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The Shapiro conjecture in the real Schubert calculus, while
likely true for Grassmannians, fails to hold for flag manifolds, but
in a very interesting way. We give a refinement of the Shapiro
conjecture for flag manifolds and present massive computational
experimentation in support of this refined conjecture. We also
prove the conjecture in some special cases using discriminants
and establish relationships between different cases of the con-
jecture.

1. INTRODUCTION

The Shapiro conjecture for Grassmannians [Sottile 00a,
Sedykh and Shapiro 02] has driven progress in enumer-
ative real algebraic geometry [Sottile 03], which is the
study of real solutions to geometric problems. It conjec-
tures that a (zero-dimensional) intersection of Schubert
subvarieties of a Grassmannian consists entirely of real
points—if the Schubert subvarieties are given by flags
osculating a real rational normal curve. This partic-
ular Schubert intersection problem is quite natural; it
can be interpreted in terms of real linear series on P1

with prescribed (real) ramification [Eisenbud and Harris
83, Eisenbud and Harris 87], real rational curves in Pn

with real flexes [Kharlamov and Sottile 03], linear sys-
tems theory [Rosenthal and Sottile 98], and the Bethe
ansatz and Fuchsian equations [Mukhin and Varchenko
04]. The Shapiro conjecture has implications for all these
areas.

Massive computational evidence [Sottile 00a, Ver-
schelde 00] as well as its proof by Eremenko and
Gabrielov for Grassmannians of codimension-2 subspaces
[Eremenko and Gabrielov 02] gives compelling evidence
for its validity. A local version, that it holds when the
Schubert varieties are special (a technical term) and when
the points of osculation are sufficiently clustered [Sottile
99], showed that the special Schubert calculus is fully
real (such geometric problems can have all their solutions
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real). Vakil later used other methods to show that the
general Schubert calculus on the Grassmannian is fully
real [Vakil, to appear].

The original Shapiro conjecture stated that such an in-
tersection of Schubert varieties in a flag manifold would
consist entirely of real points. Unfortunately, this conjec-
ture fails for the first nontrivial enumerative problem on
a non-Grassmannian flag manifold, but in a very inter-
esting way. Failure for flag manifolds was first noted in
[Sottile 00a, Section 5] and a more symmetric counterex-
ample was found in [Sottile 00b], where computer exper-
imentation suggested that the conjecture would hold if
the points where the flags osculated the rational normal
curve satisfied a certain noncrossing condition. Further
experimentation led to a precise formulation of this re-
fined noncrossing conjecture in [Sottile 03]. That conjec-
ture was valid only for two- and three-step flag manifolds,
and the further experimentation reported here leads to
versions (Conjectures 3.2 and 4.4) for all flag manifolds
in which the points of osculation satisfy a monotonicity
condition.

We have systematically investigated the Shapiro con-
jecture for flag manifolds to gain a deeper understanding
both of its failure and of our refinement. This investiga-
tion includes 15.76 gigahertz-years of computer experi-
mentation, theorems relating our conjecture for different
enumerative problems, and its proof in some cases us-
ing discriminants. Recently, our conjecture was proven
by Eremenko, Gabrielov, Shapiro, and Vainshtein [Ere-
menko et al. 06] for manifolds of flags consisting of a
codimension-2 plane lying on a hyperplane. Our ex-
perimentation also uncovered some new and interesting
phenomena in the Schubert calculus of a flag manifold,
and it included substantial computation in support of
the Shapiro conjecture on the Grassmannians Gr(3, 6),
Gr(3, 7), and Gr(4, 8).

Our conjecture is concerned with a subclass of Schu-
bert intersection problems. Here is one open instance
of this conjecture, expressed as a system of polynomials
in local coordinates for the variety of flags E2 ⊂ E3 in
5-space, where dimEi = i. Let t, x1, . . . , x8 be indeter-
minates, and consider the polynomials

f(t;x) := det

⎡⎢⎢⎢⎢⎢⎣
1 0 x1 x2 x3

0 1 x4 x5 x6

t4 t3 t2 t 1
4t3 3t2 2t 1 0
12t2 3t 2 0 0

⎤⎥⎥⎥⎥⎥⎦

and

g(t;x) := det

⎡⎢⎢⎢⎢⎢⎣
1 0 x1 x2 x3

0 1 x4 x5 x6

0 0 1 x7 x8

t4 t3 t2 t 1
4t3 3t2 2t 1 0

⎤⎥⎥⎥⎥⎥⎦ .

Conjecture 1.1. Let t1 < t2 < · · · < t8 be real numbers.
Then the polynomial system

f(t1;x) = f(t2;x) = f(t3;x) = f(t4;x) = 0,

g(t5;x) = g(t6;x) = g(t7;x) = g(t8;x) = 0,

has 12 solutions, and all of them are real.

Evaluating the polynomial f at points ti preceding
the points at which the polynomial g is evaluated is the
monotonicity condition. If we had switched the order of
t4 and t5,

t1 < t2 < t3 < t5 < t4 < t6 < t7 < t8 ,

then this would not be monotone. We computed 400 000
instances of this polynomial system at different choices
of points t1 < · · · < t8 (which were monotone), and each
had 12 real solutions. In contrast, there were many non-
monotone choices of points for which not all solutions
were real, and the minimum number of real solutions
that we observe seems to depend on the combinatorics of
the evaluation. For example, the system with interlaced
points ti,

f(−8;x) = g(−4;x) = f(−2;x) = g(−1;x) = f(1;x)

= g(2;x) = f(4;x) = g(8;x) = 0,

has 12 solutions, none of which are real. This investiga-
tion is summarized in Table 1.

This paper is organized as follows. In Section 2, we
provide background material on flag manifolds, state the
Shapiro conjecture, and give a geometrically vivid exam-
ple of its failure. In Section 3, we give the results of our
experimentation, stating our conjectures and describing
some interesting phenomena that we have observed in
our data. The discussion in Section 4 contains theorems
about our conjectures, a generalization of our main con-
jecture, and proofs of it in some cases using discriminants.
Finally, in Section 5 we describe our methods, explain our
experimentation, and give a brief guide to our data, all of
which and much more are tabulated and available online
at www.math.tamu.edu/˜sottile/pages/Flags/.
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2. BACKGROUND

2.1 Basics on Flag Manifolds

Given positive integers α := {α1 < · · · < αk} with αk <

n, let F�(α;n) be the manifold of flags in Cn of type α,

F�(α;n) := {E• = Eα1 ⊂ Eα2 ⊂ · · · ⊂ Eαk
⊂ Cn |

dimEαi
= αi} .

If we set α0 := 0, then this algebraic manifold has di-
mension

dim(α) :=
k∑

i=1

(n− αi)(αi − αi−1) .

Complete flags in Cn have type 1 < 2 < · · · < n−1.
Define Wα ⊂ Sn to be the set of permutations with

descents in α,

Wα := {w ∈ Sn | i �∈ {α1, . . . , αk} ⇒ w(i) < w(i+ 1)} .

We often write permutations as a sequence of their values,
omitting commas if possible. Thus (1, 3, 2, 4, 5) = 13245
and 341526 are permutations in S5 and S6, respectively.
Since a permutation w ∈Wα is determined by its values
before its last descent, we need only write its first αk

values. Thus 132546 ∈ W {2,4} may be written 1325.
Lastly, we write σi for the simple transposition (i, i+1).

The positions of flags E• of type α relative to a fixed
complete flag F• stratify F�(α;n) into Schubert cells. The
closure of a Schubert cell is a Schubert variety. Permu-
tations w ∈ Wα index Schubert cells X◦

wF• and Schu-
bert varieties XwF• of F�(α;n). More precisely, if we set
rw(i, j) := |{l ≤ i | j + w(l) > n}|, then

X◦
wF• = {E• | dimEαi

∩ Fj=rw(αi, j), i = 1, . . . , k,

j = 1, . . . , n},

and

XwF• = {E• | dimEαi
∩ Fj≥rw(αi, j), i = 1, . . . , k,

j = 1, . . . , n} .

Flags E• in X◦
wF• have position w relative to F•. We will

refer to a permutation w ∈ Wα as a Schubert condition
on flags of type α. The Schubert subvariety XwF• is
irreducible with codimension �(w) := |{i < j | w(i) >
w(j)}| in F�(α;n).

Schubert cells are affine spaces with X◦
wF• �

Cdim(α)−�(w). We introduce a convenient set of coordi-
nates for Schubert cells. Let Mw be the set of αk × n

matrices, some of whose entries xi,j are fixed: xi,w(i) = 1
for i = 1, . . . , αk and xi,j = 0 if

j < w(i) or w−1(j) < i or αl < i < w−1(j) < αl+1

for some l, and whose remaining dim(α) − �(w) entries
give coordinates for Mw. For example, if n = 8, α =
(2, 3, 6), and w = 25 3 167, then Mw consists of matrices
of the form⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 x13 x14 0 x16 x17 x18

0 0 0 0 1 x26 x27 x28

0 0 1 x34 0 x36 x37 x38

1 0 0 x44 0 0 0 x48

0 0 0 0 0 1 0 x58

0 0 0 0 0 0 1 x68

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The relation of Mw to the Schubert cell X◦
wF• is as

follows. Given a complete flag F•, choose an ordered
basis e1, . . . , en for Cn corresponding to the columns of
matrices in Mw such that Fi is the linear span of the
last i basis vectors, en+1−i, . . . , en−1, en. Given a matrix
M ∈ Mw, set Eαi

to be the row space of the first αi

rows of M . Then the flag E• has type α and lies in the
Schubert cell X◦

wF•, every flag E• ∈ X◦
wF• arises in this

way, and the association M 	→ E• is an algebraic bijec-
tion between Mw and X◦

wF•. This is a flagged version
of echelon forms. See [Fulton 97] for details and proofs.

