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Serre’s conjecture relates two-dimensional odd irreducible Ga-
lois representations over F̄p to modular forms. We discuss a
generalization of this conjecture to higher-dimensional Galois
representations. In particular, for n-dimensional Galois repre-
sentations that are irreducible when restricted to the decompo-
sition group at p, we strengthen a conjecture of Ash, Doud, and
Pollack. We then give computational evidence for this conjec-
ture in the case of three-dimensional representations.

1. INTRODUCTION

In [Ash et al. 02], a conjecture connecting n-dimensional
Galois representations over F̄p with arithmetic coho-
mology classes is described and computational evidence
for the conjecture is given for three-dimensional Galois
representations. This conjecture is a generalization of
Serre’s conjecture [Serre 87] relating odd irreducible two-
dimensional Galois representations and modular forms.

An interesting case of the conjecture occurs when the
restriction of the representation to a decomposition group
at p remains irreducible. In this case we say that the rep-
resentation is supersingular, and note that its restriction
to inertia at p may be diagonalized in terms of niveau-n
fundamental characters.

In [Ash et al. 02], several examples of such representa-
tions with n = 3 were given, and computational evidence
for the conjecture was presented. Unfortunately, the lev-
els of all of the examples were fairly high, and computa-
tional limitations did not allow exhaustive calculations to
test whether the conjecture predicted all possible weights.

We have now been able to complete these computa-
tions, and have discovered that the original conjecture
failed to predict several weights that do in fact seem to
work. In this paper, we modify the conjecture based on
this computational evidence, and give additional compu-
tational evidence for the modified conjecture.
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In addition to the computational evidence given here,
we note that Florian Herzig [Herzig 06] has come up with
a description of the predicted weights for a supersingular
three-dimensional Galois representation based on decom-
position of characteristic-p reductions of certain charac-
teristic zero modules. The two predictions arrived at in-
dependently both yield the same set of weights, at least
for what Herzig calls “regular” weights. Herzig’s results
will appear elsewhere—in this paper we concentrate on
the computational evidence for the conjecture.

2. STATEMENT OF THE CONJECTURE

In this section we give brief definitions of the terms
needed to state the conjecture, together with a state-
ment of the conjecture and a comparison of the current
version of the conjecture with an older version.

For each prime q we fix a decomposition group Dq in
GQ together with the standard filtration of ramification
subgroups Iq,i for 0 ≤ i inside this decomposition group.
A Frobenius element Frobq at q is then an element of Dq

that generates Dq/Iq,0 and acts as the qth-power map on
residue fields.

2.1 Hecke Operators and Attached Eigenvectors

Fix a prime p and positive integers n and N , with
(N, p) = 1, and let Γ0(N) be the subgroup of matrices
in SLn(Z) whose first row is congruent to (∗, 0, . . . , 0)
modulo N . Let SN be the subsemigroup of matrices
with integer entries in GLn(Q) satisfying the same con-
gruence condition. Then (Γ0(N), SN ) is a Hecke pair
[Ash and Stevens 86], and we define the Hecke algebra
H(N) to be the commutative F̄p-algebra of double cosets
Γ0(N)\SN/Γ0(N), as in [Ash and Stevens 86]. For each
prime � � N and each k between 0 and n, we denote by
T (�, k) the double coset with representative a diagonal
matrix with k 1’s followed by n− k �’s.

We note that the Hecke algebra H(N) acts on homol-
ogy and cohomology of Γ0(N) with coefficients in any
F̄p[SN ]-module. We then make the following definition:

Definition 2.1. Let V be an H(pN)-module, and let v ∈
V be a simultaneous eigenvector of all the T (�, k) for
which � � N and 0 ≤ k ≤ n. Denote the eigenvalue
of T (�, k) acting on v by a(�, k) ∈ F̄p. Let ρ : GQ →
GLn(F̄p) be a Galois representation unramified outside
pN , and suppose that for all � � pN ,

n∑

k=0

(−1)k�k(k−1)/2a(�, k)Xk = det(I − ρ(Frob�)X).

Then we say that ρ is attached to v, or that v corresponds
to ρ.

Note that the negative of the coefficient ofX in det(I−
ρ(Frob�)X) is the trace of ρ(Frob�), and the coefficient of
Xn is (−1)n times the determinant of ρ(Frob�). For n =
3, we will call the coefficient of X2 in det(I−ρ(Frob�)X)
the cotrace of ρ(Frob�) and denote it by T2(ρ(Frob�)).

In our conjecture, the H(pN)-module used will be the
cohomology group H3(Γ0(N),W ), with some coefficient
module W . The values of N and W will be determined
by the weight, level, and nebentype of the representation,
defined below.

