
only subgroup H ⊂ G1 × G2 = G that surjects by projec-
tion to both factors is H = G. Then we have

c(G1 × G2) ≤ c(G1) + c(G2) − 1.

For example, one can take G1 , G2 to be nonisomorphic
simple groups.

Proof. With G = G1 × G2 and Xn = (Yn , Zn ) ∈ G1 ×
G2 a sequence of independent uniformly distributed ran-
dom variables, it is clear that (Yn ), (Zn ) are similarly
independent and uniformly distributed on G1 and G2 re-
spectively. We then have the inequality

τG ≤ max(τ1 , τ2) ≤ τ1 + τ2 − 1

(since τi ≥ 1 and max(m,n) ≤ n + m − 1 for integers n,
m ≥ 1), with

τ1 = min{n ≥ 1 : (Y �
1 , . . . , Y �

n ) generate G1}
and

τ2 = min{n ≥ 1 : (Z�
1 , . . . , Z

�
n ) generate G2},

which are distributed like τG1 , τG2 (indeed, if n ≥
max(τ1 , τ2), then the group generated by any elements
in X�

n = (Y �
n , Z�

n ) surjects to G1 and G2 ; hence it must
be equal to G by assumption). Taking the expectation,
we get the inequality stated.

The next result gives upper and lower estimates for
the Chebotarev invariant using smaller sets of maximal
subgroups than max(G).

Proposition 2.11. Let G be a finite group, and let M ⊂
max(G) be an arbitrary nonempty finite subset of maxi-
mal subgroups. Let

τ̃M = max
H∈M

τ̂H,

with notation as in (2–3) and

pM = ν
(
G� −

⋃
H∈max(G)−M

H�
)
. (2–11)

We then have

E(τ̃M ) =
∑

∅ �=I⊂M

(−1)|I |+1

1 − ν(
⋂

H∈I H�)
≤ c(G)

≤ E(τ̃M ) − 1 + p−1
M

and

E(τ̃ 2
M ) ≤ c2(G) ≤ E(τ̃ 2

M ) +
2 − pM

p2
M

− 1.

Proof. Define the additional waiting time

τ ∗ = min
{

n ≥ 1 | Xn /∈
⋃

H/∈M

H�
}

.

We then note the inequalities

τ̃M ≤ τG ≤ max(τ̃M , τ ∗) ≤ τ̃M + τ ∗ − 1,

where the first inequality is obvious, while the second
follows because for n = max(τ̃M , τ ∗), we know that the
group generated by (X�

1 , . . . , X
�
n ) is not contained in any

subgroup in a conjugacy class of maximal subgroups H ∈
M , and that this group also contains one element that is
not conjugate to any element in a subgroup not in M .

Now we take expectations on both sides. Observing
that by independence, τ ∗ is distributed like a geomet-
ric random variable with parameter pm given by (2–11),
we obtain the first inequalities, using Proposition 2.7
and (1–2).

Similarly, for the secondary invariant, we use the in-
equalities

τ̃ 2
M ≤ τ 2

G ≤ max(τ̃M , τ ∗)2 ≤ τ̃ 2
M + (τ ∗)2 − 1,

and get

E(τ̂ 2
M ) ≤ c2(G) ≤ E(τ̂ 2

M ) + E((τ ∗)2) − 1

= E(τ̂ 2
M ) +

2 − pM

p2
M

− 1.

The proof is complete.

We have immediately the following corollary.

Corollary 2.12. Let (Gn ) be a sequence of nontrivial finite
groups, and let νn denote the corresponding density. For
each n ≥ 1, let Mn be a nonempty subset of max(Gn ),
and assume that

lim
n→+∞ νn

( ⋃
H∈max(Gn )−Mn

H�
)

= 0, (2–12)

i.e., the proportion of elements represented by a conju-
gacy class in some subgroup in Mn goes to zero. Then we
have

c(Gn ) = E(τ̃Mn
) + o(1),

c2(Gn ) = E(τ̃ 2
Mn

) + o(1),

as n → +∞, with notation as in Proposition 2.11.

3. ABELIAN AND NILPOTENT GROUPS

In this section, we look at finite abelian and nilpotent
groups G. In fact, because nilpotent groups have the
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(characteristic) property that [G,G] ⊂ Φ(G) (see, e.g.,
[Rose 94, Theorem 11.3,(v)]), Lemma 2.9 shows that if
G is a nilpotent group, we have

c(G) = c(G/[G,G]), c2(G) = c2(G/[G,G]),

which are Chebotarev and secondary Chebotarev invari-
ants of abelian groups.

We will not use the formula from Proposition 2.5, be-
cause abelian groups tend to have many maximal sub-
groups up to conjugacy. We follow [Pomerance 01] in us-
ing another description of the Chebotarev waiting time
in the case of abelian groups.

Theorem 3.1. (Pomerance.) Let G be a finite abelian
group, and for any prime number p dividing |G|, let
rp(G) = dimF p

(G/pG) be the p-rank of G. Let δ(G) =
max rp(G) be the minimal cardinality of a generating set
of G. Then we have

c(G) = δ(G) +
∑
j≥1

(
1 −

∏
p ||G |

∏
1≤i≤rp (G)

(1 − p−(δ(G)+j−i))
)
.

In particular, for G = Z/nZ with n ≥ 2, we have

c(G) = −
∑
d|n
d �=1

µ(d)
1 − d−1 ,

and for G = F k
p , where F p = Z/pZ, with p prime and

k ≥ 1, we have

c(G) = k +
∑

1≤j≤k

1
pj − 1

.

This is [Pomerance 01, theorem] and immediate corol-
laries of it.

Here are the results for the secondary Chebotarev in-
variant that are not computed by Pomerance.