Let ι be the identity permutation. Then Mι provides
local coordinates for F�(α;n) in which the equations for
a Schubert variety are easy to describe. Note that

dim(Eαi
∩ Fj) ≥ r ⇐⇒ rank(A) ≤ αi + j − r ,

where the matrix A is formed by stacking the first αi

rows of Mι on top of a j × n matrix with row span Fj .
Algebraically, this rank condition is the vanishing of all
minors of A of size 1+αi+j−r. The polynomials f and
g of Conjecture 1.1 arise in this way. There α = {2, 3}
and Mι is the matrix of variables in the definition of g.

Suppose that β is a subsequence of α. Then W β ⊂
Wα. Simply forgetting the components of a flag E• ∈
F�(α;n) that do not have dimensions in the sequence β
gives a flag in F�(β;n). This defines a map

π : F�(α;n) −→ F�(β;n)

whose fibers are (products of) flag manifolds. The in-
verse image of a Schubert variety XwF• of F�(β;n) is the
Schubert variety XwF• of F�(α;n).

When β = {b} is a singleton, F�(β;n) is the Grass-
mannian of b-planes in Cn, written Gr(b, n). Nonidentity
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permutations in W β have a unique descent at b. A per-
mutation w with a unique descent is Grassmannian, since
the associated Schubert variety XwF• (a Grassmannian
Schubert variety) is the inverse image of a Schubert vari-
ety in a Grassmannian.

2.2 The Shapiro Conjecture

A list (w1, . . . , wm) of permutations in Wα is called a
Schubert problem if �(w1)+ · · ·+ �(wm) = dim(α). Given
such a list and complete flags F 1

• , . . . , F
m
• , consider the

Schubert intersection

Xw1F
1
• ∩ · · · ∩Xwm

Fm
• . (2–1)

When the flags F i
• are in general position, this inter-

section is zero-dimensional (in fact, transverse by the
Kleiman–Bertini theorem [Kleiman 74]), and it equals
the intersection of the corresponding Schubert cells. In
that case, the intersection (2–1) consists of those flags E•
of type α that have position wi relative to F i

•, for each
i = 1, . . . ,m. We call these solutions to the Schubert in-
tersection problem (2–1). The number of solutions does
not depend on the choice of flags (as long as the inter-
section is transverse) and we call this number the degree
of the Schubert problem. This degree may be computed,
for example, in the cohomology ring of the flag manifold
F�(α;n).

The Shapiro conjecture concerns the following variant
of this classical enumerative geometric problem: which
real flags E• have given position wi relative to real flags
F i
•, for each i = 1, . . . ,m? In the Shapiro conjecture, the

flags F i
• are not general real flags, but rather flags oscu-

lating a rational normal curve. Let γ : C → Cn be the
rational normal curve γ(t) := (1, t, t2, . . . , tn−1) written
with respect to the ordered basis e1, . . . , en for Cn given
above. The osculating flag F•(t) of subspaces to γ at the
point γ(t) is the flag whose i-dimensional component is

Fi(t) := span{γ(t), γ′(t), . . . , γ(i−1)(t)} .

When t = ∞, the subspace Fi(∞) is spanned by
{en+1−i, . . . , en} and F•(∞) is the flag used to describe
the coordinates Mw. If we consider this projectively,
then γ : P1 → Pn−1 is the rational normal curve and
F•(t) is the flag of subspaces osculating γ at γ(t).

Conjecture 2.1. (B. Shapiro and M. Shapiro.) Suppose
that (w1, . . . , wm) is a Schubert problem for flags of type
α. If the flags F 1

• , . . . , F
m
• osculate the rational normal

curve at distinct real points, then the intersection (2–1)
is transverse and consists only of real points.

The Shapiro conjecture is concerned with intersections
of the form

Xw1(t1) ∩Xw2(t2) ∩ · · · ∩Xwm
(tm) , (2–2)

where we write Xw(t) for XwF•(t). This intersection is
an instance of the Shapiro conjecture for the Schubert
problem (w1, . . . , wm) at the points (t1, . . . , tm).

Conjecture 2.1 dates from around 1995. Experimen-
tal evidence of its validity for Grassmannians was first
found in [Rosenthal and Sottile 98, Sottile 97a]. This
led to a systematic investigation of Grassmannians, both
experimentally and theoretically, in [Sottile 00a]. There,
the conjecture was proven using discriminants for sev-
eral (rather small) Schubert problems, and relationships
between formulations of the conjecture for different Schu-
bert problems were established. (See also Theorem 2.8 of
[Kharlamov and Sottile 03].) For example, if the Shapiro
conjecture holds on a Grassmannian for the Schubert
problem consisting only of codimension-1 (simple) con-
ditions, then it holds for all Schubert problems on that
Grassmannian and on all smaller Grassmannians if we
drop the claim of transversality. More recently, Ere-
menko and Gabrielov proved the conjecture for every
Schubert problem on a Grassmannian of codimension-2
planes [Eremenko and Gabrielov 02]. Their result is ap-
pealingly interpreted as stating that a rational function
all of whose critical points are real must be real.

The original conjecture was for flag manifolds, but a
counterexample was found and reported in [Sottile 00a].
Subsequent experimentation refined this counterexam-
ple, and has suggested a reformulation of the original
conjecture. We study this refined conjecture and report
on massive computer experimentation (15.76 gigahertz-
years) undertaken in 2003 and 2004 at the University of
Massachusetts at Amherst, at MSRI in 2004, and some
at Texas A&M University in 2005. A byproduct of this
experimentation was the discovery of several new and
unusual phenomena, which we will describe through ex-
amples. The first is the smallest possible counterexample
to the original Shapiro conjecture.

2.3 The Shapiro Conjecture Is False for Flags in 3-Space

We use σb to indicate that the Schubert condition σ is
repeated b times and write σi for the simple transposition
(i, i+1). Then

(
σ3

2 , σ
2
3

)
is a Schubert problem for flags of

type {2, 3} in C4. For distinct points s, t, u, v, w ∈ RP1,
consider the Schubert intersection

Xσ2(s) ∩Xσ2(t) ∩Xσ2(u) ∩Xσ3(v) ∩Xσ3(w) . (2–3)
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As flags in projective 3-space, a partial flag of type {2, 3}
is a line � lying on a plane H. Then (� ⊂ H) ∈ Xσ2(s)
if � meets the line �(s) tangent to γ at γ(s), and (� ⊂
H) ∈ Xσ3(v) if H contains the point γ(v) on the rational
normal curve γ.

Suppose that the flag � ⊂ H lies in the intersec-
tion (2–3). Then H contains the two points γ(v) and
γ(w), and hence the secant line λ(v, w) that they span.
Since � is another line in H, � meets this secant line
λ(v, w). Since � �= λ(v, w), it determines H uniquely as
the span of � and λ(v, w). In this way, we are reduced to
determining the lines � that meet the three tangent lines
�(s), �(t), �(u), and the secant line λ(v, w).

The set of lines that meet the three tangent lines �(s),
�(t), and �(u) forms one ruling of a quadric surface Q in
P3. We display a picture of Q and the ruling in Figure 1,
as well as the rational normal curve γ with its three tan-
gent lines. This is for a particular choice of s, t, and u,
which is described below. The lines meeting �(s), �(t),

�(t) �(u)

�(s)

γ

Q

FIGURE 1. Quadric containing three lines tangent to the
rational normal curve.

�(u), and the secant line λ(v, w) correspond to the points
where λ(v, w) meets the quadric Q. In Figure 2, we dis-
play a secant line λ(v, w) that meets the hyperboloid in
two points, and therefore these choices for v and w give
two real flags in the intersection (2–3). There is also a
secant line that meets the hyperboloid in no real points,
and hence in two complex conjugate points. For this se-
cant line, both flags in the intersection (2–3) are complex.
We show this configuration in Figure 3.

To investigate this failure of the Shapiro conjecture,
first note that any two parametrizations of two rational
normal curves are conjugate under a projective transfor-
mation of P3. Thus it will be no loss to assume that the
curve γ has the parametrization

γ : t 	−→ [
2, 12t2 − 2, 7t3 + 3t, 3t− t3

]
.

�(s)

�(t) �(u)

γ

λ(v, w)

�(s)

�(t)

�(u)

γ

λ(v, w)

γ(v)

�

γ(w)

�

FIGURE 2. Two views of a secant line meeting Q.

�(s) �(t)

�(u)

γ

λ(v, w) γ(v)
�
�
�
�
��

γ(w)
�

�
�

���

FIGURE 3. A secant line not meeting Q.

Then the lines tangent to γ at the points (s, t, u) =
(−1, 0, 1) lie on the hyperboloid

x2
0 − x2

1 + x2
2 − x2

3 = 0 .

