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Let C be the image of a canonical embedding φ of the Atkin–
Lehner quotient X+

0 (N) associated with the Fricke involution
wN . In this note we exhibit some relations among the rational
points of C. For each g = 3 (respectively the first g = 4) curve C

we found that there are one or more lines (respectively planes)
in Pg−1 whose intersection with C consists entirely of rational
Heegner points or the cusp point, where N is prime. We also
discuss an explanation of the first nonhyperelliptic exceptional
rational point.

1. INTRODUCTION

Fix an integer N > 1 and let X0(N) be the moduli space
of (ordered) pairs (E, E′) of generalized elliptic curves E

and E′ linked by a cyclic isogeny ϕ : E −→ E′ of degree
N . Consider the Atkin–Lehner quotient curve X+

0 (N)
defined by the involution wN of X0(N) induced by map-
ping an isogeny ϕ : E −→ E′ to its dual ϕ̂ : E′ −→ E.
The quotient curve X+

0 (N) has been studied by Gal-
braith [Galbraith 99], Mazur [Mazur 78], and Momose
[Momose 87], among others. Galbraith [Galbraith 96]
studied the rational points of a canonical image C ⊂
Pg+

N−1 of X+
0 (N) of genera g+

N = 3, 4, and 5, for many
prime levels N . In each case he locates the cusp and ratio-
nal Heegner points, and moreover, for N = 137 and 311
he exhibits a rational point that is neither a cusp point
nor a Heegner point. In this note we exhibit an explicit
set of hyperplanes {H1, . . . , Hs} in Pg+

N−1 such that the
intersection of each Hi with C (over a fixed algebraic clo-
sure Qal of Q) consists entirely of rational points of C, for
each prime level N such that g+

N = 3, i.e., N = 97, 109,
113, 127, 139, 149, 151, 179, and 239, and the first prime
level N such that g+

N = 4, i.e., N = 137. For the latter
case we found a further plane defined by three different
rational Heegner points that also contains the exceptional
point found by Galbraith [Galbraith 96, p. 88].

The material is organized as follows. Section 2 in-
troduces our basic notation as well as some background
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material. The collinearity relations are discussed in Sec-
tion 3, while the coplanarity relations are discussed in
Section 4.

2. PRELIMINARIES

Let X be an algebraic curve defined over a field k and
let Ω1(X) be the k-vector space of its holomorphic dif-
ferentials. Also let {ω1, . . . ωg} be a basis of Ω1(X). The
integer g is called the genus of X . The canonical map φ

of X in projective space Pg−1 is the morphism

X
φ→ Pg−1, P �→ (ω1(P ) : · · · : ωg(P )).

It is well known that the map φ is an embedding if the
genus g exceeds 2 and X is not hyperelliptic. Now fix
an integer N > 1 and recall that X0(N) = Γ0(N) \ H∗,
where H∗ = {τ ∈ C : �(τ) > 0} ∪ P1(Q), and Γ0(N)
consists of the matrices μ =

(
α β
γ δ

)
∈ SL2(Z) such that

γ ≡ 0 (mod N), and each μ acts as usual as a fractional
linear transformation τ �→ ατ+β

γτ+δ .
Now let S2(Γ0(N)) be the C-vector space of modular

forms f : H −→ C of weight 2 and trivial character with
respect to Γ0(N). It is well known that f �→ f dτ defines
an isomorphism from S2(Γ0(N)) onto Ω1(X0(N)). Also,
the involution wN is induced by the action of the matrix
WN =

(
0 N−1 0

)
on H. So the canonical map of X+

0 (N)
into projective space is given by a basis{

f1, . . . , fg+
N

}
of the +1-eigenspace S+

2 (Γ0(N)) of S2(Γ0(N)) with re-
spect to the action of the matrix WN on modular forms.