Theorem 3.2. Let G be a finite abelian group. With nota-
tion as in Theorem 3.1, we have

c2(G)

= δ(G)2 +
∑
j≥1

(2j + 2δ(G) − 1)
(

1 −
∏
p ||G |

×
∏

1≤i≤rp (G)

(1 − p−(δ(G)+j−i))
)
.

In particular, we have

c2(Z/nZ) = −
∑

2≤d|n
µ(d)

1 + d−1

(1 − d−1)2

for n ≥ 1 and

c2(F k
p ) = c(F k

p )2 +
∑

1≤j≤k

pj

(pj − 1)2 ,

for p prime and k ≥ 1.

Proof. The first result is obtained by reasoning as in
[Pomerance 01, p. 195], with r and (r + j) there replaced
by r2 and (r + j)2 . The point is that Pomerance shows
that

P((X1 , . . . , Xδ(G)+j ) generate G)

=
∏
p ||G |

∏
1≤i≤rp (G)

(1 − p−(δ(G)−rp (G)+j+i)).

To deduce the values for G = Z/pk Z, it is simpler to
use the description

τG =
k∑

j=1

Gj ,

where the Gj are independent geometric random vari-
ables with parameters pj = 1 − p−j . Concretely, they can
be defined as follows:

Gk = min{n ≥ 1 | Xn �= 0},
Gk−1 = min{n ≥ 1 | dimF p

〈XGk +n ,XGk
〉 = 2},

. . .

G1 = min{n ≥ 1 | dimF p
〈XG2 +n ,XG2 , . . . , XGk

〉 = k},

which, by independence of the (Xn ), are easily checked
to be indeed independent geometric variables with the
stated parameters.

This decomposition leads to the formula for c2(G) im-
mediately, using (1–2) and additivity of the variance of
independent random variables.

The formula of Pomerance gives a quick way to un-
derstand the limit values of Chebotarev invariants for
abelian groups with a given rank δ(G).

Corollary 3.3. (Pomerance.) For any fixed integer k ≥ 1
and any abelian finite group G with δ(G) = k, we have

k ≤ c(G) ≤ lim sup
|G |→+∞
δ(G)=k

c(G)

= k + 1 +
∑
j≥1

(
1 −

∏
1≤j≤k

ζ(j + k)−1
)
.

In particular, the Chebotarev invariants for cyclic groups
are bounded.
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Corollary 3.4. For any fixed k, we have

c(F k
p ) = k + O(p−1), c2(F k

p ) = k2 + O(p−1),

and

P(τF k
p
�= k) � p−1 ,

where the implied constants depend only on k.

This last result shows that for vector spaces over a
finite field, the Chebotarev invariant is strongly peaked
around the average, which is itself close to the dimension.

Proof. Only the last inequality needs (maybe) a bit of ex-
planation. Since τF k

p
takes positive integer values greater

than or equal to k, we have

|τF k
p
− k| ≥ 1

if τF k
p
�= k. Hence if τF k

p
�= k, we have

|τF k
p
− c(F k

p )| ≥ |τF k
p
− k| − |c(F k

p ) − k|
≥ 1 − |c(F k

p ) − k|,
and if furthermore, we have p ≥ p0 , where p0 (depending
on k) is chosen so that

k ≤ c(F k
p ) ≤ k +

1
2

for all p ≥ p0 , it follows that

{τF k
p
�= k} ⊂

{
|τF k

p
− c(F k

p )| ≥ 1
2

}

for such p, and then the Chebyshev inequality gives

P(τF k
p
�= k) ≤ 4V(τF k

p
) � p−1

for p ≥ p0 , where the implied constant depends on k. In-
creasing this constant if needed (e.g., taking it to be at
least p0), we can also claim that this inequality holds
for p ≥ 2.

Remark 3.5. In particular, for cyclic groups, the Cheb-
otarev invariant is at most, and its lim sup is, the con-
stant

2 +
∑
k≥2

(
1 − 1

ζ(k)

)
= 2.705211140105367764 . . . .

This asymptotic behavior is not without interest (and
some surprise). On the one hand, we see that c(Z/nZ) re-
mains absolutely bounded, despite the existence of cyclic
groups with many subgroups, and on the other hand, we
see that it is not always close to the minimal number of
generators.

4. A SOLVABLE EXAMPLE

The results of the previous section, as well as those we
will see in the next one, reveal (or suggest) rather small
values of the Chebotarev invariants in comparison with
the size of the groups. The following example in the solv-
able case exhibits very different behavior.

Proposition 4.1. For q a power of a prime, let

Hq =

{(
a t

0 1

)
| a ∈ F×

q , t ∈ F q

}

be the group of translations and dilations of the affine
plane F 2

q of order q(q − 1), isomorphic to a semidirect
product F q � F×

q .

(1) We have

c(Hq ) = q − q−1
∑

1 �=d|q−1

µ(d)
(1 − d−1)(1 − d−1 + q−1)

(4–1)

and

c2(Hq ) = q(2q − 1) + c2(Z/(q − 1)Z)

+
∑

1 �=d|q−1

µ(d)
1 + d−1 − q−1

(1 − d−1 + q−1)2 . (4–2)

(2) For q ≥ 2, we have

c(Hq ) = q + O(τ(q − 1)), (4–3)
c2(Hq ) = q(2q − 1) + O(τ(q − 1)),

where τ(n) is the number of positive divisors of n. In
particular, c(Hq ) ∼ q as q → +∞.

Since we have a split exact sequence

1 → F q → Hq
det−→ F×

q → 1

and the two surrounding groups are isomorphic to
F k

p , where q = pk with p prime, and to a cyclic
group Z/(q − 1)Z with Chebotarev invariants respec-
tively tending to k as p gets large and bounded, this
shows in particular that the Chebotarev invariant can
jump quite uncontrollably under extensions.