If we parameterize the secant line λ(v, w) as(
1
2 + l

)
γ(v) +

(
1
2 − l

)
γ(w) and then substitute this

into the equation for the hyperboloid, we obtain a
quadratic polynomial in l, v, w. Its discriminant with
respect to l is

16(v−w)2 (2vw+v+w)(3vw+1)(1−vw)(v+w−2vw) .
(2–4)

We plot its zero set in the square v, w ∈ [−2, 2], shad-
ing the regions where the discriminant is negative. The
vertical broken lines are v, w = ±1, the diagonal line is
v = w, the cross is the value of (v, w) in Figure 2, and the
dot is the value in Figure 3. Observe that the discrim-
inant is nonnegative if (v, w) lies in one of the squares
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v

w

FIGURE 4. Discriminant of the Schubert problem (2–3).

(−1, 0)2, (0, 1)2, or if ( 1
v ,

1
w ) ∈ (−1, 1)2 and it is posi-

tive in the triangles into which the line v = w subdivides
these squares. Since (s, t, u) = (−1, 0, 1), these squares
are the values of v and w when both lie entirely within
one of the three intervals of RP1 determined by s, t, u. If
we allow Möbius transformations of RP1, we deduce the
following proposition.

Proposition 2.2. The intersection (2–3) is transverse and
consists only of real points if there are disjoint intervals
I2 and I3 of RP1 such that s, t, u ∈ I2 and v, w ∈ I3.

While this example shows that the Shapiro conjecture
is false, Proposition 2.2 suggests that a refinement to the
Shapiro conjecture may hold. We will describe such a
refinement and present experimental evidence support-
ing it.

3. RESULTS

Experimentation designed to test hypotheses is a primary
means of inquiry in the natural sciences. In mathematics
we use proof and example as our primary means of in-
quiry. Many mathematicians (including the authors) feel
that they are striving to understand the nature of ob-
jects that inhabit a very real mathematical reality. For
us, experimentation plays an important role in helping to
formulate reasonable conjectures, which are then studied
and perhaps eventually decided.

We first discuss the conjectures that were informed by
our experimentation that we describe in Section 5. Then
we discuss the proof of these conjectures for the flag man-
ifolds F�(n−2, n−1;n) by Eremenko, Gabrielov, Shapiro,
and Vainshtein [Eremenko et al. 06], and an extension
of our monotone conjecture, which is suggested by their

work. Lastly, we present some examples from this exper-
imentation that exhibit new and interesting phenomena.

3.1 Conjectures

Let α1 < · · · < αk < n be positive integers, and set
α = {α1, . . . , αk}. Recall that a permutation w ∈ Wα is
Grassmannian if it has a single descent, say at position
αl. Then the Schubert variety XwF• of F�(α;n) is the
inverse image of the Schubert variety XwF• of the Grass-
mannian Gr(αl, n). Write δ(w) for the unique descent of
a Grassmannian permutation w.

A Schubert problem (w1, . . . , wm) for F�(α;n) is
Grassmannian if each permutation wi is Grassmannian.
A list of points t1, . . . , tm ∈ RP1 is monotone with respect
to a Grassmannian Schubert problem (w1, . . . , wm) if the
function

ti 	−→ δ(wi) ∈ {α1, α2, . . . , αk}
is monotone, when the ordering of the ti is consistent
with an orientation of RP1. We also say that the ordered
m-tuple (t1, . . . , tm) is a monotone point of (RP1)m.

This definition is invariant under the automorphism
group of RP1, which consists of the real Möbius transfor-
mations and acts transitively on triples of points on RP1.
Viewing Cn as the linear space of homogeneous forms
on P1 of degree n−1 shows that an automorphism ϕ of
P1 induces a corresponding automorphism ϕ of Cn such
that ϕ(γ(t)) = γ(ϕ(t)), and thus ϕ(F•(t)) = F•(ϕ(t)).
The corresponding automorphism ϕ of F�(α;n) satisfies
ϕ(Xw(t)) = Xw(ϕ(t)). This was used in the discussion
of Section 2.3.

Remark 3.1. Conjecture 1.1 involves a monotone choice of
points for the Grassmannian Schubert problem

(
σ4

2 , σ
4
3

)
on the flag manifold F�(2, 3; 5). Indeed, Mι is the set of
matrices of the form⎡⎣1 0 x1 x2 x3

0 1 x4 x5 x6

0 0 1 x7 x8

⎤⎦ .
The equation f(s;x) = 0 is the condition that E2(x)
meets F3(s) nontrivially, and defines the Schubert vari-
ety Xσ2(s). Similarly, g(s;x) = 0 defines the Schubert
variety Xσ3(s). The list of points at which f and g were
evaluated in Conjecture 1.1 is monotone.

Conjecture 3.2. Suppose that (w1, . . . , wm) is a Grass-
mannian Schubert problem for F�(α;n). Then the inter-
section

Xw1(t1) ∩Xw2(t2) ∩ · · · ∩Xwm
(tm) (3–1)
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is transverse, with all points of intersection real, if the
points t1, . . . , tm ∈ RP1 are monotone with respect to
(w1, . . . , wm).

We make a weaker conjecture that drops the claim of
transversality.

Conjecture 3.3. Suppose that (w1, . . . , wm) is a Grass-
mannian Schubert problem for F�(α;n). Then the inter-
section (3–1) has all points real if the points t1, . . . , tm ∈
RP1 are monotone with respect to (w1, . . . , wm).

Remark 3.4. The example of Section 2.3 illustrates both
Conjecture 3.2 and its limitation. The condition on dis-
joint intervals I2 and I3 of Proposition 2.2 is equivalent to
the points being monotone. The shaded regions in Fig-
ure 4, which are the points that give no real solutions,
contain no monotone lists of points.

If F�(α;n) is a Grassmannian, then every choice
of points is monotone, so Conjecture 3.2 includes the
Shapiro conjecture for Grassmannians as a special case.
Our experimentation systematically investigated the
original Shapiro conjecture for flag manifolds, with a fo-
cus on this monotone conjecture. We examined 590 such
Grassmannian Schubert problems on 29 different flag
manifolds. In all, we verified that each of more than 158
million specific monotone intersections of the form (3–1)
have all solutions real. We find this to be overwhelming
evidence in support of our monotone conjecture.

Indeed, the set of points (t1, . . . , tm) ∈ (P1)m where
the intersection (3–1) is not transverse is the discrim-
inant Σ of the corresponding Schubert problem. This
is a hypersurface, unless the intersection is never trans-
verse. The number of real solutions is constant on each
connected component of the complement of the discrim-
inant. Conjecture 3.2 asserts that the set of monotone
points lies entirely within the region where all solutions
are real. Our computations show that the discriminant
is a hypersurface for the Grassmannian Schubert prob-
lems we considered, and none of the 158 million mono-
tone points we considered was contained in a nonmaximal
component in which not all solutions were real. While
this does not prove Conjecture 3.2 for these problems, it
places severe restrictions on the location of the nonmax-
imal components of the complement of the discriminant.

For a given flag manifold, it suffices to know Con-
jecture 3.3 for simple Schubert problems, which involve
only simple (codimension-1) Schubert conditions. Since

simple Schubert conditions are Grassmannian, Conjec-
tures 3.2 and 3.3 apply to simple Schubert problems.

Theorem 3.5. Suppose that Conjecture 3.3 holds for
all simple Schubert problems on a given flag manifold
F�(α;n). Then Conjecture 3.3 holds for all Grassmann-
ian Schubert problems on any flag manifold F�(β;n)
where β is a subsequence of α.

We prove Theorem 3.5 when β = α in Section 4.1 and
the general case in Section 4.4.

We give two further and successively stronger conjec-
tures that are supported by our experimental investiga-
tion. The first ignores the issue of reality and concen-
trates only on the transversality of an intersection.

Conjecture 3.6. If (w1, . . . , wm) is a Grassmannian Schu-
bert problem for F�(α;n) and the points t1, . . . , tm ∈ RP1

are monotone with respect to (w1, . . . , wm), then the in-
tersection (3–1) is transverse.

Since the set of monotone points is connected, Conjec-
ture 3.6 asserts that it lies in a single component of the
complement of the discriminant. Since a main result of
[Sottile 00b] is that Conjecture 3.2 holds for simple Schu-
bert problems when the points t1, . . . , tm are sufficiently
clustered together, Conjecture 3.6 implies Conjecture 3.2,
for simple Schubert problems. Then Theorem 3.5 implies
Conjecture 3.3, and the transversality assertion of Con-
jecture 3.6 implies Conjecture 3.2, without any restric-
tion on the Grassmannian Schubert problem.

Theorem 3.7. Conjecture 3.6 implies Conjecture 3.2.

Conjecture 3.6 states that for a Grassmannian Schu-
bert problem w, the discriminant Σ contains no points
(t1, . . . , tm) that are monotone with respect to w. In
our experimentation, we kept track of the nontransverse
intersections. None came from monotone points for a
Grassmannian Schubert problem. In contrast, there were
several hundred such nontransverse intersections encoun-
tered involving nonmonotone choices of points. While
this does not rule out the existence of monotone choices
of points giving a nontransverse intersection, it does sug-
gest that it is highly unlikely.