It is a classical fact that the above basis may be chosen
such that each Fourier expansion fk(τ) =

∑∞
n=1 a(n)qn

has only rational integer coefficients, where as usual
q = e2πiτ and τ ∈ H. Moreover, it is possible to
use the Fourier expansions of certain sets of products
fk1fk2 · · · fks to compute projective equations

F1(f1, . . . , fg+
N

) = 0,

...

Fr(f1, . . . , fg+
N

) = 0,

for the image C of the canonical map φ. In particular, the
coefficients of each polynomial Fk are rational integers.
Elkies [Elkies 98] and Galbraith [Galbraith 96] have gath-
ered experimental evidence that suggests that the basis
{f1, . . . , fg+

N
} may be chosen such that the coefficients of

each Fk are of size O(log N). For example, Elkies [Elkies

98, p. 63] obtained (in a slightly different notation) the
affine equation1

y3 − (x2 − x+ 2)y2 +(x3 + x2 −x + 3)y + x2 + x− 1 = 0,

for an image C of the genus-three curve X+
0 (239) in P2,

where

x =
f1

f3
= q−1 + q5 + q6 + · · · ,

y =
f2

f3
= −q + q3 + q4 − q6 − 2q7 − q8 + q9 + 2q10 + · · · ,

and each fj ∈ S+
2 (N) is determined by

f1 = q − q2 − q5 − q7 + q8 − 2q9 − q12 + · · · ,

f2 = −q3 + q4 + q5 − q8 − q10 + q11 + q12 + · · · ,

f3 = q2 − q3 − q6 − 2q8 + q9 − q10 + q12 + · · · .

From now on, let us assume that N is prime. Using
[Gross 87, Proposition 3.1] and the Riemann–Hurwitz
formula, we see that

g+
N =

1
2

(gN + 1 − H(N)) ,

where

H(N) =

{
1
2h(−4N), if N ≡ 1 (mod 4),
1
2 (h(−N) + h(−4N)), otherwise.

Here h(D) is the class number of the imaginary quadratic
order of discriminant D, and gN is the genus of X0(N),
which is given by gN =

⌊
N+1
12

⌋
, unless N = 12q + 1 in

which case g = q − 1.
In particular, using explicit upper bounds on the class

number h(D) it may be found that the primes N such
that X+

0 (N) has genus 3 are indeed N = 97, 109, 113,
127, 139, 149, 151, 179, and 239. Similarly, it may be
found that there are exactly five prime numbers N such
that X+

0 (N) has genus g = 4, namely N = 137, 173,
199, 251, and 311. From now on, we assume that the
genus g+

N of X+
0 (N) is either 3 or 4. For each of these

14 levels N , Galbraith [Galbraith 96] proved that the
curve X+

0 (N) is nonhyperelliptic, exhibited equations for
C, and located the cusp as well as the rational points
predicted by the theory of complex multiplication, i.e.,
the rational Heegner points.

Following Gross [Gross 84], Heegner points may be
succinctly defined as points (E, E′) ∈ X+

0 (N) such that

1There is an equation for X+
0 (239) with smaller coefficients than

the one obtained by Elkies [Elkies 98, p. 63], as shown in Table 9.
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OD = End(E) = End(E′) > Z, where OD is the imagi-
nary quadratic order of discriminant D < 0. In particu-
lar, using results of Gross [Gross 84], the fact that N > 89
implies that there are no rational Heegner points of dis-
criminant D = −Np on X+

0 (N) if p is prime. Thus the
discriminants of rational Heegner points that may arise
are only D = −3, −4, −7, −8, −11, −12, −16, −19, −27,
−28, −43, −67, −163.

3. GENUS THREE: COLLINEARITY RELATIONS

Let us assume that N is one of the nine primes N such
that X+

0 (N) has genus g+
N = 3. Let

{f1, f2, f3}

be a basis of S+
2 (N) with rational integral Fourier coeffi-

cients. The associated canonical map defines an embed-
ding φ of X+

0 (N) into P2 defined over Q. The image C

of φ in P2 has degree 4. In other words, the lines L in
the projective plane P2 will intersect the curve C in four
points if we take into account intersection multiplicities.