The proof will use Proposition 2.5. We start with an
elementary lemma.
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Lemma 4.2.

(1) There are q conjugacy classes in Hq ; they are given,
with representatives of them, by

gb =

(
b 0
0 1

)
, g�

b = {g ∈ Hq | det(g) = b},

|g�
b | = q,

where b ∈ F×
q − {1} and

Id =

(
1 0
0 1

)
, Id� = {Id}, u =

(
1 1
0 1

)
,

u� = {g ∈ Hq − {Id} | det(g) = 1}, |u� | = q − 1.

(2) The conjugacy classes of maximal subgroups of Hq

have representatives given by

A =

{(
a 0
0 1

)
| a ∈ F×

q

}

and

C� =

{(
a t

0 1

)
∈ Hq | a ∈ (F×

q )� and t ∈ F q

}
,

where � runs over the prime divisors of q − 1.

We omit the elementary proof, referring to
[Kowalski and Zywina 11] for details.

Proof of Proposition 4.1. First of all, in addition to the
maximal subgroups C� given by Lemma 4.2, there are
subgroups Cd for all square-free divisors d | q − 1, the
inverse image under the determinant of the subgroup Dd

of order (q − 1)/d in the cyclic group F×
q .

Given a subset I ⊂ max(Hq ), we compute the density
of conjugacy classes in

H�
I =

⋂
H∈I

H� .

If A ∈ I, then with I ′ = I − {A} and d the product of
those primes � for which C� ∈ I ′ (including d = 1 when
I ′ = ∅), we have

ν(H�
I ) =

1
d
− q−1 ,

and in particular

ν(A�) = 1 − q−1 .

Indeed, we have to find the density of those elements
of Hq that are diagonalizable with eigenvalues 1 and a ∈
Dd . These are exactly the conjugacy classes g�

b with b ∈

Dd − {1} and the trivial class, so

ν(H�
I ) =

1 + ((q − 1)/d − 1)q
q(q − 1)

=
q(q − 1)/d − (q − 1)

q(q − 1)

=
1
d
− 1

q
.

If, on the other hand, A /∈ I, then I corresponds to a
divisor d | q − 1, d �= 1, and we have

ν(H�
I ) =

1
d
,

since we must now compute the density of elements of
Hq that have det(g) ∈ Dd , and this is

q
(

q−1
d − 1

)
+ 1 + q − 1

q(q − 1)
=

1
d
.

Applying (2–1) and isolating the contribution of I =
{A} leads to (4–1) and to (4–2). To deduce (4–3) for
c(Hq ), we may assume q = pk with p an odd prime, since
for q even, we have

c(Hq ) = q + c(Z/(q − 1)Z) = q + O(1)

by Corollary 3.4. So for q odd, we write

c(Hq ) = q + c(Z/(q − 1)Z) − ∆(q) = q − ∆(q) + O(1),

where

∆(q) =
∑

1 �=d|q−1

µ(d)
1 − d−1 + q−1 .

Since 1 − d−1 + q−1 ≥ 1 − d−1 > 0, we can bound this
from above by

|∆(q)| ≤
∑


1 �=d|q−1

1
1 − d−1 ,

and then we find easily that

|∆(q)| ≤
∑
k≥0

( ∏
p |q−1

(1 + p−k ) − 1
)

≤ τ(q − 1) +
∏

p |q−1

(1 + p−1) − 2

+
∑
k≥2

( ζ(k)
ζ(2k)

− 1
)

= O(τ(q − 1)),

since the series converges absolutely. The asymptotics for
c2(Hq ) are obtained by essentially identical arguments.

The proof confirms the intuitive fact that the large
size of c(Hq ) is due directly to the existence of a fairly
small diagonal subgroup A (of index q) that contains el-
ements conjugate to a very large proportion of elements
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of Hq . So the waiting time is close to the waiting time
until a nondiagonalizable element is obtained, which is a
geometric random variable T with

P(T = k) =
1
q

(
1 − 1

q

)k−1

, for k ≥ 1.

This is confirmed by the large second moment c2(Hq ):
it corresponds to a standard deviation of the waiting
time, which is√

c2(Hq ) − c(Hq )2 ∼ q, as q → +∞,

i.e., very close to the expectation, similar to the fact that
V(T ) = q

√
1 − q−1 .

The groups G = Hq show that the inequality (2–10)
is best possible (with the maximal subgroup H = A), as
observed also in [Serre 02], so it is not surprising that
they lead to high Chebotarev invariants. Indeed, one may
wonder whether the upper bound

c(G) �
√

|G|
might not hold for all finite groups G.5 In this direction,
after the first version of this paper appeared as a preprint,
it was shown in [Kantor et al. 10, Theorem 1.2] that

c(G) �
√

|G|(log |G|),
which is not far off from this guess. Note, however, that
the proof uses the classification of finite simple groups.

In a similar vein, we have in general

τG ≤
∑

H∈max(G)

τ̂H,

and hence we obtain

c(G) ≤
∑

H∈max(G)

1
1 − ν(H�)

from (2–1). Together with (2–10), this gives an upper
bound

c(G) ≤ |G|
∑

H∈max(G)

1
|H| , (4–4)

which is close to being sharp for the groups Hq : indeed,
if q = 2� + 1 is a Sophie Germain prime, then Lemma 4.2
leads to

|Hq |
∑

H∈max(Hq )

1
|H| =

3(q + 1)
2

.