In every case that we have computed, the discriminant
is defined by a polynomial having a special form that
shows that Σ contains no points that are monotone with
respect to w. We explain this: The set Σ∩Rm is defined
by a single discriminant polynomial ∆w(t1, . . . , tm) that
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is well-defined up to multiplication by a scalar. The set of
monotone points (t1, . . . , tm) ∈ Rm with respect to w has
many components. Consider the union of components
defined by the inequalities

ti �= tj if i �= j and ti < tj whenever δ(wi) < δ(wj) .
(3–2)

For the example of Section 2.3, the region of monotone
points is that in which v, w lie in one of the three intervals
of RP1 defined by s, t, u. As we argued there, we may
assume that (s, t, u) = (−1, 0, 1) and so v, w must lie in
one of the three disjoint intervals (−1, 0), (0, 1), (1,−1)
on RP1, where the last interval contains ∞. Since any
one of these intervals is transformed into any other by a
Möbius transformation, it suffices to consider the interval
(0, 1), which is defined by the inequalities

0 < v ,w and 0 < 1 − v , 1 − w .

Note that

1 − vw = 1−w + w(1−v),
v + w − 2vw = v(1−w) + w(1−v),

which shows that the discriminant (2–4) is positive if
v �= w and 0 < v,w < 1.

We conjecture that the discriminant always has such
a form for which its positivity (or negativity) on the
set (3–2) of monotone points is obvious. More precisely,
suppose that w = (w1, . . . , wm) is a Grassmannian Schu-
bert problem for F�(α;n). Set

S := {ti − tj | δ(wi) > δ(wj)}.

Then the set (3–2) of monotone points is

{t = (t1, . . . , tm) | g(t) ≥ 0 for g ∈ S}.

Writing S = {g1, . . . , gl}, the preorder generated by S is
the set of polynomials of the form∑

ε

cεg
ε1
1 g

ε2
2 . . . gεl

l ,

where each εi ∈ {0, 1} and each coefficient cε is a sum of
squares of polynomials. Every polynomial in the preorder
generated by S is obviously positive on the set (3–2) of
monotone points, but not every polynomial that is posi-
tive on that set lies in the preorder, at least when m ≥ 5.
Indeed, suppose that δ(w1) ≤ δ(w2) ≤ · · · ≤ δ(wm). Us-
ing the automorphism group of RP1, we may assume that
t1 = ∞, t2 = −1, t3 = 0. Then the set (3–2) consists
of those (t4, . . . , tm) such that 0 < t4 < · · · < tm. This

contains a 2-dimensional cone when m ≥ 5, so the pre-
order of polynomials that are positive on this set is not
a finitely generated preorder [Scheiderer 00, Section 6.7].

Conjecture 3.8. Suppose that (w1, . . . , wm) is a Grass-
mannian Schubert problem for F�(α;n). Then its dis-
criminant ∆w (or its negative) lies in the preorder gen-
erated by the polynomials

S := {ti − tj | δ(wi) > δ(wj)} .

We showed that this holds for the problem of Sec-
tion 2.3. Conjecture 3.8 generalizes a conjecture made
in [Sottile 00a] that the discriminants for Grassmannians
are sums of squares.

Since Conjecture 3.8 implies that the discriminant is
nonvanishing on monotone choices of points, it implies
Conjecture 3.6, and so by Theorem 3.7, it implies the
original Conjecture 3.2. We record this fact.

Theorem 3.9. Conjecture 3.8 implies Conjecture 3.2.

We give some additional evidence in favor of Conjec-
ture 3.8 in Section 4.5.

3.2 The Result of Eremenko, Gabrielov, Shapiro, and
Vainshtein

Conjecture 3.2 for F�(n−2, n−1;n) follows from a result
of Eremenko et. al [Eremenko et al. 06]. We discuss this
for simple Schubert problems, from which the general
case follows by Theorem 3.5.

There are two types of simple Schubert varieties in
F�(n−2, n−1;n):

Xσn−2F• := {(En−2 ⊂ En−1) | En−2 ∩ F2 �= {0}},
Xσn−1F• := {(En−2 ⊂ En−1) | En−1 ⊃ F1}.

When n = 4, these are the Schubert varieties Xσ2F• and
Xσ3F• of Section 2.3.

Consider the Schubert intersection

Xσn−2(t1)∩· · ·∩Xσn−2(tp)∩Xσn−1(s1)∩· · ·∩Xσn−1(sq),
(3–3)

where t1, . . . , tp and s1, . . . , sq are distinct points in RP1

and p+q = 2n−1 with 0 < q ≤ n. As in Section 2.3, this
Schubert problem is equivalent to one on the Grassmann-
ian Gr(n−2, n) of codimension-2 planes. The condition
that En−1 contain each of the 1-dimensional linear sub-
spaces span{γ(si)} for i = 1, . . . , q implies that En−1

contains the secant plane W = span{γ(si)|i = 1, . . . , q}
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of dimension q. This forces the condition dimW∩En−2 ≥
q−1, so that E• ∈ XτW , where τ is the Grassmannian
permutation

(1, 2, . . . , n−q, n−q+2, . . . , n−1, n−q+1, n).

On the other hand, when dimW ∩ En−2 = q−1, we
can recover the hyperplane En−1 by setting En−1 := W+
En−2. Thus the Schubert problem (3–3) reduces to a
Schubert problem on Gr(n−2, n) of the form

Xσn−2(t1) ∩ · · · ∩Xσn−2(tp) ∩XτW. (3–4)

Using the results of [Eremenko and Gabrielov 02], Ere-
menko, Gabrielov, Shapiro, and Vainshtein show that the
intersection (3–4) has only real points when the given
points t1, . . . , tp, s1, . . . , sq are monotone with respect to
the Schubert problem (σp

n−2, σ
q
n−1).

This suggests a generalization of Conjecture 3.2 to
flags of subspaces that are secant to the rational nor-
mal curve γ. Let S := (s1, s2, . . . , sn) be n distinct
points in P1 and for each i = 1, . . . , n, let Fi(S) :=
span{γ(s1), . . . , γ(si)}. These subspaces form the flag
F•(S) that is secant to γ at S. A list (S1, . . . , Sm) of
sets of n distinct points in RP1 is monotone with respect
to a Grassmannian Schubert problem (w1, . . . , wm) if the
following conditions hold.

1. There exists a collection of disjoint intervals
I1, . . . , Im of RP1 with Si ⊂ Ii for each i = 1, . . . ,m.

2. If we choose points ti ∈ Ii for i = 1, . . . ,m, then
(t1, . . . , tm) is monotone with respect to the Grass-
mannian Schubert problem w. This notion does not
depend on the choice of points, since the intervals
are disjoint.

Conjecture 3.10. Given a Grassmannian Schubert prob-
lem (w1, . . . , wm) for F�(α;n), the Schubert intersection

Xw1F•(S1) ∩Xw2F•(S2) ∩ · · · ∩Xwm
F•(Sm)

is transverse, with all points of intersection real, if the list
of subsets (S1, . . . , Sm) of RP1 is monotone with respect
to (w1, . . . , wm).

Conjecture 3.10 was formulated in [Eremenko et al. 06]
for the case in which the flag manifolds are Grassmann-
ians. There, monotonicity was called well-separatedness.
The main result in that paper is its proof for the Grass-
mannian Gr(n−2, n). A collection U1, . . . , Ur of subsets
of RP1 is well-separated if there are disjoint intervals
I1, . . . , Ir of RP1 with Ui ⊂ Ii for i = 1, . . . , r.

Proposition 3.11. [Eremenko et al. 06, Theorem 1] Sup-
pose that U1, . . . , Ur is a well-separated collection of finite
subsets of RP1 consisting of 2n − 2 + r points, and with
no Ui consisting of a single point. Then there are finitely
many codimension-2 planes meeting each of the planes
span{γ(Ui)} for i = 1, . . . , r, and all are real.

The numerical condition that there are 2n − 2 + r

points and that no Ui is a singleton ensures that there
will be finitely many codimension-2 planes meeting the
subspaces span{γ(Ui)}. To see how this implies that
the intersections (3–4) and (3–3) consist only of real
points, let r = p + 1 and set Uj := {tj , uj}, where the
point uj is close to the point tj for j = 1, . . . , p and
also set Up+1 := {s1, . . . , sq}. For each j = 1, . . . , p,
the limit limuj→tj

span{γ(Uj)} is the 2-plane osculating
the rational normal curve at tj . The condition that the
subsets U1, . . . , Up+1 be well-separated implies that the
points {s1, . . . , sq, t1, . . . , tp} are monotone with respect
to the Schubert problem (σp

n−2, σ
q
n−1). Thus the inter-

section (3–4) is a limit of intersections of the form in
Proposition 3.11, and hence consists only of real points.
This gives the following corollary to Proposition 3.11,
also proven in [Eremenko et al. 06].

Corollary 3.12. Suppose that there exist disjoint inter-
vals I ⊃ {s1, . . . , sq} and J ⊃ {t1, . . . , tp}. Then all
codimension-2 planes in the intersection (3–3) are real.
Thus all flags E• ∈ F�(n−2, n−1;n) in the intersec-
tion (3–4) are real.

We have not yet investigated Conjecture 3.10, and the
results of [Eremenko et al. 06] are the only evidence cur-
rently in its favor. We believe that experimentation test-
ing this conjecture, in the spirit of the experimentation
described in Section 5, is a natural and worthwhile next
step.

3.3 Examples

While the original goal of our experimentation was to
study Conjecture 3.2, this project became a general study
of Schubert intersection problems on small flag manifolds.
Here, we report on some new and interesting phenomena
that we observed beyond support for Conjecture 3.2.