Usually, we expect that the line defined by two rational
points P1 and P2 of C (which we define to be the tangent
line of C at say P1 in case P1 = P2) will intersect C at
two further points whose field of definition is a quadratic
extension of Q. However, we shall exhibit for each of the
levels under consideration a nonempty set of lines

S = {L1, . . . , Ls}

such that the intersection of each Li with C (over a fixed
algebraic closure Qal of Q) consists entirely of rational
points. We obtained S by computing L∩C for each line
L defined by a pair P, Q of different rational points on C,
and also for each tangent line L at a rational point on C.
So S is maximal, i.e., it must contain all lines L such that
L∩C ⊂ C(Q). We show each set of collinearity relations
in a diagram (Figures 1 through 9 with associated Tables
1 through 9). of the real locus of the affine equation for
C defined by z = 1 (depicting parts of the line z = 0
when necessary). The figures are self explanatory; the
intersection multiplicity ∂ of Li with C at a point P ∈
Li∩C is indicated only when necessary. To ease notation
we regard the cusp i∞ as labeled by D = 0.

All rational Heegner points P on X+
0 (N) may be iden-

tified as follows. Clearly, we may choose, among all bases
{f1, f2, f3} as above, one such that, say, the coordinate
function x = f1/f3 has no poles on X+

0 (N) except at
the cusp. This and the fact that the q-expansion of x is
integral imply that x(P ) lies in Z. Since the q-expansion

−4 −8 (∂ = 2)

−16

−12

0 (∂ = 2) −11 −43

−163

−3

−27

FIGURE 1. Relations for N = 97.

f1 = q − q2 − q3 − 2q5 − 2q7 + 3q10 − 2q11 + q12 + · · ·
f2 = q3 − q4 − 2q5 − q6 + q7 + 4q8 − 2q9 + 3q10 + q12 + · · ·
f3 = −q2 + q3 + 2q4 − q5 + q6 + q7 − q8 − 3q9 + q10 + · · ·

yx3 − (y + 1)x2 − (y3 + y − 1)x + y2 − y = 0

0 (1 : 0 : 0) −3 (2 : −1 : 1) −4 (1 : −1 : 0)
−8 (0 : 1 : 0) −11 (0 : 0 : 1) −12 (0 : 1 : 1)

−16 (1 : 1 : 0) −27 (1 : 1 : −1) −43 (1 : 0 : 1)
−163 (5 : 2 : −3)

TABLE 1. Level N = 97.

of x converges at every τ ∈ H, it is possible to determine
x(P ) by approximating it to within 1

2 . If the q-expansion
of the other coordinate function does not converge at
some Heegner rational point P , then we may repeat this
process (keeping in mind the changes of coordinates be-
tween the different choices of basis {f1, f2, f3}) until we
pin down every P .

f1 = q − q2 − q3 − q5 − 2q7 − q9 + 2q10 − 5q11 + 2q12 + · · ·
f2 = q4 − 2q5 − q6 + 3q7 − 2q8 + q9 + q10 + q11 + · · ·

f3 = q2 − q3 − q4 − q5 − q6 + 2q7 − q8 + 3q9 − 3q10 + · · ·

yx3 + yx2 − (y3 + y2 − 2y + 1)x + (y3 − y) = 0

0 (1 : 0 : 0) −3 (−2 : 2 : 3) −4 (0 : −1 : 1)
−7 (0 : 1 : 0) −12 (0 : 0 : 1) −16 (0 : 1 : 1)

−27 (−1 : 1 : 0) −28 (−2 : 1 : 2) −43 (1 : 1 : 0)

TABLE 2. Level N = 109.
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−27
−7 −43

−16 ∂ = 2

−3

−28

−12

−4

0 (∂ = 3)

FIGURE 2. Relations for N = 109.

f1 = q2 − q3 − q4 − 2q6 − q8 + 4q9 + q10 − q11 + 3q12 + · · ·
f2 = q3 − q4 − 2q5 + q7 + 2q8 − 3q9 + 2q10 + 3q11 + · · ·
f3 = q − q2 − q3 − q5 + q6 − 3q7 − q9 − q10 + 2q11 − q12 + · · ·