5 The trivial bound in trying to estimate c(G) in terms of |G| is
easily seen to be c(G) ≤ |G|2 .

5. SOME FINITE GROUPS OF LIE TYPE

For specific complicated nonabelian groups, the Cheb-
otarev invariant may be hard to compute exactly, except
numerically using the formulas of Proposition 2.5 when
feasible (we will give examples from computer calcula-
tions in Section 7). However, if we consider infinite fam-
ilies of nonabelian groups, it may be that the subgroup
structure is sufficiently well known, simple, and regular
that one can derive asymptotic information. In fact, us-
ing results like Proposition 2.11, it is not needed for this
purpose to have complete control over all maximal sub-
groups. We illustrate this first with the simplest family
of simple groups of Lie type.

Theorem 5.1.

(1) For p prime, we have

c(SL(2, F p)) = c(PSL(2, F p)) = 3 + O(p−1)

and

c2(SL(2, F p)) = c2(PSL(2, F p)) = 11 + O(p−1).

(2) For all k ≥ 2, we have

P(τPSL(2,F p ) = k) =
1

2k−1 + O(p−1),

where the implied constant depends on k.

Note that the limit of c(SL(2, F p)) is not the minimal
number of generators of SL(2, F p), which is 2.

For the proof, we will not use the formula of Propo-
sition 2.5, although this could be done at least to prove
(1). Instead, we use [Serre 72, Proposition 19].

Lemma 5.2. (Serre.) Let p ≥ 5 be a prime number. As-
sume that G ⊂ SL(2, F p) is a subgroup such that the fol-
lowing hold:

(1) The group G contains an element s such that
Tr(s)2 − 4 is a nonzero square in F p , and such that
Tr(s) �= 0.

(2) The group G contains an element s such that
Tr(s)2 − 4 is not a square in F p , and such that
Tr(s) �= 0.

(3) The group G contains an element s such that
Tr(s)2 ∈ F p is not in {0, 1, 2, 4}, and is not a root
of X2 − 3X + 1.

Then we have G = SL(2, F p).

Proof of Theorem 5.1. We first notice that we need only
consider the case of SL(2, F p), since PSL(2, F p) has the
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same invariants, as follows from Lemma 2.9 and the well-
known fact that {±I} is in the Frattini subgroup of
SL(2, F p) (see, e.g., [Serre 98, IV-23]).

We assume p ≥ 5. Let τ = τSL(2,F p ) denote the corre-
sponding waiting time, and let τ1 , τ2 , τ3 denote the wait-
ing times for conjugacy classes satisfying the conditions
(1), (2), and (3) in Lemma 5.2, e.g.,

τ1 = min{n ≥ 1 : s = X�
n has Tr(s) �= 0

and Tr(s)2 − 4 is in (F×
p )2}.

Let also τ ∗
1 , τ ∗

2 be the waiting times for conditions (1)
and (2) without the condition Tr(s) �= 0. Note that (1)
and (2) are exclusive conditions. Moreover, each τi is a
geometric random variable with parameters, respectively

p1 =
1
2

+ O(p−1), p2 =
1
2

+ O(p−1), p3 = 1 + O(p−1),

(5–1)
and for τ ∗

1 , τ ∗
2 , the parameters are also

p∗1 =
1
2

+ O(p−1), p∗2 =
1
2

+ O(p−1),

as can be checked by looking at tables of conju-
gacy classes in SL(2, F p) (e.g., in [Fulton and Harris 91,
p. 71]).

We then have

max(τ ∗
1 , τ ∗

2 ) ≤ τp ≤ max(τ1 , τ2 , τ3),

where the right-hand inequality comes from Lemma 5.2
and the left-hand inequality is due to the fact that the
Borel subgroup

B =

{(
x a

0 x−1

)}
⊂ SL(2, F p)

intersects every conjugacy class satisfying (1) (so that
τp ≥ τ ∗

2 ) and the nonsplit Cartan subgroup

Cns =

{(
a b

εb a

)}
⊂ SL(2, F p)

intersects every conjugacy class satisfying (2), where ε ∈
F×

p is a fixed nonsquare element (so that τp ≥ τ ∗
1 ).

By applying Proposition 2.5 to compute the expecta-
tion and second moment on the two extreme sides, we
obtain the desired asymptotics

3 + O(p−1) ≤ E(τp) ≤ 3 + O(p−1),
11 + O(p−1) ≤ E(τ 2

p ) ≤ 11 + O(p−1).

To prove (2), fix some k ≥ 2. We define

τ ∗
p = max(τ ∗

1 , τ ∗
2 ), τ ′

p = max(τ1 , τ2 , τ3),

and notice that we have the equality of events

{τp = k} = {τp = τ ′
p = k} ∪ {τp = k < τ ′

p},
which is of course a disjoint union. Then we note that

P(τp = k < τ ′
p) ≤

∑
1≤j≤k

P(τ ∗
p = j, τ ′

p > j).

But clearly, if τ ∗
p = j and τ ∗

p < τ ′
p , then either one of

the conjugacy classes (X�
1 , . . . , X

�
j ) has trace zero, or oth-

erwise we must have τ ′
p = τ3 > j ≥ 2. In the first case,

since all Xn have the same uniform distribution, the
probability is at most

jP(Tr(X�
1) = 0) � jp−1

that p ≥ 2 for all p (again by looking at conjugacy classes,
for example). In the second case, we have

P(τ3 > j) ≤ P(τ3 ≥ 2) � p−2 .

Combining this with the equality of events we found,
it follows that for k fixed, we have

P(τp = k) = P(τp = τ ′
p = k) + O(p−1),

where the implied constant depends on k.
Next we note that

{τ ′
p = k} = {τp = τ ′

p = k} ∪ {τ ′
k = p, τp < k},

again a disjoint union. As above, we find that

P(τ ′
k = p, τp < k) ≤

k−1∑
j=1

P(τ ∗
p = j < τ ′

p) � p−1 ,

where the implied constant depends on k, and hence we
have finally

P(τp = k) = P(τ ′
p = k) + O(p−1),

and the result now follows easily: first, by arguments al-
ready used, we have

P(τ ′
p = k) = P(max(τ1 , τ2) = k) + O(p−1),

and then we are left with a coupon collector problem with
two coupons of roughly equal probability by (5–1). This
gives

P(max(τ1 , τ2) = k)

= pk−1
1 p2 + pk−1

2 p1 = 2
(

1
2

+ O(p−1)
)k

=
1

2k−1 + O(p−1)

for p ≥ 2, the implied constant depending on k.