We first discuss some of the Schubert problems that
we investigated, presenting in tabular form the data from
our experimentation on those problems. Some of these
appear to present new or interesting phenomena beyond
Conjecture 3.2. We next discuss some phenomena that
we observed in our data, and which we can establish rig-
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orously. One is the smallest enumerative problem that we
know of with an unexpectedly small Galois group [Harris
79, Vakil, to appear], and the other is a Schubert prob-
lem for which the intersection is not transverse when the
given flags osculate the rational normal curve.

A Schubert intersection of the form

Xw1(t1) ∩Xw2(t2) ∩ · · · ∩Xwm
(tm)

may be encoded by labeling each point ti ∈ RP1 with
the corresponding Schubert condition wi. The automor-
phism group of RP1 acts on the flag variety F�(α;n), and
hence on collections of labeled points. A coarser equiva-
lence, which captures the combinatorics of the arrange-
ment of Schubert conditions along RP1, is isotopy, and
isotopy classes of such labeled points are called necklaces,
which are the different arrangements of m beads labeled
with w1, . . . , wm and strung on the circle RP1. Our ex-
perimentation was designed to study how the number of
real solutions to a Schubert problem was affected by the
necklace. Monotone necklaces are necklaces correspond-
ing to monotone choices of points.

To that end, we kept track of the number of real so-
lutions to a Schubert problem by the associated neck-
lace, and have archived the results in linked web pages
available at www.math.tamu.edu/˜sottile/pages/Flags/.
Section 5 discusses how these computations were carried
out. While Conjecture 3.2 is the most basic assertion
that we believe is true, there were many other phenom-
ena, both general and specific, that our experimentation
uncovered. We describe some of them below. Conjec-
ture 4.4 and Theorem 4.7 are some others. Our data
contain many more interesting examples, and we invite
the interested reader to browse the data online.

3.3.1 Conjecture 3.2. Table 1 shows the data from
computing 3.2 million instances of the Schubert problem
(σ2

4, σ3
4) on F�(2, 3; 5) underlying Conjecture 1.1. Each

row corresponds to a necklace, and the entries record how
often a given number of real solutions was observed for
the corresponding necklace. Representing the Schubert
conditions σ2 and σ3 by their subscripts, we may write
each necklace linearly as a sequence of 2’s and 3’s. The
only monotone necklace is in the first row, and Conjec-
ture 3.2 predicts that any intersection with this necklace
will have all 12 solutions real, as we observe.

The other rows in this table are equally striking. It
appears that there is a unique necklace for which it is
possible that no solutions are real, and for five of the
necklaces, the minimum number of real solutions is 4.
The rows in this and all other tables are ordered to high-
light this feature. Every row has a nonzero entry in its

last column. This implies that for every necklace, there
is a choice of points on RP1 with that necklace for which
all 12 solutions are real. Since this is a simple Schubert
problem, that feature is a consequence of Corollary 2.2
of [Sottile 99].

Table 2 shows data from a related problem,
(σ1

2, σ2
3, σ3

3, σ4
2), with 12 solutions. We computed only

three necklaces for this problem, since it has 1272 neck-
laces. In the necklaces, i represents the Schubert con-
dition σi. The only monotone necklace is in the first
row. While the second row is not monotone, it appears
to have only real solutions. A similar phenomenon (some
nonmonotone necklaces having only real solutions) was
observed in other Schubert problems involving 4- and 5-
step flag manifolds. This can be seen in the example of
Table 3, as well as the third part of Theorem 4.11.

Table 3 shows data from the problem(
σ1

2, σ2
2, 246, σ3, σ4

2, σ5
2
)

on F�(1, 2, 3, 4, 5; 6) with eight solutions. In the neck-
laces, i represents σi and C represents the Grassmannian
condition 246 with descent at 3. We computed only 13
necklaces for this problem, since it has 11 352 necklaces.
Note that three nonmonotone necklaces have only real
solutions, one has at least six solutions, and seven have
at least four real solutions.

3.3.2 Apparent Lower Bounds. In the previous sec-
tion, we noted that the lower bound on the number of
real solutions seems to depend on the necklace. We also
found many Schubert problems with an apparent lower
bound that holds for all necklaces. For example, Table 4
is for the Schubert problem

(
σ3, (1362)2, σ4

2, 1346
)

on
F�(3, 4; 7), which has degree 10. We display only 4 of
the 16 necklaces for this problem. Here a, b, c, d refer to
the four conditions (σ3, 1362, σ4, 1346). There are four
other necklaces giving a monotone choice of points, and
for those the solutions were always real. None of the
remaining eight necklaces had fewer than four real solu-
tions.

Number of Real Solutions

Necklace 0 2 4 6 8 10
abbccd 0 0 0 0 0 100000
acbbcd 0 0 0 16722 50766 32512
accbbd 0 0 11979 26316 29683 32022
acbdbc 0 0 27976 34559 26469 10996

TABLE 4. The Schubert problem (σ3, (1362)2, σ4
2, 1346) on

F�(3, 4; 7).
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Number of Real Solutions

Necklace 0 2 4 6 8 10 12
22223333 0 0 0 0 0 0 400000
22322333 0 0 118 65425 132241 117504 84712
22233233 0 0 104 65461 134417 117535 82483
22332233 0 0 1618 57236 188393 92580 60173
22323323 0 0 25398 90784 143394 107108 33316
22332323 0 2085 79317 111448 121589 60333 25228
22232333 0 7818 34389 58098 101334 81724 116637
23232323 15923 41929 131054 86894 81823 30578 11799

TABLE 1. The Schubert problem (σ2
4, σ3

4) on F�(2, 3; 5).

Number of Real Solutions

Necklace 0 2 4 6 8 10 12
1122233344 0 0 0 0 0 0 10000
1122244333 0 0 0 0 0 0 10000
1133322244 0 102 462 1556 3821 2809 1250

TABLE 2. The Schubert problem (σ1
2, σ2

3, σ3
3, σ4

2) on F�(1, 2, 3, 4; 5).

Number of Real Solutions

Necklace 0 2 4 6 8
1122C34455 0 0 0 0 50000
11C3445522 0 0 0 0 50000
1122C35544 0 0 0 0 50000
11C3554422 0 0 0 0 50000
115522C344 0 0 0 3406 46594
11C3552244 0 0 5401 24714 19885
1155C34422 0 0 6347 19567 24086
112255C344 0 0 7732 23461 18807
11C3442255 0 0 12437 20396 17167
114422C355 0 0 12508 19177 18315
11445522C3 0 0 15109 25418 9473
11554422C3 0 0 17152 23734 9114
135241C524 298 7095 18280 17871 6456

TABLE 3. The Schubert problem (σ1
2, σ2

2, 246, σ3, σ4
2, σ5

2) on F�(1, 2, 3, 4, 5; 6).

Number of Real Solutions

Necklace 1 3 5 7
AABBB 0 500000 0 0
ABABB 193849 268969 37182 0

TABLE 5. The Schubert problem (A2, B3) on F�(1, 2, 3, 4; 5).

Such lower bounds on the number of real solutions
to enumerative geometric problems were first found by

Eremenko and Gabrielov [Eremenko and Gabrielov 01]
in the context of the Shapiro conjecture for Grassmann-
ians. Lower bounds have also been proven for problems of
enumerating rational curves on surfaces [Itenberg et al.
04, Mikhalkin 05, Welschinger 03] and for some sparse
polynomial systems [Soprunova and Sottile 06]. We do
not yet know a reason for the lower bounds here.

3.3.3 Apparent Upper Bounds. On F�(1, 2, 3, 4; 5),
set A := 1325 and B := 2143. The Schubert problem
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(A2, B3) has degree 7, but none of the one million in-
stances we computed had more than five real solutions.

Neither condition A nor B is Grassmannian, and so
this Schubert problem is not related to the conjectures
in this paper.

3.3.4 Apparent Gaps. On F�(1, 3, 5; 6), set A :=
21436 and B := 31526. The Schubert problem
(A2, B, σ3

2) has degree 8 and it appears to exhibit gaps
in the possible numbers of real solutions. Table 6 gives
the data from this computation. In each necklace, 3 rep-
resents the Grassmannian condition σ3. This is a new

Number of Real Solutions

Necklace 0 2 4 6 8
AAB33 0 0 991894 0 8106
AA3B3 111808 0 888040 0 152
A3A3B 311285 0 681416 0 7299
A33AB 884186 0 115814 0 0

TABLE 6. The Schubert problem
(
A2, B, σ3

2
)

on
F�(1, 3, 5; 6).

phenomenon first observed in some sparse polynomial
systems [Soprunova and Sottile 06, Section 7].

3.3.5 Small Galois Group. One unusual problem that
we looked at was on the flag manifold F�(2, 4; 6). It in-
volved four identical non-Grassmannian conditions, 1425.
We can prove that this problem has six solutions, and
that they are always all real.

Theorem 3.13. For any distinct s, t, u, v ∈ RP1, the in-
tersection

X1425(s) ∩X1425(t) ∩X1425(u) ∩X1425(v)

is transverse and consists of six real points.

This Schubert problem exhibits some other excep-
tional geometry concerning its Galois group, which we
now define. Let (w1, . . . , ws) be a Schubert problem for
F�(α;n) and consider the configuration space of s-tuples
of flags (F 1

• , F
2
• , . . . , F

s
• ) for which

X := Xw1F
1
• ∩Xw2F

2
• ∩ · · · ∩Xws

F s
•

is transverse, and hence X consists of finitely many
points. If we pick a base point of this configuration
space and follow the intersection along a based loop in
the configuration space, we will obtain a permutation of
the intersection X corresponding to the base point. Such

permutations generate the Galois group of this Schubert
problem.

