
The Cubic Chan–Chua Conjecture
Shaun Cooper

CONTENTS

1. Introduction
2. Notation
3. Main Results
4. Discussion
Acknowledgments
References

2000 AMS Subject Classification: Primary 11E25;
Secondary 05A19, 11F11, 33E05

Keywords: Eisenstein series, theta function

A conjecture that expresses the nth power of the cubic theta

function a(q) =
∑

j

∑
k qj2+jk+k2

in terms of Eisenstein series
is formulated. It is an analogue of four conjectures of H. H.

Chan and K. S. Chua for powers of ϕ2(q) =
∑

j

∑
k qj2+k2

.
With the help of a computer, the conjecture is shown to be
true for 6 ≤ n ≤ 100. It is conjectured that the result contin-
ues to hold for n > 100.

1. INTRODUCTION

Let n be a positive integer and let q be a complex number
that satisfies |q| < 1. The Bernoulli numbers Bn are
defined by

∞∑
n=0

Bn
un

n!
=

u

eu − 1
.

Let

E2n(q) = 1 − 4n

B2n

∞∑
j=1

j2n−1qj

1 − qj
,

and put

S2n = S2n(q) =
22nE2n(q2) − E2n(q)

22n − 1
.

Let

ϕ(q) =
∞∑

j=−∞
qj2

.

One of the results in the epic work of S. C. Milne [Milne
02, (1.25)] is

ϕ24(−q) =
1
9

(
17S4S8 − 8S2

6

)
.

Inspired by this, H. H. Chan and K. S. Chua [Chan and
Chua 03] discovered and proved the result

ϕ32(−q) =
1

4725
(
11056S4S12 − 12400S6S10 + 6069S2

8

)

and made the following general conjecture.
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Conjecture 1.1. (Chan and Chua.) For n ≥ 2 there exist
rational constants cn,j, depending only on n and j, such
that

ϕ8n(−q) =
n∑

j=2

cn,jS2jS4n−2j .

Chan and Chua showed (see Lemma 2.2 in [Chan and
Chua 03] and the subsequent comments) that ϕ4(−q) and
S2n(q) may both be expressed as polynomials in two vari-
ables. Hence, given enough computing power, the truth
of Conjecture 1.1 can be established for any particular
value of n by verifying a polynomial identity. As a con-
sequence, Conjecture 1.1 is known to be true for a large
number of values of n. For example, H. Y. Lam [Lam 06,
p. 174] reports that Conjecture 1.1 is true for 2 ≤ n ≤ 86.

Chan and Chua made conjectures of a similar nature
for ϕ8n+2(−q), ϕ8n+4(−q), and ϕ8n+6(−q), and some ad-
ditional conjectures have since been given by Lam [Lam
06]. Apart from the computational evidence and some
results of Ö. Imamoğlu and W. Kohnen [Imamoğlu and
Kohnen 05], almost no progress has been made in proving
Conjecture 1.1 or any of the other conjectures.

The purpose of this short article is to formulate an
analogue of Conjecture 1.1 for the cubic theta function
a(q). That is, we consider powers of

∑
j

∑
k qj2+jk+k2

instead of powers of
∑

j

∑
k qj2+k2

. The main result of
this work is Theorem 3.1, which is shown to be true for
6 ≤ n ≤ 100. Conjecture 3.2 predicts that Theorem 3.1
continues to hold for n > 100.

2. NOTATION

Let n be a nonnegative integer and let p ≡ 3 (mod 4)
be prime. The generalized Bernoulli numbers Bn,p are
defined by

∞∑
n=0

Bn,p
un

n!
=

u

epu − 1

p−1∑
j=1

(
j

p

)
eju.

The generalized Eisenstein series Fn is defined by

Fn = Fn,p(q)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − 2
B1,p

∞∑
j=1

(
j

p

)
qj

1 − qj
, if n = 1,

En(q) + (−p)n/2En(qp)
1 + (−p)n/2

, if n is even,

1 − 2n

Bn,p

∞∑
j=1

(
j

p

)
jn−1qj

1 − qj

−(−p)(n−1)/2 2n

Bn,p

∞∑
j=1

jn−1

1 − qpj

p−1∑
�=1

(
�

p

)
qj�,

if n ≥ 3 is odd.

The cubic theta function is defined by

a = a(q) =
∞∑

j=−∞

∞∑
k=−∞

qj2+jk+k2
.

For the rest of this work we take p = 3.

3. MAIN RESULTS

The main results of this work are Theorem 3.1 and Con-
jecture 3.2.

Theorem 3.1. With a and Fn as defined in Section 2, we
have

a = F1, a2 = F2, a3 = F3, a4 = F4, a5 = F5,

a6 = F2F4, a7 = F2F5, a8 = F 2
4 , a9 = F4F5,

a10 = −41
63

F2F8 +
104
63

F4F6,

a11 = −809
535

F2F9 +
1344
535

F4F7,

a12 = −88
35

F2F10 +
123
35

F4F8,

a13 = −118208
33075

F2F11 +
151283
33075

F4F9.