2.2 Level and Nebentype

Let ρ : GQ → GLn(F̄p) be a Galois representation (i.e., a
continuous homomorphism with respect to the profinite
topology on GQ and the discrete topology on GLn(F̄p)).
Let M be an n-dimensional F̄p-vector space on which GQ

acts via ρ.
For each prime q �= p, we set gi = |ρ(Iq,i)| and

nq =
∞∑

i=0

gi

g0
dimM/M Iq,i .

The nq are nonnegative integers, and only finitely many
of them are nonzero.

Definition 2.2. Let ρ : GQ → GLn(F̄p) be a Galois repre-
sentation. Then the level N = N(ρ) of ρ is

N =
∏

q �=p

qnq .

Note that the level is a positive integer, relatively
prime to p, and divisible by exactly those primes q �= p

at which ρ is ramified.

Definition 2.3. Let ρ : GQ → GLn(F̄p) be a Galois repre-
sentation of level N . Then det ρ factors as ωkε, where ω
is the mod-p cyclotomic character, ε is unramified at p,
and 0 ≤ k ≤ p−2. By class field theory we may consider
ε as a character ε : (Z/NZ)× → F̄×

p . We say that ε is the
nebentype of ρ.

2.3 Weights

The generalization of the predicted weight of a Galois
representation that we will use is an irreducible GLn(Fp)-
module. We begin by describing the set of such mod-
ules, together with certain relationships between irre-
ducible modules. We then describe our prediction of



Doud: Supersingular Galois Representations and a Generalization of a Conjecture of Serre 121

which weights correspond to a given Galois representa-
tion.

2.3.1 Parameterization by p-restricted n-tuples. We
begin with a definition.

Definition 2.4. An n-tuple (an−1, . . . , a0) is p-restricted
if for 1 ≤ i ≤ n − 1, we have 0 ≤ ai − ai−1 ≤ p − 1 and
0 ≤ a0 ≤ p− 2.

Proposition 2.5. [Green 80, Doty and Walker 92] The set
of all irreducible F̄p[GLn(Fp)]-modules is in one-to-one
correspondence with the set of p-restricted n-tuples.

The correspondence of Proposition 2.5 is made explicit
by assigning a p-restricted n-tuple (an−1, . . . , a0) to the
unique simple submodule of the dual Weyl module with
highest weights (an−1, . . . , a0). We denote this module
by F (an−1, . . . , a0).

2.3.2 Prime and Dagger Notation. We make the fol-
lowing definition.

Definition 2.6. Given an n-tuple of integers
(an−1, . . . , a0), we define (an−1, . . . , a0)′ to be the set of
all p-restricted n-tuples (bn−1, . . . , b0) such that each bi
satisfies bi ≡ ai (mod p− 1).

Note that (an−1, . . . , a0)′ always contains at least one
n-tuple, but it can contain more. For example, if n = 3
and p = 11, then (1, 0, 0)′ = {(1, 0, 0), (11, 10, 0)}, and
(10, 0, 0)′ = {(0, 0, 0), (10, 0, 0), (10, 10, 0), (20, 10, 0)}.

Definition 2.7. Given a p-restricted n-tuple of integers
(an−1, . . . , a0), we define (an−1, . . . , a0)† to be the set of
n-tuples (bn−1, . . . , b0) in (an−1, . . . , a0)′ such that each
bi − bi−1 is greater than or equal to ai − ai−1.

As an example, when n = 3 and p = 11, we have
(10, 0, 0)† = {(10, 0, 0), (20, 10, 0)}.

Definition 2.8. We define

F (an−1, . . . , a0)′

= {F (bn−1, . . . , b0) : (bn−1, . . . , b0) ∈ (an−1, . . . , a0)′}

and

F (an−1, . . . , a0)†

= {F (bn−1, . . . , b0) : (bn−1, . . . , b0) ∈ (an−1, . . . , a0)†}.

2.3.3 Extra Weights. In the case n = 3, we make the
following definition.

Definition 2.9. Let (a2, a1, a0) be a p-restricted triple.
Then if a2 − a0 < p− 2, we define the extra weight asso-
ciated with F (a2, a1, a0) to be

F (b2, b1, b0) = F
(
p− 2 + a0, a1, a2 − (p− 2)

)

if a2 ≥ p− 2, while if a2 < p− 2, we define

F (b2, b1, b0) = F
(
2(p− 2) + a0 + 1, a1 + (p− 1), a2 + 1

)
.

For a detailed discussion of extra weights, and a mo-
tivation for their definition, see [Ash et al. 02, Remark
3.4].

2.4 Predicted Weights

In order to predict the weights corresponding to a super-
singular Galois representation, we diagonalize its restric-
tion to inertia. By [Ash et al. 02, Theorem 2.16], this
diagonalization takes the form

ρ|Ip,0 ∼

⎛

⎜⎝
ψm

n,1

. . .
ψm

n,n

⎞

⎟⎠ ,

for some m, where ψn,1, . . . , ψn,n are the fundamental
characters of niveau n [Serre 72, p. 267]. Our prediction
for the weight will depend on the exponent m in this
decomposition. Note that by permuting the fundamental
characters, we may multiply m by pk for 0 ≤ k ≤ n− 1.
In addition, since the fundamental characters have order
pn−1, we see that m is defined only modulo pn−1. Our
conjecture will be invariant under these choices.