Kowalski and Zywina: The Chebotarev Invariant of a Finite Group 49

Remark 5.3. Recent results (announced in
[Fulman and Guralnick 03]) should lead to a simi-
lar good understanding of c(G(F q )) when G is a fixed
(almost simple) algebraic group over Q . Indeed, the
cited results should also be applicable to situations
with rank going to infinity, which are analogues of the
symmetric and alternating groups that we consider now.

6. SYMMETRIC AND ALTERNATING GROUPS

We now come to the case of the symmetric groups Sn

and alternating groups An . Here we have the following
result, which is a precise formulation of a result essen-
tially conjectured by Dixon [Dixon 92, abstract], follow-
ing McKay.6

Theorem 6.1. For n ≥ 1, we have

c(Sn ) � 1, c(An ) � 1, c2(Sn ) � 1, c2(An ) � 1.

In fact, there exists a constant c > 1 such that for all
n ≥ 1, we have

E(cτSn ) � 1, E(cτA n ) � 1.

The proof is based on the following difficult result
from [�Luczak and Pyber 93], improving earlier results in
[Dixon 92].

Theorem 6.2. (Łuczak and Pyber.) For any ε > 0, there
exists a constant C depending only on ε such that

P((X�
1 , . . . , X

�
m ) generate Sn ) > 1 − ε

for all m ≥ C and all n ≥ 1. The same applies to An .

Proof of Theorem 6.1. We need only prove that the ex-
ponential moments E(cτn ) are bounded for some c > 1,
where τn = τGn

with Gn = Sn (the An case is similar).
From Theorem 6.2, there exists m ≥ 1 such that

P((Y �
1 , . . . , Y �

m ) do not generate Sn ) ≤ 1
2

(6–1)

for any family of independent, uniformly distributed ran-
dom variables Yi on Gn .

Now let k ≥ 1 be given; we can partition the set
{1, . . . , k − 1} into �(k − 1)/m� ≥ 0 subsets of size m and

6 This conjecture is imprecisely formulated in [Dixon 92], where the
“expected number of elements needed to generate Sn invariably”
seems to mean any r(n) for which P(c(Sn ) > r(n)) → 0.

a remainder, and we observe that if τn = k, then for each
of these subsets I, we have

P
(
(X�

i ), i ∈ I
) ≤ 1

2
,

by independence and (6–1). Since all those sets are dis-
joint, we get

P(τn = k) ≤
(

1
2

)�(k−1)/m �
≤ 21−(k−1)/m

for k ≥ 1, and then, for any c ≥ 1, we have

E(cτn ) =
∑
k≥1

ckP(τn = k) ≤ 21+1/m
∑
k≥1

(c21/m )k ,

which converges and is independent of n for every c with
1 < c < 21/m .

In view of this, the following question seems natural.

Question 6.3. Is it true that for all c > 1, we have

E(cτSn ) � 1

for n ≥ 1 (and similarly for An )?

Another natural question, also suggested by Dixon, is
the following.

Question 6.4. Do the sequences (c(Sn )) and (c(An )) con-
verge as n → +∞? If they do, can their limits be com-
puted?

Our guess is that the answer is positive. In fact, we now
present a heuristic model that suggests this and predicts
the value of the limit for An . We do this by first applying
Corollary 2.12 to a suitable “essential” set of maximal
subgroups of symmetric groups of An . This is again pro-
vided by [�Luczak and Pyber 93].

Theorem 6.5. (Łuczak and Pyber.) For n ≥ 1, let Sn be the
set of g ∈ Sn such that g is contained in a subgroup G of
Sn , distinct from An , and such that G acts transitively
on {1, . . . , n}. Then we have

lim
n→+∞ νn (Sn ) = 0,

where νn (A) = |A|/|Sn | is the uniform density on the
symmetric group.

Corollary 6.6. For n ≥ 1 and 1 ≤ i < n/2, let

Hi,n =
{
g ∈ Sn | g · {1, . . . , i} = {1, . . . , i}}

be the subgroup of Sn leaving {1, . . . , i} invariant. Let
H ′

i,n = Hi,n ∩ An . Then the Hi,n , respectively H ′
i,n , are
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maximal subgroups of Sn , respectively An . Moreover, let

Mn = {An} ∪ {Hi,n | 1 ≤ i < n/2} ⊂ max(Sn ),
M ′

n = {H ′
i,n | 1 ≤ i < n/2} ⊂ max(An ).

As in Proposition 2.11, let τ̃n , respectively τ̃ ′
n , be the

waiting time before conjugacy classes in each subgroup of
Mn , respectively M ′

n , have been observed. Then we have

c(Sn ) = E(τ̃n ) + o(1), c2(Sn ) = E(τ̃ 2
n ) + o(1)

as n → +∞, and similarly

c(An ) = E(τ̃ ′
n ) + o(1), c2(An ) = E((τ̃ ′

n )2) + o(1).

Proof. It is known that the Hi,n are (representatives of)
the conjugacy classes of maximal intransitive subgroups
of Sn . Thus, we find by the definition of Sn that⋃

H∈max(Sn )−Mn

H� = Sn ,

and hence the result follows immediately from Corol-
lary 2.12 and Theorem 6.5, which provides us with the
assumption (2–12) as required.