Furthermore, if 14 ≤ n ≤ 100, there exist rational con-
stants cn,j depending only on n and j such that

an =
∑

1≤j≤ n
6 +1

cn,jF2jFn−2j . (3–1)

Proof: The results for an for 1 ≤ n ≤ 5 are classical. For
example, S. Ramanujan knew the results for 1 ≤ n ≤ 4
[Andrews and Berndt 05, pp. 402–403], and the results
for 3 ≤ n ≤ 5 were given by H. Petersson [Petersson
82, p. 90]. For a more recent proof of the results for
1 ≤ n ≤ 5 and generalizations, see [Chan and Cooper
08]. The results for 6 ≤ n ≤ 9 are trivial consequences of
the results for n = 2, 4, and 5.

We shall give a detailed proof for the case n = 16. The
proofs for other values of n in the range 10 ≤ n ≤ 100
are similar. The identity we seek to establish is

a16 = c16,1F2F14 + c16,2F4F12 + c16,3F6F10. (3–2)

If we expand both sides in powers of q and equate coef-
ficients of qi for 0 ≤ i ≤ 2, we obtain a system of linear
equations whose solution is

c16,1 = −7471748
1142505

, c16,2 =
1261075
228501

, c16,3 =
6578
3255

.

(3–3)
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Next, let

c(q) = 3q1/3
∞∏

j=1

(1 − q3j)3

(1 − qj)

and define

x = x(q) =
c3(q)
a3(q)

.

It is known (for example, see [Cooper 06, Lemma 13.8
and Theorem 13.11]) that

Fm,3(q)
am(q)

= pm(x), (3–4)

where pm(x) is a polynomial in x of degree at most m/3.
(It is also true that pm(1 − x) = pm(x), but this is not
crucial to the proof.) The polynomials pm(x) may be
computed explicitly by setting

pm(x) =
∑

0≤j≤m/3

bm,jx
j ,

and equating the first 1+�m/3� terms in the q-expansion
of (3–4) to determine the numbers bm,j. For 1 ≤ m ≤ 15,
the results are

p1(x) = p2(x) = p3(x) = p4(x) = p5(x) = 1,

p6(x) = 1 − 8
13

y, p7(x) = 1 − 8
7
y,

p8(x) = 1 − 64
41

y, p9(x) = 1 − 1536
809

y,

p10(x) = 1 − 24
11

, p11(x) = 1 − 4488
1847

y,

p12(x) = 1 − 134272
50443

y +
3200
50443

y2,

p13(x) = 1 − 160544
55601

y +
12160
55601

y2,

p14(x) = 1 − 3400
1093

y +
512
1093

y2,

p15(x) = 1 − 23070808
6921461

y +
5568256
6921461

y2,

where y = x(1 − x).
Observe that for the values of c16,j in (3–3) we have

c16,1p2(x)p14(x)+c16,2p4(x)p12(x)+c16,3p6(x)p10(x) ≡ 1.

(3–5)
Multiplying (3–5) by a16 and using (3–4), we obtain
(3–2). This completes the proof of Theorem 3.1 in the
case n = 16. Proofs for the other values 10 ≤ n ≤ 100
may be given similarly, and the calculations have been
carried out using a computer.

Conjecture 3.2. If n > 100, there exist rational constants
cn,j depending only on n and j such that the identity
(3–1) holds.

Remark 3.3.
The identity (3–1) provides a formula for the num-

ber of representations of a positive integer by the form∑n
j=1 x2

j + xjyj + y2
j in terms of convolutions of divisor

sums.

4. DISCUSSION

The procedure described in the proof of Theorem 3.1
has been automated to carry out similar calculations for
(in principle) any value of n. The resulting computer
program was executed for 14 ≤ n ≤ 100. For each value
of n, the coefficients cn,j were calculated for 1 ≤ j ≤
n/6 + 1, and the polynomial

∑
1≤j≤n

6 +1

cn,jp2j(x)pn−2j(x)

was computed. In each case, the polynomial simplified
identically to 1. The numbers cn,j are enormous. For
example, c100,1 is a rational number whose numerator
and denominator contain 650 and 639 digits, respectively.
Furthermore, the unsimplified polynomial

17∑
j=1

c100,jp2j(x)p100−2j(x)

requires 63 screens of output to display, yet (according
to the computer algebra program) simplifies identically
to 1.

In [Chan and Cooper 08] it was shown that an −Fn is
a sum of �n/6� linearly independent cusp forms. More-
over, for 14 ≤ n ≤ 100, computer calculations show that
the products F2jF2n−2j , 1 ≤ j ≤ n

6 +1, are linearly inde-
pendent and span the same space as the space spanned
by Fn and the �n/6� cusp forms. This is why there are⌊

n
6

⌋
+1 terms in the sum in (3–1). All of an, Fn, F2jFn−2j

and the cusp forms are modular forms of weight n for
the modular group Γ0(3); the precise details are given in
[Chan and Cooper 08, Section 2].

Undoubtedly, an approach that is different from the
method in Section 3 will be required to prove Conjec-
ture 3.2. Until then, we believe that we have presented
significant computational evidence in support of the con-
jecture.
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