Harris [Harris 79] defined Galois groups for any enu-
merative geometric problem, and Vakil [Vakil, to appear]
investigated them for Schubert problems on Grassmann-
ians, showing that many problems have a Galois group
that contains at least the alternating group. He also
found some Schubert problems on Grassmannians whose
Galois group is not the full symmetric group. This Schu-
bert problem also has a strikingly small Galois group,
and is the simplest Schubert problem we know with a
small Galois group.

Theorem 3.14. The Galois group of the Schubert problem
(1425)4 on F�(2, 4; 6) is the symmetric group on three
letters.

We prove both theorems. First, consider the Schubert
variety X1425F•:

X1425F• = {E2 ⊂ E4 | dimE2 ∩ F3 ≥ 1 and

dimE4 ∩ F3 ≥ 2}.
The image of X1425F• under the projection
π4 : F�(2, 4; 6) � Gr(4, 6) is

Ω1245F• := {E4 ∈ Gr(4, 6) | dimE4 ∩ F3 ≥ 2}.
Since this Schubert variety has codimension 2 in Gr(4, 6),
a variety of dimension 8, there are finitely many 4-planes
E4 that have Schubert position 1245 with respect to four
general flags. In fact, there are exactly three. (See Sec-
tion 8.1 of [Sottile 97b], which treats the dual problem in
Gr(2, 6).)

Thus we have a fibration of Schubert problems

4⋂
i=1

X1425F
i
•

π4−→
4⋂

i=1

Ω1245F
i
• . (3–5)

Let K be a solution to the Schubert problem in Gr(4, 6).
We ask, for which 2-planes H in C6 is the flag H ⊂ K a
solution to the Schubert problem in F�(2, 4; 6)? From the
description of X1425F•, H must be a 2-plane in K that
meets each linear subspace K ∩ F i

3 nontrivially. Since K
lies in each Schubert cell Ω◦F i

•, it follows that K ∩ F i
3 is

a 2-plane. Thus we are looking for the 2-planes H in K

that meet four general 2-planes K ∩ F i
3. There are two

such 2-planes H, since this is an instance of the problem
of lines in P3 meeting four lines. We conclude that there
are six solutions to the Schubert problem on F�(2, 4; 6).

This Schubert problem projects to one in Gr(2, 6) with
three solutions that is dual to the projection in Gr(4, 6).
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Let Hi and Ki for i = 1, 2, 3 be the 2-planes and 4-planes
that are solutions to the two projected problems. For
each Ki there are exactly two Hj for which Hj ⊂ Ki is
a solution to the original problem in F�(2, 4; 6). Dually,
for each Hi there are exactly two Kj for which Hi ⊂ Kj

is a solution to the original problem. There is only one
possibility for the configuration of the six flags, up to
relabeling:

K3 K2 K1

H1 H2 H3

(3–6)

Proof of Theorem 3.13: Since the flags osculate the ra-
tional normal curve, the problems obtained by projecting
the intersection in Theorem 3.13 to Grassmannians have
only real solutions, as shown in Theorem 3.9 of [Sottile
00a]. Thus all subspaces Hi and Ki in (3–6) are real, and
so the six solution flags of (3–6) are all real.

Proof of Theorem 3.14: Since the six solution flags have
the configuration given in (3–6), we see that any permu-
tation of the six solutions is determined by its action on
the three 4-planes K1,K2,K3. Thus the Galois group is
at most the symmetric group S3. The explicit description
given in Section 8.1 of [Sottile 97b] and also the analysis
in [Vakil, to appear] shows that the Galois group of the
projected problem in Gr(4, 6) is S3.

3.3.6 A Nontransverse Schubert Problem. Our exper-
imentation uncovered a Schubert problem whose corre-
sponding intersection is not transverse or even proper
when it involves flags osculating a rational normal
curve. This may have negative repercussions for part of
Varchenko’s program on the Bethe ansatz and Fuchsian
equations [Mukhin and Varchenko 04]. This was unex-
pected, since Eisenbud and Harris have shown that on a
Grassmannian, any intersection

Xw1(t1) ∩ · · · ∩Xwm
(tm) (3–7)

is proper in that it has the expected dimension dim(α)−∑
�(wi) if the points t1, . . . , tm in P1 are distinct [Eisen-

bud and Harris 83, Theorem 2.3]. On any flag manifold,
if each condition (except possibly one) has codimension
1 (�(wi) = 1), and if the points t1, . . . , tm ∈ P1 are gen-
eral, then the intersection (3–7) is transverse, and hence
proper [Sottile 99, Theorem 2.1]. We show that this is not
the case for all Schubert problems on the flag manifold.

The manifold of flags of type {1, 3} in C5 has dimen-
sion 8. Since �(32514) = 5 and �(21435) = 2, there are
no flags of type {1, 3} satisfying the Schubert conditions

(
325, (214)2

)
imposed by three general flags. This is not

the case if the flags osculate a rational normal curve γ.

Theorem 3.15. The intersection X325(u) ∩ X214(s) ∩
X214(t) is nonempty for all s, t, u ∈ P1.

Proof: We may assume without any loss that u = ∞,
so that flags in X◦

325(u) are given by matrices in M325.
Consider the 3 × 5 matrix⎡⎣0 0 1 3

2 (s+ t) 6st
0 1 0 −3st 0
0 0 0 0 1

⎤⎦ (3–8)

in M325. Let E• : E1 ⊂ E3 be the corresponding flag.
We will show that E• ∈ X214(s) ∩ X214(t). Let v1, v2,
and v3 to be the row vectors in (3–8). Consider the dual
vector

λ(s) := (s4, −4s3, 6s2, −4s, 1) ,

and note that λ(s) annihilates γ(s), γ′(s), γ′′(s), and
γ′′′(s), so that λ(s) is a linear form annihilating the 4-
plane F4(s) osculating the rational normal curve γ at the
point γ(s). Note that v1 · λ(s)t = 0, so that E1 ⊂ F4(s).
Also,

γ′(s) = v2 + 2sv1 + (4s3 − 12s2t)v3 ,

and so E3 ∩ F2(s) �= 0. In particular, this implies that
E• ∈ X214(s). We similarly have that E• ∈ X214(t).

4. DISCUSSION

We establish relationships between the different conjec-
tures of Section 3, between the conjectures for different
Schubert problems on the same flag manifold, and be-
tween the conjectures for Schubert problems on different
flag manifolds. This includes a proof of Theorem 3.5 and
a subtle generalization of Conjecture 3.2. We conclude
by proving Conjecture 3.8 for several Schubert problems.

4.1 Child Problems

The Bruhat order on Wα is defined by its covers w � u

(i.e., �(w) + 1 = �(u) and w−1u is a transposition (b, c)).
Necessarily, there exists an i such that b ≤ αi < c, but
this number imay not be unique. Write w�iu when w�u

in the Bruhat order and the transposition (b, c) := w−1u

satisfies b ≤ αi < c. This defines the cover relation in
a partial order <i on Wα, which is a subposet of the
Bruhat order, and is called the αi-Bruhat order in the
combinatorics literature [Sottile 96]. When w < u are
two Grassmannian permutations with the same descent
αi that are related in Bruhat order, then w <i u and
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there is a chain of covers in the <i-order connecting w to
u.

Suppose that (v, w1, w2, . . . , wm) is a Schubert prob-
lem for F�(α;n) and that v = σαi

. For any permutation
u with w1 �i u, we have �(v) + �(w1) = �(u), and so
(u, w2, . . . , wm) is a Schubert problem for F�(α;n). We
say that (u, w2, . . . , wm) is a child problem of the original
Schubert problem (v, w1, w2, . . . , wm) and write

(v, w1, w2, . . . , wm)≺· (u, w2, . . . , wm) ,

which defines the covering relation for a partial order ≺
on the set of Schubert problems for F�(α;n). Since every
cover w� u in the Bruhat order on Wα has the form �i

for some i, the minimal elements in this partial order ≺
are exactly the simple Schubert problems. The reason
for these definitions is the following lemma.

Lemma 4.1. Suppose that

(v, w1, w2, . . . , wm)≺· (u, w2, . . . , wm)

is a cover between two Grassmannian Schubert problems
for F�(α;n), where δ(w1) = αi, v = σαi

, and w1 �i u. If
Conjecture 3.3 holds for (v, w1, w2, . . . , wm), then it holds
for (u, w2, . . . , wm).

The case β = α of Theorem 3.5 follows from
Lemma 4.1, since any Grassmannian Schubert problem
is connected to a simple Schubert problem via a chain
of covers as in Lemma 4.1. In turn, Lemma 4.1 is a
consequence of Lemma 4.2, which is proven in the next
section.

4.2 Limits of Schubert Intersections

Let w ∈ Wα be a Schubert condition for F�(α;n) and
suppose that v = σαi

. If t �= 0, then the intersection
Xw(0) ∩ Xv(t) is (generically) transverse. One result
of [Sottile 00b] concerns the limit of this intersection.
Specifically, we have the cycle-theoretic equality

lim
t→0

Xw(0) ∩Xv(t) =
∑

w�iu

Xu(0) . (4–1)

That is, the support of the scheme-theoretic limit is the
union of Schubert varieties in the sum, and this scheme-
theoretic limit is reduced at the generic point of each
Schubert variety in the sum. We use this to prove the
following lemma.