We note now that an element σ ∈ Sn is conjugate to
an element of Hi,n ⊂ Sn if and only if when expressed as
a product of disjoint cycles of lengths �j (σ) ≥ 1, 1 ≤ j ≤
(σ), say, it has the property that a sum of a subset of
the lengths is equal to i: for some J ⊂ {1, . . . , (σ)}, we
have ∑

j∈J

�j (σ) = i.

This applies equally to an element σ in An : the ele-
ment is conjugate to H ′

i,n ⊂ An if and only if the property
above is true for its cycle lengths computed in Sn (al-
though these cycle lengths do not always characterize the
conjugacy class of σ in An ).

In particular, conjugacy classes (σ�
1 , . . . , σ

�
k ) in S�

n or
A�

n generate a transitive subgroup of Sn or An if and only
if n (which is the sum of all lengths) is the only such sum
occurring for all σj . (Indeed, if i < n occurs as a common
subsum, we can assume that i ≤ n/2, and then we can
select elements in each conjugacy class all of which belong
to Hi,n , so that the conjugacy classes cannot invariably
generate a transitive subgroup, and conversely.)

We come now to the model in which n → +∞. The
distribution of the set of lengths of random permutations
is a well-studied subject in probabilistic group theory,
and this allows us to make a guess as to the existence
and value of the limit. For i ≥ 1, consider the map

i : Sn → {0, 1, . . . }

sending σ to the number of cycles of length i in its
decomposition as a product of disjoint cycles. Let sn ,
σn be uniformly distributed random variables on Sn

and An , respectively. Well-known results going back
to [Goncharov 44] show that for fixed i, as n → +∞,
the random variables i(σn ) converge in law to a
Poisson random variable with parameter 1/i, i.e., we
have

lim
n→+∞P(i(σn ) = k) = e−1/i 1

k!ik
, for fixed k ≥ 0,

and the limits for distinct values of i are independent,
i.e., for any fixed finite set I of positive integers, we have

lim
n→+∞P(i(σn ) = ki for all i ∈ I) =

∏
i∈I

e−1/i 1
iki ki !

.

More precisely, this is proved (and with much
more precise results) for symmetric groups in,
e.g., [Arratia and Tavaré 92, Theorem 1] and
[Arratia et al. 03, Theorem 1.3]. The case of al-
ternating groups can be deduced from this using
methods in [Lloyd and Shepp 66, Section 2]; see
[Kowalski and Zywina 11] for details.

It seems therefore reasonable to use a model of Poisson
variables to predict the limit of Chebotarev invariants of
alternating groups. For this purpose, let A be the set
of sequences (�i)i≥1 of nonnegative integers; we denote
the ith component of � ∈ A by i(�). Let νA be the in-
finite product (probability) measure on A such that the
ith component �i is distributed like a Poisson random
variable with parameter 1/i. This set A is meant to be
like the set of conjugacy classes of an infinite symmetric
group, and indeed, from the above, we see that for any
finite set I of positive integers and any ki ≥ 0 defined for
i ∈ I, we have

lim
n→+∞P(i(σn ) = ki for all i ∈ I)

= νA({� ∈ A | i(�) = ki, i ∈ I}).

Now consider an infinite sequence (Xk )k≥1 of A-valued
independent random variables, identically distributed ac-
cording to ν. We look at the following waiting time:

τA = min
{

k ≥ 1 |
⋂

1≤j≤k

S(Xj ) = {+∞}
}

,

where for � ∈ A, we denote by S(�) ⊂ {0, 1, 2, . . . , } ∪
{+∞} the set of all sums∑

i≥1

ibi , where 0 ≤ bi ≤ i(�)

(note the usual shift of notation from our description
of the case of fixed n: the sequence of lengths of cycles
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FIGURE 1. Distribution of the Chebotarev invariant for groups of order 720.

occurring in a permutation is replaced by the sequence
of multiplicities of each possible length). Then our guess
for the limit of c(An ) is that

lim
n→+∞ c(An ) = E(τA ).

We hope to return to this question in a future work.

7. NONABELIAN GROUPS: NUMERICAL
EXPERIMENTS

Some values of the Chebotarev invariants for some non-
abelian finite groups are presented in Tables 1 through 5.
Figure 1 shows the distribution of the Chebotarev invari-
ant for groups of order 720. The computations are feasible
even for fairly large and complicated nonabelian groups,
because they may have few conjugacy classes of maxi-
mal subgroups and not too many conjugacy classes. For
instance, the Weyl group W (E8) (one of our motivating
examples) has 9 conjugacy classes of maximal subgroups
and 112 conjugacy classes. However, note that this rep-
resents quite deep knowledge about groups, and more-

over, to perform the computation in reasonable time, very
efficient algorithms must exist to deal with conjugacy
classes.

The computations were done with Magma (see
[Bosma et al. 97]). More data, as well as the script
we used, can be found in the longer version
[Kowalski and Zywina 11] of this paper. The names of
the “sporadic” groups in the tables should be self-
explanatory (e.g., W (R) denotes the Weyl group of a
root system of type R; Sz denotes Suzuki groups). The
group Rub at the end of the table is the Rubik group
(the subgroup of S48 that gives the possible moves on
Rubik’s Cube).

8. ARITHMETIC CONSIDERATIONS

In this short section, we indicate the (expected) number-
theoretic connections of our work.