We let a0, . . . , an−1 be any integers such that

m ≡ a0 + a1p+ · · ·+ an−1p
n−1 (mod pn − 1).

Note that multiplying m by p permutes the set of ai

cyclically, and that the ai depend only on the congruence
class of m modulo pn − 1. Note also that we may add a
multiple of p− 1 to each of the ai to get another n-tuple
satisfying the same relation.

Define integers {bn−1, . . . , b0} by relabeling the ai so
that each bi satisfies bi ≥ bi−1. We will then define ci =
bi−i. If the n-tuple (cn−1, . . . , c0) is p-restricted, then we
predict all of the weights in F (cn−1, . . . , c0)†. Otherwise,
we do not predict any weights. If n = 3, we also predict
any extra weights attached to these predicted weights.
The difference between this prediction for the weights of
ρ and the prediction of [Ash et al. 02] is the main point
of the paper.
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2.5 Statement and Consequences of the Conjecture

We make the following conjecture.

Conjecture 2.10. Let ρ : GQ → GLn(F̄p) be a supersingu-
lar Galois representation such that the image of complex
conjugation is similar to an upper triangular matrix with
alternating 1’s and −1’s on the diagonal. Let N be the
level of ρ and ε the nebentype. If V is any one of the
weights predicted for ρ in Section 2.4, then ρ is attached
to an eigenclass in H∗(Γ0(N), V ⊗ ε).

Note that a supersingular representation is automati-
cally irreducible. In addition, note that the condition on
the image of complex conjugation is automatically sat-
isfied if p = 2, or if n = 2, 3 and complex conjugation
is a nonscalar matrix (in other words, if ρ is odd in the
sense of [Ash et al. 02, p. 522]). Finally, we note that for
n = 2, if ρ is attached to any cohomology class in level N
and coefficient module V ⊗ ε, then it is attached to one
in H1(Γ0(N), V ⊗ ε), and for n = 3, if ρ is attached to
any cohomology class in level N and coefficient module
V ⊗ε, then it is attached to one in H3(Γ0(N), V ⊗ε) [Ash
and Sinnott 00, p. 6].

If n = 3, the computational evidence would support
extending the conjecture to claim that only the predicted
weights yield eigenclasses corresponding to ρ. In higher
dimensions, however, it is not clear exactly what the ana-
logue of the extra weights should be.

The following theorems follow from the conjecture,
with proofs similar to [Ash et al. 02, Theorems 3.6 and
3.10].

Theorem 2.11. If Conjecture 2.10 is true for a represen-
tation ρ : GQ → GLn(F̄p), then it is true for ρ⊗ωs, where
ω is the cyclotomic character modulo p, and s ∈ Z.

Theorem 2.12. If Conjecture 2.10 is true for a represen-
tation ρ : GQ → GLn(F̄p), then it is true for the contra-
gredient representation ρ∗ given by composing ρ with the
transpose-inverse automorphism of GLn(F̄p).

2.6 Comparison with the Original Conjecture

The original conjecture (see [Ash et al. 02]) for super-
singular representations predicted exactly the same level
and nebentype for a given ρ, but had a different formula
for the predicted weights. The original prediction in-
volved writing m as m = an−1 + an−2p + · · · + a0p

n−1

with 0 ≤ ai − a0 ≤ p − 1 for all i. We then sort and

rename the ai as bn−1, . . . , b0, with bi ≥ bi−1. The
conjecture then predicts that some nonempty subset of
F (bn−1−(n−1), . . . , b0−0)′ will yield a cohomology class
corresponding to ρ.

Note first that the conditions on the ai in the origi-
nal conjecture are much more restrictive than those in
the new conjecture. Hence, the new conjecture tends
to predict more weights. For most three-dimensional
representations (in particular, when m = a + bp + cp2,
with 0 ≤ a, b, c ≤ p − 1, and no two of a, b, c equal or
consecutive), it is easy to see that the original conjec-
ture predicted three weights (plus possible extra weights),
while the modified conjecture predicts nine weights (six
directly, plus three extra weights).

In addition, however, the original conjecture makes no
restriction that (bn−1−(n−1), . . . , b0) be p-restricted, so
occasionally, the original conjecture can predict a weight
not predicted by the new conjecture. Nevertheless, in all
the examples of three-dimensional Galois representations
investigated so far, the weights predicted by the original
conjecture are a proper subset of those predicted by the
new conjecture. In particular, all the computational ev-
idence available for the original conjecture also supports
the strengthened conjecture.