(y − 1)x3 − x2 − (y3 − y2 − y)x + y3 + y2 + y = 0

0 (0 : 0 : 1) −4 (1 : 1 : 0) −7 (−1 : 0 : 1)
−8 (0 : 1 : 0) −11 (1 : 0 : 0) −16 (−1 : 1 : 0)

−28 (1 : −2 : 1) −163 (2 : 1 : 2)

TABLE 3. Level N = 113.

−16

−11

−1630

−7

−28

−8

∂ = 2−4

FIGURE 3. Relations for N = 113.

f1 = −q2 + 2q4 + q5 + 2q6 + q7 − 2q8 − q9 − 2q11 − 3q12 + · · ·
f2 = −q2 + q3 + q4 + q6 + q8 − 2q9 + 2q10 − 3q11 − 2q12 + · · ·
f3 = q − q3 − q4 − 3q5 − 2q6 − 2q7 + q9 + q10 + 2q11 + · · ·

x4 − (y − 1)x3 + (2y2 − y − 1)x2 − (2y3 + 2y2 + 1)x + y3 + y = 0

0 (0 : 0 : 1) −3 (3 : 1 : −3) −7 (−1 : 0 : 1)
−12 (1 : 1 : −1) −27 (0 : 1 : 0) −28 (1 : 0 : 1)
−43 (1 : 1 : 0) −67 (2 : 1 : −3)

TABLE 4. Level N = 127.

−27 −43

−7 0 −28

−3

−12
−67

FIGURE 4. Relations for N = 127.

f1 = −q2 + q3 + q4 + q6 − q7 + q8 − 2q9 + 2q10 + q11 + · · ·
f2 = q − q3 − q4 − 3q5 − q6 − q8 − 2q11 + q12 + q14 + · · ·
f3 = −q2 + 2q4 + q5 + q6 + q7 − q8 − q9 + q10 − 2q11 + · · ·

x3 + (y2 − 2y − 2)x2 + (y3 − 2y2 + 2)x − y3 + y

0 (0 : 1 : 0) −3 (3 : 1 : 2) −8 (0 : 0 : 1)
−12 (−1 : 1 : 0) −19 (1 : 0 : 0) −27 (0 : −1 : 1)
−43 (0 : 1 : 1)

TABLE 5. Level N = 139.

f1 = q − q3 − q4 − 2q5 − q6 − 2q7 − q10 + q14 + 2q15 + · · ·
f2 = q3 − q4 − q5 − q7 + q8 − 2q9 + 2q10 + 2q11 + · · ·
f3 = −q2 + q4 + 2q5 + 2q6 + q8 − q9 − q10 − 3q11 + · · ·

yx3 − x2 − (y3 − 2y2 − y + 1)x + y3 + y2 − y − 1 = 0

0 (1 : 0 : 0) −7 (0 : −1 : 1) −4 (−1 : 1 : 0)
−16 (1 : 1 : 0) −19 (0 : 1 : 0) −28 (0 : 1 : 1)
−67 (2 : 1 : −2)

TABLE 6. Level N = 149.
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−19

−43

−8

−3

−27
∂ = 2

0

−12

FIGURE 5. Relations for N = 139.

0

−28

−67

−7

−16
−19 −4

FIGURE 6. Relations for N = 149.

f1 = q4 − q5 − q6 − 2q8 + q9 + q10 + 2q11 + q12 + 3q13 + · · ·
f2 = −q2 + q3 + q4 + q8 − q9 + 3q10 − 2q11 − 2q13 + q14 + · · ·
f3 = −q + q3 + q4 + 2q5 + q6 + q7 + q8 + q9 + q11 + · · ·

x4 + (2y + 1)x3 − (y − 1)x2 − (y3 + y2 + 2y − 1)x + y3

0 (0 : 0 : 1) −3 (1 : 3 : 2) −7 (0 : 1 : 0)
−12 (1 : −1 : 0) −67 (−1 : −1 : 1) −27 (−1 : 0 : 1)
−28 (−2 : 1 : 2) −163 (−1 : 1 : 3)

TABLE 7. Level N = 151.