Lemma 4.2. Let (v, w1, w2, . . . , wm) be a Schubert prob-
lem for F�(α;n), where v = σαi

. Suppose that t2, . . . , tm

are negative real numbers such that the intersection

Xv(t) ∩Xw1(0) ∩Xw2(t2) ∩ · · · ∩Xwm
(tm)

consists only of real points, for any positive number t.
Then, for any permutation u with w1 �i u, the intersec-
tion

Xu(0) ∩Xw2(t2) ∩ · · · ∩Xwm
(tm)

consists only of real points.

Proof: Set Y := Xw2(t2) ∩ · · · ∩Xwm
(tm). We assumed

that if 0 < t, then Xw1(0) ∩ Xv(t) ∩ Y consists only of
real points. The property of having only real points of
intersection is preserved under taking limits, and so (4–1)
implies that every point of

Y ∩
∑

w1�iu

Xu(0)

is real. In particular, if w1 �i u, then Y ∩Xu(0) consists
only of real points.

Proof of Lemma 4.1: Let t1, . . . , tm ∈ RP1 be a
monotone choice of points for the Schubert problem
(u,w2, . . . , wm). Applying a real Möbius transforma-
tion if necessary, we may assume that t1 = 0 and that
t2, . . . , tm are negative real numbers. Thus it suffices to
show that

Xu(0) ∩Xw2(t2) ∩ · · · ∩Xwm
(tm) (4–2)

consists only of real points. Since δ(u) = δ(w1) =
δ(v) = αi, it follows that if 0 < t, then (t, 0, t2, . . . , tm)
is monotone with respect to the Schubert problem
(v, w1, w2, . . . , wm). By our assumption that Conjec-
ture 3.3 holds for (v, w1, w2, . . . , wm), the intersection

Xv(t) ∩Xw1(0) ∩Xw2(t2) ∩ · · · ∩Xwm
(tm)

consists only of real points, for any positive number t.
But then Lemma 4.2 implies that the intersection (4–2)
consists only of real points.

4.3 Refined Monotone Conjecture

Lemma 4.2 leads to an extension of Conjecture 3.2 to
some cases in which the Schubert problem is not Grass-
mannian. We first give an example, which indicates a
strengthening of Theorem 3.5.

Example 4.3. Consider the following instance of the cycle-
theoretic equality (4–1):

lim
x→0+

X142(0) ∩Xσ3(x) = X152(0) ∪X143(0). (4–3)
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Note that δ(142) = 2. Suppose that Conjecture 3.2 holds
for the Schubert problem (σ3

2 , 142, σ3
3). Then, if s < t <

u < 0 < x < y < z, the intersection

Xσ2(s) ∩Xσ2(t) ∩Xσ2(u) ∩X142(0)

∩Xσ3(x) ∩Xσ3(y) ∩Xσ3(z)

consists only of real points, since the choice of points
s, t, u, 0, x, y, z is monotone with respect to the given
Schubert problem. As in the proof of Lemma 4.2, the
limit (4–3) implies that whenever s < t < u < 0 < y < z,
the intersection

Xσ2(s) ∩Xσ2(t) ∩Xσ2(u) ∩X143(0) ∩Xσ3(y) ∩Xσ3(z)

consists only of real points, even though the permutation
14325 is not Grassmannian.

We extend our notion of monotone choices of points
to encompass this last example. For a permutation w ∈
Wα, let δ(w) ⊂ {α1, . . . , αk} be its set of descents. Given
two subsets S, T ⊂ {α1, . . . , αk}, we say that S precedes
T , written S < T , if we have i ≤ j for all i ∈ S and
j ∈ T . This does not define a partial order on the set of
subsets, but it does give a notion of when a list of subsets
is increasing. For example,

{2} < {2} < {2} < {2, 3} < {3} < {3} (4–4)

is increasing, but {2, 3} �< {2, 3}. Note that {2} < {2}.
A list of points (t1, . . . , tm) ∈ RP1 is monotone with

respect to a Schubert problem (w1, . . . , wm) for F�(α;n)
if the function

ti 	−→ δ(wi) ⊂ {α1, . . . , αk}

is monotone, when the ordering of the ti is consistent with
some ordering of RP1. For example, (s < t < u < 0 <
y < z) is monotone with respect to the Schubert prob-
lem (σ2, σ2, σ2, 143, σ3, σ3), since δ(143) = {2, 3}, and
we have (4–4). We give a refinement of Conjecture 3.2,
which drops the condition that the Schubert problem be
Grassmannian.

Conjecture 4.4. Suppose that (w1, . . . , wm) is a Schubert
problem for F�(α;n). Then the intersection

Xw1(t1) ∩Xw2(t2) ∩ · · · ∩Xwm
(tm) , (4–5)

is transverse with all points of intersection real if the
points t1, . . . , tm ∈ RP1 are monotone with respect to
(w1, . . . , wm).

Remark 4.5. There are many Schubert problems for
which there are no monotone points. For example, two
of the conditions (A) in the Schubert problem of Table 5
have descent set {2, 4} and so there are no monotone
points. As reported there, for each of the two different
necklaces, there are choices of points with not all solu-
tions real. Similarly, in the Schubert problem of Table 6,
there are three permutations with descent set {1, 3, 5},
and thus no monotone points. The Schubert problem
in Section 3.3.5 consists of four identical conditions w
with δ(w) = {2, 4}, and so there are no monotone points.
Nevertheless, we showed that all solutions are real.

The other conjectures of Section 3.1 may be refined
to include this more general notion of monotone points.
For example, we conjecture that the discriminant of a
Schubert problem does not vanish for monotone points,
and that it (or its negative) lies in the preorder generated
by differences of the ti, as in Conjecture 3.8.

The theorems of Section 3.1 also hold in this general-
ity, since the proofs are identical. For example, we have
the following strengthening of Theorem 3.5.

Theorem 3.5′. Suppose that Conjecture 4.4 holds for
all simple Schubert problems on a given flag manifold
F�(α;n). Then Conjecture 4.4 holds for all Schubert
problems on any flag manifold F�(β, n), where β is any
subsequence of α. (Here, the condition of transversality
in Conjecture 4.4 is dropped.)

Example 4.6. Table 7 shows data from the Schubert prob-
lem (σ2

2, 1432, 135 2, 1254, σ4
2) on F�(2, 3, 4; 6), which

has 12 solutions and involves two non-Grassmannian con-
ditions. In the necklaces, 2, A, 3, B, 4 represent the five
Schubert conditions. Their respective descent sets are
{2}, {2, 3}, {3}, {3, 4}, {4}, so only the first row is mono-
tone, and these data support Conjecture 4.4. We show
only 5 of the 90 necklaces.

Number of Real Solutions

Necklace 0 2 4 6 8 10 12
22A3B44 0 0 0 0 0 0 7500
22AB443 0 0 0 0 0 0 7500
22AB344 0 0 0 0 306 3776 3416
22B3A44 0 0 0 12 1359 3446 2683
22344AB 0 0 0 1213 2129 1771 2387

TABLE 7. The Schubert problem (σ2
2, 1432, 1354, 1254, σ4

2)
on F�(2, 3, 4; 6).
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4.4 Projections

Suppose that β is a subsequence of α. In Section 2.1 we
considered projections π : F�(α;n) → F�(β;n) obtained
by forgetting the components of a flag E• ∈ F�(α;n) with
dimension in α \ β. The image π(XwF•) of a Schubert
variety of F�(α;n) is a Schubert variety of F�(β;n) for a
(possibly) different permutation π(w). Recall that w ∈
Wα is a permutation whose descents can occur only at
positions in α. The permutation π(w) is obtained by
ordering the values of w between successive positions in
β. For example, if n = 9, α = {2, 4, 5, 7}, and β = {2, 7},
then

π(13 58 4 27 69) = 13 24578 69

and
π(26 45 7 19 36) = 26 14579 36.

Because π(XwF•(s)) = Xπ(w)F•(s), if we have a Schu-
bert problem (w1, . . . , wm) on F�(α;n) and m general
flags, then π is a map between the intersections

π : Xw1(t1) ∩ · · · ∩Xwm
(tm) (4–6)

−→ Xπ(w1)(t1) ∩ · · · ∩Xπ(wm)(tm).

Suppose that both (w1, . . . , wm) and (π(w1), . . . , π(wm))
are Schubert problems. Then the map π of (4–6)
is a fibration with finite fibers. If the two problems
have the same degree, then π is an isomorphism. In
that case, we say that (π(w1), . . . , π(wm)) is a projec-
tion of (w1, . . . , wm) and that (w1, . . . , wm) is a lift of
(π(w1), . . . , π(wm)).

Theorem 4.7. Suppose that the Schubert problem w :=
(w1, . . . , wm) on F�(α;n) is a lift of the Schubert prob-
lem π(w) = (π(w1), . . . , π(wm)) on F�(β;n). If Conjec-
ture 4.4 holds for π(w) then it holds for w.

Proof: Suppose that the permutations in w are ordered
such that

δ(w1) < δ(w2) < · · · < δ(wm)

and let t1 < · · · < tm be real numbers. Then δ(π(w1)) <
· · · < δ(π(wm)) and our assumption on π(w) implies that
the right-hand intersection in (4–6) consists only of real
points. Since the map π in (4–6) is an isomorphism, we
conclude that the left-hand intersection in (4–6) consists
only of real points.