2.7 Computational Evidence for the Conjecture

In order to provide computational evidence for the con-
jecture, we begin by finding three-dimensional supersin-
gular Galois representations and determining their level,
nebentype, and predicted weights. We then compute the
appropriate cohomology, and determine the action of the
Hecke operators T (�, k) for all � < 50. If we find a si-
multaneous eigenvector with the correct eigenvalues (for
all � < 50) to correspond to ρ, then we claim to have
evidence for the conjecture.

We remark that for computations in characteris-
tics two and three, we do not actually compute
H3(Γ0(N), V ⊗ ε), but rather a group that is closely re-
lated. We note that by Shapiro’s lemma, H3(Γ0(N), V ⊗
ε) ∼= H3(Γ,W ), where Γ = SL3(Z) and W =
IndΓ

Γ0(N)(V ⊗ ε). By the natural duality between ho-
mology and cohomology, this is then isomorphic to
H3(Γ,W ). We actually compute

H†
3(Γ,W ) = H3(∆,W )Γ

for ∆ a torsion-free subgroup of finite index in Γ (note
that the homology is independent of the choice of ∆).
The group H†

3(Γ,W ) is isomorphic to H3(Γ,W ) in char-
acteristics not equal to 2 and 3. For further details of
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the techniques used for our cohomology computations,
see [Ash et al. 02] and [Allison et al. 98].

In order to reduce the number of computations that
are needed to obtain evidence for the conjecture, we also
make use of the fact that if a system of eigenvalues cor-
responding to a representation ρ shows up in cohomol-
ogy in weight V , then the eigenvalues corresponding to
the contragredient ρ∗ will show up in the dual weight
V ∗ ⊗ det−(n−1) [Ash and Sinnott 00, Proposition 2.8].
Hence, we need to compute the cohomology in only one
of V and V ∗ to determine the eigenvalues appearing in
both of them. This reduces the computations needed by
a factor of about two.

In the computational examples that follow, all group-
theoretic and number-field calculations were performed
using either Magma [Bosma et al. 97] or GP/PARI [PARI
00].

3. COMPUTATIONAL EXAMPLES IN
CHARACTERISTIC TWO

In [Ash et al. 04], surjective Galois representations ρ :
GQ → GL3(F2) are described, and computations are per-
formed indicating that these representations are attached
to Hecke eigenclasses. Three of these examples are super-
singular. For each example, we obtain two contragredient
representations, ρ and ρ∗. We see easily that one of ρ and
ρ∗ has m = 1 ≡ 0 + 2p + p2 (mod 7) with p = 2. This
yields a prediction of F (0, 0, 0)†, so that the predicted
weights include all the possible weights. The other rep-
resentation has m = 6 = 2 + 0p + p2, again yielding a
predicted weight of F (0, 0, 0)†. Computations done in
[Ash et al. 04] showed that in each of the four possible
weights, the correct eigenvalues appeared (for � < 50)
to have both ρ and ρ∗ attached to an eigenclass. These
examples are entirely consistent with the extended con-
jecture.

4. COMPUTATIONAL EXAMPLES WITH
SMALL IMAGE

We now study three-dimensional Galois representations
in characteristic 11 with image isomorphic to PSL2(F7).
This group (the unique simple group of order 168) has
two nonconjugate embeddings in GL3(F̄11), as indicated
by Table 1, where α, ᾱ = 1±√−7

2 . Note that 11 is rela-
tively prime to the order of PSL2(F7), so that the stan-
dard complex character table corresponds to the modular
character table.

Class: 1 2 3 4 5 6
Order: 1 2 3 4 7 7

χ0 1 1 1 1 1 1
χ1 3 −1 0 1 α ᾱ
χ2 3 −1 0 1 ᾱ α
χ3 6 2 0 0 −1 −1
χ4 7 −1 1 −1 0 0
χ5 8 0 −1 0 1 1

TABLE 1. Character table of PSL2(F7).

Given a polynomial f(x) ∈ Z[x] with Galois group
isomorphic to PSL2(F7), set K/Q to be a splitting field
of f(x), and define ρ by the composition

GQ

π−→Gal(K/Q) θ−→GL3(F̄11),

where π is the canonical projection, and θ is one of the
two inequivalent embeddings of PSL2(F7) into GL3(F̄11).
We will choose θ from the two possibilities in order to give
ρ certain desirable properties.