0 (∂ = 3)

−163

−28

−3

−7
−12 ∂ = 2

−27

−67

FIGURE 7. Relations for N = 151.

f1 = q4 − q5 − q6 − q8 + q9 + 2q11 − q13 + q14 + q15 − 3q16 + · · ·
f2 = q − q2 − q4 − 2q7 + 2q8 − 3q9 + q10 − 3q11 + q12 + · · ·
f3 = q2 − q3 − q5 − q6 + q7 − 2q8 + 2q9 − 2q10 + q11 + · · ·

(y − 1)x3 + (y2 − y + 1)x2 + (y3 + y2 + y)x − y−

0 (0 : 1 : 0) −7 (1 : 0 : 0) −8 (0 : −1 : 1)
−11 (1 : −1 : 1) −28 (1 : −2 : 2) −163 (1 : −5 : 3)

TABLE 8. Level N = 179.

−163

−11
−28

−8

−7

0 (∂ = 3)

FIGURE 8. Relations for N = 179.
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f1 = −q3 + q4 + q5 − q8 − q10 + q11 + q12 + q13 + 2q15 + · · ·
f2 = −q2 + q4 + q5 + q6 + q8 − q9 + q11 + q13 + q14 + · · ·
f3 = q − q4 − 2q5 − q6 − q7 − q9 − q11 − q12 − 3q13 − q15 + · · ·

x4 − (y − 1)x3 + x2 + (y3 − y2 + 1)x − y4 + y3 + y2 = 0

0 (0 : 0 : 1) −7 (1 : 1 : 0) −19 (1 : 1 : −1)
−28 (1 : −1 : 0) −43 (−1 : 0 : 1)

TABLE 9. Level N = 239.

−19 (∂ = 2)

0

−28

−43

−7

FIGURE 9. Relations for N = 239.

4. GENUS FOUR: COPLANARITY RELATIONS

We study the rational points of the first genus-four
Atkin–Lehner quotient curve X+

0 (N), i.e., level N = 137.
It is known that X+

0 (N) is not hyperelliptic. So C may
be expressed as the intersection of a quadric and a cubic
surface in P3. (See [Galbraith 96, p. 12] and the ref-
erence contained therein, i.e., [Hartshorne 77, Example
IV.5.2.2].) Given a basis {f1, f2, f3, f4} of S+

2 (Γ0(N))
(with integer coefficients) as above, these surfaces may
be found by computing a basis Bd for the Q-vector space
Vd of forms α(w, x, y, z) of degree d (and the form 0) such
that α(f1, f2, f3, f4) = 0, for d = 2 and 3. (The quadric
may be found by picking the only element of B2, say F .
Then the cubic surface may be obtained by picking an
element G ∈ B3 such that the intersection of F = 0 and
G = 0 has dimension one.) Table 10 shows the first few
terms of the q-expansion of f1,f2, f3, and f4 and the
affine equation corresponding to z = 1 for each of these
surfaces. The table also identifies the cusp, the ratio-
nal Heegner points, and an exceptional rational point, in
terms of projective coordinates (w : x : y : z).

Let Π(P1, P2, P3) be the plane defined by given non-
collinear rational points P1, P2, and P3 of C. Since the
degree of C is 6, in general, the set-theoretic intersec-
tion C ∩ Π(P1, P2, P3) will contain three further points,
whose field of definition is expected to be a cubic ex-
tension of Q. However, it turns out that by computing
the set-theoretic intersection C ∩ Π(P1, P2, P3) and the
intersection multiplicity

(C, Π(P1, P2, P3))P

of each point P ∈ C ∩Π(P1, P2, P3), for each relevant set
of rational points of the form {P1, P2, P3}, it is possible
to find four different planes Π1, Π2, Π3, and Π4 in P3

defined by

Π1 : x − y = 0,

Π2 : x + z − 2y = 0,

Π3 : x + z + w − y = 0,

Π4 : x = 0,

such that each of these planes intersects C at exactly six
rational points with multiplicities given by Table 10.