First, let K be a Galois extension of Q with group
G. For each prime p that is unramified in K, we have
a well-defined Frobenius conjugacy class Frp,K ∈ G� . For
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n Order c(Sn ) c2(Sn )

2 2 2.000000. . . 6.000000. . .
3 6 3.800000. . . 19.32000. . .
4 24 4.498380. . . 25.91538. . .
5 120 4.331526. . . 23.50351. . .
6 720 5.610738. . . 37.63260. . .
7 5040 4.115230. . . 21.20184. . .
8 40320 4.626289. . . 25.71722. . .
9 362880 4.250355. . . 22.49197. . .
10 3628800 4.624666. . . 25.76898. . .
11 39916800 4.173683. . . 21.86294. . .
12 479001600 4.583705. . . 25.11338. . .
13 6227020800 4.213748. . . 22.21319. . .
14 87178291200 4.508042. . . 24.57963. . .
15 1307674368000 4.365718. . . 23.39257. . .
16 20922789888000 4.461633. . . 24.12713. . .
17 355687428096000 4.282141. . . 22.79488. . .
18 6402373705728000 4.531784. . . 24.67680. . .
19 121645100408832000 4.308469. . . 23.01145. . .
20 2432902008176640000 4.497047. . . 24.37207. . .
21 51090942171709440000 4.391209. . . 23.61488. . .
22 1124000727777607680000 4.477492. . . 24.29632. . .
23 25852016738884976640000 4.352364. . . 23.37533. . .
24 620448401733239439360000 4.523388. . . 24.57409. . .

TABLE 1. Chebotarev invariants of Sn .

Name Order c(G) c2(G)

Z/17Z 17 1.062500. . . 1.195312. . .
C8 ⊂ H17 34 3.094697. . . 11.81350. . .
C4 ⊂ H17 68 4.890000. . . 35.53580. . .
C2 ⊂ H17 136 8.880953. . . 138.3764. . .

H17 272 17.21053. . . 562.3851. . .
PSL(2, F 16) 4080 3.200912. . . 12.73727. . .

7 8160 4.055261. . . 20.84364. . .
8 16320 4.067118. . . 20.58582. . .

A17 177843714048000 4.089704. . . 21.12890. . .
S17 355687428096000 4.282141. . . 22.79488. . .

TABLE 2. Chebotarev invariants of transitive groups of degree
17.

c c2

n Order PSL(n, F 2) PSL(n, F 2)

4 20160 4.939097. . . 31.98434. . .
5 9999360 4.238182. . . 25.64374. . .
6 20158709760 4.456089. . . 27.20052. . .
7 163849992929280 4.335957. . . 26.54874. . .
8 5348063769211699200 4.465723. . . 27.53266. . .
9 699612310033197642547200 4.460433. . . 27.64706. . .

TABLE 3. Chebotarev invariants of PSL(n, F 2 ).

simplicity, we write Frp,K = 1 when p is ramified in K.
The Chebotarev density theorem says that

lim
y→+∞

|{p ≤ y : Frp,K = C}|
π(y)

=
|C|
|G| , (8–1)

where C ∈ G� is a fixed conjugacy class of G and π(y)
is the usual prime-counting function, i.e., the number of
primes p ≤ y.

Now fix a real number y large enough that every con-
jugacy class of G is of the form Frp,K for some p ≤ y. For
each i ≥ 1, select uniformly and independently a random
prime p from the set {p : p ≤ y} and define X�

i,y = Frp,K .
We thus have a sequence of independent and identically
distributed random variables X(y) = (X�

i,y ) in G� . As

p Order c(B3(F p)) c2(B3(F p))

7 12348 10.07528. . . 150.8724. . .
11 133100 16.38777. . . 402.7223. . .
13 316368 18.85106. . . 551.0363. . .
17 1257728 25.31072. . . 978.0196. . .
19 2222316 27.79352. . . 1204.483. . .
23 5888828 34.28491. . . 1805.763. . .
29 19120976 43.27249. . . 2885.634. . .
31 26811900 45.75644. . . 3268.081. . .
37 65646288 54.75057. . . 4678.007. . .
41 110273600 61.26132. . . 5801.515. . .
43 140250348 63.74680. . . 6339.956. . .

TABLE 4. Chebotarev invariants of the Borel sub-
group of SL(3, F p ).
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Name Order c(G) c2(G)

W (G2) = D12 12 4.31515. . . = 717/165 23.45407. . .
W (C4) 384 4.864890. . . 29.10488. . .
W (F4) 1152 5.417656. . . 35.12470. . .

GL(2, F 7) 2016 3.767768. . . 17.29394. . .
A5 × A5 3600 5.374156. . . 35.41628. . .
W (C5) 3840 4.863533. . . 28.13517. . .
M11 7920 4.850698. . . 29.72918. . .

GL(3, F 3) 11232 4.110394. . . 22.77077. . .
G2(F 2) 12096 5.246204. . . 34.24515. . .
Sz(8) 29120 3.101639. . . 11.92233. . .

W (C6) 46080 5.792117. . . 39.56093. . .
W (E6) 51840 4.470824. . . 23.93050. . .

Sp(4, F 3) 51840 4.401859. . . 24.03143. . .
PGL(3, F 4) 60480 3.763384. . . 19.49865. . .

M12 95040 4.953188. . . 29.53947. . .
J1 175560 3.423739. . . 14.76364. . .

M22 443520 4.164445. . . 22.70981. . .
J2 604800 4.031298. . . 19.07590. . .

W (C7) 645120 4.632612. . . 25.54504. . .
PSp(6, F 2) 1451520 5.270439. . . 34.84139. . .

W (E7) 2903040 5.398250. . . 36.04850. . .
G2(F 3) 4245696 4.511630. . . 24.06106. . .

M23 10200960 4.030011. . . 20.98580. . .
W (C8) 10321920 4.928996. . . 28.53067. . .

T 17971200 4.963701. . . 32.54160. . .
Sz(32) 32537600 2.755449. . . 9.107751. . .

HS 44352000 4.484432. . . 25.68549. . .
J3 50232960 4.304616. . . 23.42082. . .