Suppose that in K/Q, the primes lying over 11 in K

have ramification index 7. Then, regardless of the choice
of θ, the image under ρ of the inertia group at 11 has
order 7. The restriction of ρ to inertia at 11 is then
diagonalizable, with diagonal characters ψ190

3,1 , ψ190
3,2 , ψ190

3,3 ,
or with diagonal characters ψ570

3,1 , ψ570
3,2 , ψ570

3,3 . We will
choose θ such that the first of these cases holds. Using the
description of the predicted weights in Conjecture 2.10,
we see that since (modulo 113 − 1),

190 = 3 + 6(11) + 1(112) = 14 + 5(11) + 1(112),

≡ 13 + 5(11) + 12(112) ≡ 12 + 5(11) + 23(112),

≡ 2 + 6(11) + 12(112) ≡ 2 + 17(11) + 11(112),

we have predicted weights of

F (4, 2, 1), F (12, 4, 1), F (11, 11, 5), F (21, 11, 5),

F (10, 5, 2), F (15, 10, 2).

In addition to these weights, we also obtain extra weights

F (11, 5, 1), F (14, 11, 2), F (20, 12, 5).

The conjecture predicts that each of these weights should
yield eigenvalues corresponding to ρ. We now give two
examples.

Example 4.1. [Ash et al. 02, Section 7.2] Let f = x7 −
11x5 − 22x4 + 33x2 + 33x + 11. This polynomial has
Galois group PSL2(F7), and in its splitting field, 11 has
ramification index 7, as desired. Constructing ρ as above,



124 Experimental Mathematics, Vol. 16 (2007), No. 1

we see [Ash et al. 02, Section 7.2] that ρ has level 312 and
trivial nebentype. As in [Ash et al. 02], we set ρ′ = ρ⊗ε31,
where ε31 is the quadratic character modulo 11 ramified
only at 31. Then ρ′ has level 31, nebentype ε31, and the
same restriction to inertia at 11 as ρ (since ε31 is not
ramified at 11).

In [Ash et al. 02, Section 7.2], it was determined that
eigenclasses with the correct eigenvalues (for � < 50) to
correspond to ρ′ exist in weights F (4, 2, 1), F (11, 11, 5),
and F (10, 5, 2) (which are the only weights predicted by
the original conjecture of [Ash et al. 02]).

Subsequent computations have shown that the same
eigenvalues occur in each of the weights F (12, 4, 1),
F (21, 11, 5), F (15, 10, 2), F (11, 5, 1), F (14, 11, 2), and
F (20, 12, 5). Hence each of the weights predicted by the
new conjecture works. In addition, computations in all
other possible weights modulo 11 show that these are
the only weights in which the correct eigenvalues appear.
Hence, for this representation, the conjecture seems to
be complete and correct.

Example 4.2. Let f = x7−11x5−55x3−264x2−44x+176.
The Galois group of f is isomorphic to PSL2(F7). Let
K/Q be a splitting field of f . Then in K/Q, 11 has
ramification index 7, and 103 has ramification index 2.
Constructing ρ as above, we find that ρ has level 1032 and
trivial nebentype. Twisting by ε103, the unique quadratic
character modulo 11 ramified only at 103, we obtain ρ′ =
ρ ⊗ ε103, which has level 103 and nebentype ε103. As in
Example 4.1, ρ′ has the same predicted weights as ρ.

Because of the large level of this representation, we
have been unable to do exhaustive computations in all
weights; nevertheless, using the same techniques as in
[Ash et al. 02, Section 7.2], we have been able to calculate
the trace and cotrace of Frobenius elements under ρ′, and
confirm that the correct eigenvalues do occur (for � < 50)
in weights F (4, 2, 1), F (12, 4, 1), F (11, 11, 5), F (10, 5, 2),
and F (11, 5, 1).

In addition, we have computed the homology in all
weights F (a, b, c) with a − c < 11 and found that the
correct eigenvalues to correspond to ρ′ do not occur in
any such weights except the predicted ones. In other
words, in every predicted weight in which we are able to
compute the cohomology, the correct eigenvalues occur,
and in every other weight in which we can compute the
cohomology, the correct eigenvalues do not occur.

We note that the two examples given here have very
similar ramification structures. Glen Simpson [Simpson
04] has performed a series of targeted Hunter searches to

find other examples of PSL2(F7)-extensions ramified at
11 with e = 7 and at one other prime q with e = 2. His
search shows that there are no examples besides these
two with 3 ≤ q ≤ 103.

5. COMPUTATIONAL EXAMPLES FROM
INDUCED REPRESENTATIONS

We give several examples of three-dimensional represen-
tations induced from a ray class character of a non-Galois
cubic field. The first of these examples was already de-
scribed in detail in [Ash et al. 02], but we give more com-
putational evidence for it. The other example is new.

5.1 General Observations on Induced Representations

Let K be an S3-extension of Q and let F be a cubic
subfield of K. Define π : GQ → Gal(K/Q) to be the
canonical projection. Suppose that p is an odd prime
having inertial degree 3 in K/Q, so that it is totally inert
in F/Q. Assume also that the class number of F is 1,
and the ray class group of F modulo p is cyclic of order r
with r dividing (p3− 1), but not dividing p2− 1 or p− 1.
There is then a ray class character modulo p,

χ : GF → Fp3 ,

having order r. There are in fact ϕ(r) such characters,
χi, where 1 ≤ i ≤ r and (i, r) = 1.