We claim that if a plane Π is such that the intersection
Π ∩ C consists entirely of rational points, then Π must
be one of the above four planes. To see this, it suffices to
consider the plane determined by the tangent line TP at
P and a point Q not in TP and also the osculating plane
OR at R, for each P , Q, and R in C(Q). From [Willmore
59, p. 16] we may see that on each affine open subset U

of P3 we have

TP ∩ U = {v(P )t + P ∈ U : t ∈ Qal},

where, all in standard notation,

v = ∇(F ) ×∇(G)

and
OR ∩ U = {S ∈ U : S · (b(R)) = 0} + R,

where
b = (v∇(v)) × v.

Our claim follows by straightforward computations on
each relevant U . Further calculations show that the in-
tersection of Li,j = Πi ∩ Πj with C has degree 3, and
also, Li,j ∩C ⊂ C(Q), for (i, j) = (1, 2), (2, 3), (3, 4), and
(4, 1), where the local intersection numbers are

(C, Li,j)P = 2

for (i, j, P ) = (4, 1, 0) and (C, Li,j)P = 1 otherwise.
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f1 = −q + q2 + q4 + q5 + 3q7 − 2q8 + 2q9 − 2q10 + 3q11 + · · ·
f2 = −q4 + q5 + q6 + q7 + q8 − 2q9 − 5q11 + q12 − q13 + · · ·
f3 = q3 − q4 − q5 − q6 + 2q8 − 2q9 + 3q10 − q11 + 2q12 + · · ·

f4 = q − 2q4 − 3q5 − 3q6 − 3q7 + 2q8 − q9 + 4q10 + 4q12 + · · ·

wx − yw + y2 − y = 0

x3 − 2(y − 1)x2 − (y2 + y − 2)x + w2 + (y + 2)w + 1 = 0

0 (−1 : 0 : 0 : 1) −4 (0 : −1 : 1 : 1)
−7 (−1 : 0 : 1 : 2) −8 (1 : 0 : 0 : 0)

−11 (−1 : 1 : 1 : 1) −16 (−2 : 1 : 1 : 1)
−19 (0 : −1 : 0 : 1) −28 (1 : 0 : 1 : 0)

(exceptional point) (−15 : 8 : 12 : 17)

0 −4 −7 −8 −11 −16 −19 −28

Π1 2 2 1 1
Π2 1 1 2 1 1
Π3 1 2 1 1 1
Π4 3 1 1 1

TABLE 10. Level N = 137.

Note that the Heegner rational point of discriminant
D = −4 is not contained in any of the planes Πi. How-
ever, the plane defined by x + 2z + 2w − y = 0 con-
tains this point, the cusp, the rational Heegner point
with D = −11, the exceptional point, and two further
points defined over the real quadratic field Q(

√
2).

5. CONCLUDING REMARKS

It is not hard to see that for most of the levels N we
have discussed, the exhibited relations among rational
points of X+

0 (N) may be heuristically explained by the
fact that the naive heights of the rational points of C

are rather small. So it seems worthwhile to extend the
above list of examples to higher levels, hoping that more
extensive experimental evidence will help us to grasp the
nature of this phenomenon. This might shed some light
on the nature of X+

0 (N)(Q) for prime levels N , which is
extremely interesting, as expressed in [Mazur 78].

Via the Gross–Kohnen–Zagier theorem [Gross et al.
87], all these relations translate into relations among co-
efficients of a suitable weight- 3

2 modular form of level 4N .

So one open question that we would like to raise
now is whether the collinearity/coplanarity relations dis-
cussed here are telling us something meaningful about
the Fourier expansion of certain modular forms of half-
integral weight.
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