W (C9) 185794560 4.716359. . . 26.41344. . .
M24 244823040 4.967107. . . 29.84845. . .

Sp(4, F 7) 276595200 3.501127. . . 14.83811. . .
Ω+ (4, F 31) 442828800 3.829841. . . 17.60003. . .
Ω−(4, F 31) 443751360 3.003133. . . 11.02613. . .

W (E8) 696729600 4.194248. . . 20.79438. . .
McL 898128000 4.561453. . . 27.45649. . .

Sp(4, F 9) 3443212800 3.409108. . . 14.04475. . .
He 4030387200 3.488680. . . 14.31119. . .

G2(F 5) 5859000000 3.855868. . . 18.68766. . .
Sp(6, F 3) 9170703360 3.871692. . . 18.90072. . .

Co3 495766656000 4.535119. . . 25.99974. . .
Co2 42305421312000 3.865290. . . 17.74829. . .

Ω(5, F 31) 409387254681600 3.277801. . . 12.90986. . .
Rub 43252003274489856000 5.668645. . . 36.78701. . .

TABLE 5. Chebotarev invariants of some other groups.
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usual, we define the waiting time

τX (y ),G = min{n ≥ 1 | (X�
1,y , . . . , X�

n,y ) generate G}
∈ [1, +∞].

Using the Chebotarev density theorem, one obtains
easily

lim
y→+∞E

(
τX (y ),G

)
= c(G).

Therefore, in an imprecise way, c(G) can also be
thought of as the expected number of “random” primes
p needed for Frp,K to generate G = Gal(K/Q ). Indeed,
this is our motivation for using the name “Chebotarev
invariant.”

Of course in practice, one usually considers the (non-
random) sequence Fr2,K , Fr3,K , Fr5,K , Fr7,K , . . . . We now
explain, informally, what can be expected to happen in
that situation. The deterministic analogue of the Cheb-
otarev waiting time is given by

τ(K) = min{k ≥ 1 | the first k conjugacy classes
Fr2,K , . . . , Frpk ,K generate G},

where pk is the kth prime.
However, for a fixed K/Q , the value of τ(K) might

diverge considerably from c(G). So we suppose we have
some family K of finite Galois extensions of Q (or another
base field), all (or almost all) of which have Galois group
Gal(K/Q ) � G and a fixed finite group, and that for all
values of some parameter x ≥ 1, we have finite subfami-
lies Kx (that exhaust K as x → +∞) and some averaging
process for invariants of the fields in K, denoted by Ex

(for instance, one might take

Ex(α(K)) =
1

|Kn |
∑

K∈Kx

α(K),

but other weights, involving multiplicities, etc., might be
better adapted). Using this, we can define Chebotarev
invariants for the family K by averaging:

c(Kx) = Ex(τ(K)), c2(Kx) = Ex(τ(K)2).

The basic arithmetic question is then this: for a given
family, is it true that c(Kx) is, for x sufficiently large at
least, close to c(G) (and similarly for the secondary Cheb-
otarev invariant)? The basic reason one can expect this
to be the case is the Chebotarev density theorem (8–1).

We want to point out a few difficulties that definitely
arise in trying to make this precise.

First of all, quantifying the Chebotarev density the-
orem is hard : it almost immediately runs into issues re-
lated to the generalized Riemann hypothesis; even in the

seemingly trivial case in which G = Z/2Z, the basic ques-
tion of estimating the size of the smallest nonsplit prime
p in terms of the discriminant is unsolved.

This is a problem because if we sum with uniform
weight, a single “bad” field K0 can destroy any chance of
approaching the Chebotarev invariant. Indeed, note that
in that case,

Ex(τ(K)) ≥ 1
|Kx |kmin(K0), (8–2)

where

kmin(K) = min{k ≥ 1 | Frp,K �= 1}

is the index of the first nontrivial Frobenius conjugacy
class. In the current state of knowledge, it can be that
there exists K0 with

kmin(K0) > disc(K0)A

for some constant A > 0 (see [Lagarias et al. 79]); on the
other hand, if the family K is defined as that of split-
ting fields of monic polynomials of degree n, and the
subfamily Kx is that of polynomials of height ≤ x, then
we know that most K ∈ K have Galois group Sn , that
|Kx | = (2x + 1)n if x is an integer, and that the dis-
criminant is obviously often also at least a power of x.
Thus (8–2) might already be bad enough to preclude any
comparison. On the other hand, on the Riemann hypoth-
esis, we have

kmin(K) � (log disc(K))2

(where the implied constant depends on G), and the
problem would then be alleviated.

Another issue is that one cannot expect, as stated, to
have

lim
x→+∞ c(Kx) = c(G)

for interesting families for the simple reason that the
statistic of small primes is typically not the uniform one,
i.e., if we fix a prime p, we cannot expect to have

lim
x→+∞Ex(1{Frp , K =c� }) = νG (c�),

even if we assume that all the fields involved are unram-
ified at p.

On the other hand, it is well known that if p is in-
creasing, the discrepancy between the distribution of the
factorization patterns of square-free polynomials modulo
p and the density of conjugacy classes disappears: we
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have
1
pn

|{f ∈ F p [X] | f square-free of degree n

with Frf = c�}| ∼ νG (c�)

uniformly for all conjugacy classes c� ∈ G = Sn .
This suggests that it is likely that one can prove

some relevant results: one would consider some increasing
starting point s(x) ≥ 2 and a modified waiting time

τx(K) = min{k | the first k conjugacy classes Frp,K

with p ≥ s(x) generate G}
and hope to prove (possibly under the generalized Rie-
mann hypothesis, possibly unconditionally after throwing
away a few “bad” fields) that

lim
x→+∞Ex(τx(K)) = c(G),

for suitable s(x).
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