We will define

ρi : GQ → GL3(F̄3)

by
ρi = IndGQ

GF
χi,

for 1 ≤ i ≤ r, and (i, r) = 1.

Theorem 5.1. Let ψ be a power of χ as defined above,
and let ρ be the representation induced from ψ, as above.
Then ρ is an irreducible three-dimensional representa-
tion, with the following properties:

1. ρ is supersingular, and the image of ρ|Ip,0 has order r.

2. If K/Q is ramified at a single odd prime q with ramifi-
cation index 2, then the level of ρ is q and its nebentype
is εq, the unique quadratic character modulo p ramified
only at q.

3. If g ∈ GQ with π(g) having order 1, then ρ(g) has
eigenvalues ψ(g−1

i ggi), where the gi are coset repre-
sentatives of GF in GQ.
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4. For g ∈ GQ with π(g) having order 2, some conjugate
g′ of g is in GF , Tr(ρ(g)) = ψ(g′), and T2(ρ(g)) =
ψ(g′)−1 det(ρ(g)),

5. For g in GQ with π(g) having order 3, Tr(ρ(g)) =
T2(ρ(g)) = 0.

Proof: Let ψ be the power of χ induced to obtain ρ,
and let L/F be the field cut out by ψ. Then L/F is a
cyclic extension of degree r, and is totally tamely ram-
ified above p. Denote by M the Galois closure of L/Q.
Then M certainly contains K, and is in fact generated
by the conjugates of KL over K, each of which is cyclic
of order r. Hence, we see that Gal(M/K) is an abelian
group of exponent r, and that it contains at least one
element of order r (since the inertia group at p must be
cyclic of order at least r). Now, ρ|GF

contains ψ as an
irreducible constituent, so that GF ∩ker ρ is contained in
kerψ. Hence, by normality, ker ρ fixes each conjugate of
L/Q, so that ker ρ fixes M . However, we see easily that
ρ factors through Gal(M/Q), so that ker ρ = GM . This
shows that the image of inertia at p under ρ is of order
r (since inertia at p has image of order r in Gal(M/Q)),
and so we see that ρ is supersingular.

Let g0, g1, and g2 be coset representatives of GF in
GQ. Define ψ0 : GQ → Fp3 by

ψ0(g) =

{
ψ(g) if g ∈ GF ,

0 otherwise.

Using the notation ggi = g−1
i ggi, we then have [Fulton

and Harris 91, p. 34]

Tr(ρ(g)) =
2∑

i=0

ψ0(ggi).

Suppose that π(g) has order 1. Then g ∈ GK , so g

and all of its conjugates are in GF . From the definition
of an induced representation, and the fact that ggi =
gi(g−1

i ggi), we obtain the given eigenvalues for ρ(g).
Suppose that π(g) has order 2. Then exactly one of the

conjugates of g fixes F . Call this conjugate g′. Neither
of the two conjugates of g′ by g1 or g2 is in GF , so

Tr(ρ(g)) = Tr(ρ(g′)) = ψ(g′).

The value of T2(ρ(g)) is then easily derived from the fact
that Tr(ρ(g−1)) = ψ(g′)−1 and the identity T2(ρ(g)) =
Tr(ρ(g−1)) det(ρ(g)).

Suppose that π(g) has order 3. Then neither g nor
either of its conjugates is contained in GF . Hence, we see

that Tr(ρ(g)) = 0. In addition, g−1 and its conjugates
are also not contained in GF . Since 0 = Tr(ρ(g−1)) =
T2(ρ(g))/det(ρ(g)), we see that T2(ρ(g)) = 0.

If K/Q is ramified only at q, with ramification index
2, let q be the unique prime of F unramified over q, and
let τ be a generator of the tame inertia group at q. Then
π(τ) = 2 and ψ(τ) = 1 (since the ray class character is
unramified at q), so Tr(ρ(τ)) = 1. Hence, the eigenvalues
of ρ(τ) must be 1, 1, and −1, so that ρ has level q and
nebentype εq.

5.2 Induced Representations of Level 59 Modulo 7

As described in [Ash et al. 02, Section 7.1], let f = x3 +
2x − 1 and let α be a root of f . Then F = Q(α) has
ray class group modulo 7 of order 9, and hence we may
choose a ray class character χ : GF → F73 of order 9,
and get six distinct ρi. These ρi each have level 59 with
nebentype ε59 (the unique quadratic character modulo 7
ramified only at 59). As mentioned in [Ash et al. 02],
three of these have m = 38 and three have m = 76. For
the three with m = 38, we see that with p = 7,

38 = 3 + 5p+ 0p2 ≡ 2 + 5p+ 7p2

≡ 9 + 4p+ 7p2 ≡ 2 + 12p+ 6p2

≡ 8 + 4p+ 14p2 ≡ 10 + 4p+ 0p2 (mod 73 − 1).

The predicted weights are then F (3, 2, 0), F (5, 4, 2),
F (7, 6, 4), F (10, 5, 2), F (12, 7, 4), F (8, 3, 0), and the extra
weights F (7, 4, 0), F (9, 6, 2), and F (11, 8, 4). Computa-
tions show that in all these weights there are eigenclasses
with the correct eigenvalues (for � < 50) to correspond
to each of the ρi with m = 38. Similarly, for each of
the three representations with m = 76 (which are con-
tragredients of those with m = 38), we may compute the
predicted weights, and we find that each of the predicted
weights yields an eigenclass with the desired eigenval-
ues (for � < 50). In addition, computations in all other
weights modulo 7 prove that the correct eigenvalues do
not appear except in those weights predicted by Conjec-
ture 2.10. Note that the original conjecture of [Ash et
al. 02] predicted only the first three of the nine weights
predicted here.

5.3 Induced Representations of Level 431 Modulo 3

Let f = x3−x+8, set F = Q(α), where α is a root of f ,
and let K be a splitting field of f containing α. Note that
K/Q is an S3-extension ramified only at 431, and that
431 has ramification index 2 in K/Q. In addition, 3 has
inertial degree 3 in F/Q, and the ray class group mod 3
in F is cyclic of order 13. Then the ray class field L has
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degree 13 over F , and Gal(L/F ) is cyclic of order 13. We
obtain 12 distinct representations ρ1, . . . , ρ12 by inducing
characters of the ray class group. These characters will
take the form χi for some ray class character χ and 1 ≤
i ≤ 12, and we denote by ρi the representation induced
from χi. Each ρi is of niveau 3, withm even, and has level
431 and nebentype ε431, the unique quadratic character
modulo 3 ramified only at 431.

Note that squares of the fundamental characters ψ3,i

(mod 3) factor through Gal(L/F ). We will identify the
ψ2

3,i with the characters that they induce on Gal(L/F )
and GF , and we will choose χ to equal ψ2

3,1. Then
ρ1, ρ3, ρ9 will all have m = 2; ρ2, ρ6, ρ5 will have m = 4;
ρ4, ρ12, ρ10 will have m = 8; and ρ7, ρ8, ρ11 will have
m = 14.

We are easily able to compute the predicted weights
for each value of m. We list these weights in Table 2.

Note that the last entry in the m = 2 and m = 8 rows
is an extra weight, rather than one predicted directly
from the value of m. Note also that for m = 4, F (4, 2, 1)
is predicted, but F (2, 2, 1) (which is in F (4, 2, 1)′ but not
in F (4, 2, 1)†) is not predicted.

We will now determine the traces and cotraces of
Frobenius elements under each ρi.

We begin by determining ζ = χ(Frobq) = ψ2
3,1(Frobq),

where q is the unique degree-one prime of F lying over
7. To do this, we use the Hilbert symbol from class field
theory [Neukirch 99, Section V.3] with n = 13. Since
F has class number 1, we may find a generator a of q,
and we note that 3 generates the unique prime p of F
lying over 3. We denote the completion of F at p by
Fp, and the completion of L at the unique prime of L
lying over p by Lp. Note that Fp contains µ13, and that
Lp = Fp(31/13). The Hilbert symbol satisfies the relation
[Neukirch 99, V.3.1]

(
a, 3
p

)
=
σa(31/13)

31/13
= ψ2

3,1(σa),

where σa is given by the local norm residue symbol
(a, Lp/Fp). Then by [Neukirch 99, V.3.4], we see that

(
a, 3
p

)
≡
(

1
a

)2

(mod p).

Hence, in order to determine ψ2
3,1(Frobq), we need only

determine the relationship between Frobq and (a, Lp/Fp).
By [Neukirch 99, pp. 406–407], we see that Frobq =
(a, Lq/Fq), where Fq is the completion of F at q, and
Lq is the completion of L at some prime lying over q.
By [Neukirch 99, Corollary VI.5.7], we see that for the

principal idele (a),

1 = ((a), L/F ) =
∏

s

(a, Ls/Fs) = (a, Lq/Fq)(a, Lp/Fp),

where the product runs over all primes s of F , and Ls

is the completion of L at some prime over s. Note that
most of the terms drop out, since for s �= p, q, we have
that Ls/Fs is unramified and a is a unit in Fs. We see
immediately that (a, Lp/Fp) = Frob−1

q , so that

ζ = Tr(ρ1(Frobq)) = χ(Frobq) = ψ2
3,1(Frobq)

≡ a2 (mod p).

Using GP/PARI to do computations in F , we find that
ζ is a root of the cubic polynomial x3 + 2x + 2 over F3.
Note that Tr(ρ3(Frobq)) = ζ3 and Tr(ρ9(Frobq)) = ζ9

are also roots of this same polynomial.
We now use the canonical isomorphism from Gal(L/F )

to the ray class group, which for any prime r of F not
dividing (3) takes Frobr to the class of r. Hence, we may
determine the image of Frobr in terms of the image of
Frobq by finding r as a power of q in the ray class group.
This is easily done using GP/PARI’s facilities for com-
putation in ray class groups (or we could do calculations
using the Hilbert symbol, as above).

We find that the primes � ∈ {7, 13, 17, 31, 37, 43, 47}
each have inertial degree 2 in K/Q. Hence, each has
a unique degree-one prime lying over it in F , which we
will denote by q�. We have then defined ζ = χ(Frobq7).
Using the bnrisprincipal command in GP/PARI, we
find that χ(Frobq13) = ζ9, since q13 is a ninth power of
q7 in the ray class group. Similarly, χ(Frobq17) = ζ8,
χ(Frobq31) = ζ11, χ(Frobq37) = ζ7, χ(Frobq43) = ζ12,
and χ(Frobq47) = ζ3. Using the fact that the determinant
of ρi is ω2iε431 = ε431, and that ε431(Frob�) = −1 for
these primes, we may use Theorem 5.1 to compute the
trace and cotrace of ρ1(Frob�) for each of these primes.

Note that the primes � ∈ {3, 5, 11, 19, 23, 29} each have
inertial degree of order 3 in K/Q. We see immediately
by Theorem 5.1 that for all i, the trace and cotrace of
ρi(Frob�) for any of these primes are both 0.

The primes 2 and 41 each split completely in K/Q.
Hence, for p = 2 or p = 41, there are three primes
p1, p2, p3 above p in F . The three conjugacy classes
Frobpi

are conjugate in GQ, but not in GF . Hence us-
ing the coset representatives e, g1, g2, of GF in GQ as in
Theorem 5.1, we may obtain the three character values
χ(Frobpi

), χ(Frobg1
pi

), and χ(Frobg2
pi

) by computing the
classes of p1, p2, and p3 in the ray class group in terms of
q7. We find for p = 2 that these three character values are
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m = 2 F (1, 1, 1), F (1, 0, 0), F (3, 2, 0), F (3, 3, 1), F (5, 3, 1), F (2, 1, 0)

m = 4 F (1, 0, 0), F (2, 1, 0), F (3, 2, 0), F (4, 2, 1)

m = 8 F (1, 1, 1), F (2, 2, 1), F (3, 1, 1), F (4, 2, 1), F (5, 3, 1), F (2, 1, 0)

m = 14 F (2, 2, 1), F (2, 1, 0), F (3, 2, 0), F (4, 2, 1)

TABLE 2. Predicted weights for a three-dimensional supersingular representation modulo 3.

p 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

o(π(Frobp)) 1 * 3 2 3 2 2 3 3 3 2 2 1 2 2

Tr(ρ1(Frobp)) α * 0 ζ 0 ζ9 ζ8 0 0 0 ζ11 ζ7 γ ζ12 ζ3

T2(ρ1(Frobp)) β * 0 −ζ12 0 −ζ4 −ζ5 0 0 0 −ζ2 −ζ6 δ −ζ −ζ10

TABLE 3. Traces and cotraces: α = ζ5 + ζ10 + ζ11, β = ζ2 + ζ3 + ζ8, γ = ζ6 + ζ6 + ζ, δ = ζ7 + ζ7 + ζ12.

ζ5, ζ10, and ζ11. Hence Tr(ρ1(Frob2)) = ζ5 + ζ10 + ζ11,
and T2(ρ1(Frob2)) = ζ2 + ζ3 + ζ8. For p = 41, we ob-
tain Tr(ρ1(Frob41)) = ζ6 + ζ6 + ζ and T2(ρ1(Frob41)) =
ζ7 + ζ7 + ζ12.

We summarize our computations for ρ1 in Table 3.
We note that we may read the traces and cotraces

of Frobenius elements under ρi directly from Table 3 by
replacing ζ by ζi.

We have done the homology calculations in level 431
with quadratic nebentype for all weights modulo 3. In
each of the weights predicted for m = 2, we found three
eigenclasses, conjugate over F3, with the correct eigenval-
ues (for � < 50) to correspond to ρ1, ρ3, and ρ9. In all of
the weights not predicted for m = 2, no such eigenclasses
were found.

Similarly, in exactly the weights predicted for m = 4,
we found eigenclasses corresponding to ρ2, ρ6, and ρ5;
in exactly the weights predicted for m = 8 we found
eigenclasses corresponding to ρ4, ρ12, ρ10; and in exactly
the weights predicted for m = 14, we found eigenclasses
corresponding to ρ7, ρ8, and ρ11. These computations
exactly match what we expect from Conjecture 2.10.
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