Example 4.8. Projection and lifts relate Schubert prob-
lems in many ways. The Grassmannian Schubert prob-
lem

w := (4 1235, 15 234, 135 24, 1345 2, 12456 )

on F�(1, 2, 3, 4, 5; 6) has degree 4 and it projects to the
Schubert problem (σ3, 125, 135, 134, σ3) on the Grass-
mannian G(3, 6), which also has degree 4. One may
compute a discriminant (as in [Sottile 00a, Section 3E])
to show that the Shapiro conjecture holds for this Schu-
bert problem. But then every Shapiro-type intersection
for w has all solutions real, and thus Conjecture 3.2
holds for w. More interestingly, the projection of w to
F�(2, 4; 6) also has only real solutions. This is the prob-
lem (14 23, 15 23, 1325, 1345, 1245) of degree 4. Since the
conditions have descents ({2}, {2}, {2, 4}, {4}, {4}), there
is a monotone choice of points, and so Conjecture 4.4
holds for this last Schubert problem.

We now complete the proof of Theorem 3.5, show-
ing that if Conjecture 4.4 holds for all simple Schu-
bert problems on F�(α;n), then Conjecture 4.4 holds
for all Schubert problems on F�(β, n), for any subse-
quence β of α. Here, we drop the claim of transver-
sality in Conjecture 4.4. The proof will involve Schu-
bert problems w = (w1, . . . , wm) on F�(α;n) such that
π(w) = (π(w1), . . . , π(wm)) is a Schubert problem on
F�(β;n), where π : F�(α;n) → F�(β;n) is the projection
map. When this happens and the problem w has nonzero
degree, we say that the Schubert problem w is fibered
over π(w). Note that we do not require the two prob-
lems to have the same degree. While it is not the case
that π(w) is a Schubert problem on F�(β;n) whenever w
is a Schubert problem on F�(α;n), it turns out that for
every Schubert problem v on F�(β;n), there are many
Schubert problems w on F�(α;n) that are fibered over v,
and the degree of w is always a positive multiple of the
degree of v. The geometry behind this is discussed, for
instance, in [Purbhoo and Sottile 06].

Indeed, the fiber Y of the projection π : F�(α;n) →
F�(β;n) is a (product of) flag manifolds. The map
π : XwF• → Xπ(w)F• is almost a fiber bundle. The fiber
over a general point of Xπ(w)F• is a Schubert variety in
Y whose indexing permutation is π(w)−1w. Then if the
flags are in general position, then π restricts to a fibration

π : Xw1F
1
• ∩· · ·∩Xwm

Fm
• −→ Xπ(w1)F

1
• ∩· · ·∩Xπ(wm)F

m
•

(4–7)
with fiber the Schubert intersection in Y given by
(π(w1)−1w1, . . . , π(wm)−1wm).

When a problem w is fibered over a problem v, there
may be conditions wi of w such that π(wi) = ι, the
identity permutation. This condition ι is trivial because
Xι = F�(β;n). Two problems v and v′ are equivalent if
they differ only in trivial conditions.
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The full statement of Theorem 3.5 is a consequence
of the following result and the version in which β = α,
which has already been proven.

Theorem 4.9. Suppose that β is a subsequence of α and
that v is a simple Schubert problem for F�(β;n). Then
there is a simple Schubert problem w for F�(α;n) such
that if Conjecture 4.4 holds for w, then it holds for v.

Proof: Suppose that w = (w1, . . . , wm) is a simple Schu-
bert problem on F�(α;n), and each wi is a simple trans-
position of the form σαj

, for some j. Then

π(σαj
) =

{
σαj

if αj ∈ β,

ι otherwise.

It follows that π(w) is a simple Schubert problem on
F�(β;n) that involves some trivial Schubert varieties Xι.
As in the proof of Theorem 4.7, if (t1, . . . , tm) is mono-
tone for w, then it will be monotone for π(w). Note that
if π(wi) = ι, then the choice of the point ti does not affect
the Schubert intersection for π(w).

The converse is also true. Let v be the Schubert prob-
lem π(w), where we have dropped all of the trivial con-
ditions ι. Any monotone choice of points for v may be
extended to a monotone choice of points (t1, . . . , tm) for
w. We need only choose points ti for those wi such that
π(w) = ι in a way to preserve monotonicity, which is
easy.

Suppose now that v is a simple Schubert problem on
F�(β;n). Then there is a simple Schubert problem w on
F�(α;n) that is fibered over v. Indeed, let Y be the flag
manifold that is the fiber of the projection π : F�(α;n) →
F�(β;n). It suffices to add simple Schubert conditions to
v coming from any simple Schubert problem on Y with
degree greater than zero. These added conditions wi have
descents in α \ β, so the Schubert problems π(w) and v

are equivalent. Pick a monotone choice of points for v
and, as explained in the previous paragraph, extend it
to a monotone choice of points for w. If Conjecture 4.4
holds for w, then all the points in Xw1(t1)∩· · ·∩Xwm

(tm)
are real. The map π in (4–7) exhibits this as a surjection
onto Xπ(w1)(t1)∩· · ·∩Xπ(wm)(tm), which equals the cor-
responding intersection for the Schubert problem v and
the original monotone choice of points.

Example 4.10. Theorem 4.9 involved one Schubert prob-
lem fibered over another. An example is provided by the
Schubert problem

(
σ2

4, (1245)4
)

on F�(2, 4; 6), which has
degree 6. As with the example in Section 3.3.5, this is

fibered over the Schubert problem on Gr(4, 6) involving
the intersection of four Schubert varieties Ω1245 given by
flags osculating the rational normal curve at the points
corresponding to the conditions 1245. All three solution
4-planes K1,K2, and K3 are real, and the fiber over Ki is
the problem of four 2-planes in Ki meeting four 2-planes
that are the intersection of Ki with four 4-planes osculat-
ing the rational normal curve at the points corresponding
to the conditions σ2.

This problem in the fiber is not equivalent to an in-
stance of the Shapiro conjecture for 2-planes in the 4-
space Ki. If it were equivalent to an instance of the
Shapiro conjecture, then all solutions for every necklace
of Table 8 would be real, which is not the case. In the
necklaces of Table 8, 2 represents the condition σ2 and 4
represents the condition 1245.

Number of Real Solutions

Necklace 0 2 4 6
22224444 0 0 0 100000
22242444 0 0 0 100000
22244244 0 0 0 100000
22442244 0 0 122 99878
22424244 0 12 3551 96437
22424424 0 105 8448 91447
24242424 0 1050 19964 78986
22422444 18 340 5147 94495

TABLE 8. The Schubert problem
(
σ2

4, (1245)4
)

on F�(2, 4; 6).

4.5 Discriminants

Let w = (w1. . . . , wm) be a Schubert problem on F�(α;n).
The discriminant Σ ⊂ (P1)m is the set of points
(t1, . . . , tm) at which the intersection

Xw1(t1) ∩ · · · ∩Xwm
(tm) (4–8)

is not transverse. When Σ �= (P1)m, this is a hypersurface
defined by the discriminant polynomial ∆w(t1, . . . , tm),
which is separately homogeneous in each homogeneous
parameter ti. For each of three Schubert problems, we
will prove a weaker version of Conjecture 3.8 that implies
Conjecture 3.2.

This version is weaker because we do not compute
∆w(t1, . . . , tm), which would be infeasible. Instead, we
will fix three parameters, say t1 = ∞, t2 = 0, and t3 = 1
(or t3 = −1). Then we can carry out the computation in
the local coordinates Mw1 for X◦

w1
(∞), or in local coor-

dinates for the intersection of two cells X◦
w1

(∞)∩X◦
w2

(0).
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In these coordinates, we generate the ideal defining the
intersection (4–8), compute an eliminant F (x; t) for one
of our coordinates, and then compute its discriminant
∆x(t).

If we specialize the parameters t1, t2, and t3 to these
fixed values, then ∆w(t1, . . . , tm) will divide ∆x(t), but
there may be other factors in ∆x(t). We minimized these
extraneous factors by computing the greatest common
divisor of these discriminants ∆x(t) for each coordinate
x. We also remove factors common to a leading term of
any eliminant, since those correspond to solutions that
are not on our chosen coordinate patch.

Theorem 4.11. Conjecture 3.8 holds for the following
Schubert problems.

(i) the problem (σ1, 4 3 1256, 13 25 46, 1256 4 3, σ5) on
F�(1, 2, 4, 5; 6); this has two solutions;

(ii) the problem (24 135, 13 245, 134 25, (124 35)2) on
F�(2, 3; 5); this has three solutions;

(iii) the problem (146 2357, 135 2467, 1246 357, 1256 347)
on F�(3, 4; 7); this has 4 solutions.

Proof: (i) Consider the Schubert intersection

Xσ1(t) ∩X4 3 1256(∞) ∩X13 25 46(−1) ∩X1256 4 3(0)

∩Xσ5(s)

on F�(1, 2, 4, 5; 6). Since these Schubert conditions have
respective descent sets

{1}, {1, 2}, {2, 4}, {4, 5}, {5} ,
the set of monotone points is {(s, t) | 0 < s < t}. The
discriminant we computed had two factors. One was s6,
and here is the other factor:

2500s4t4 + 18000s3t4 + 4000s4t3 + 50000s2t4

+ 31100s3t3 + 2260s4t2

+ 64000st4 + 91400s2t3 + 20040s3t2 + 480s4t

+ 32000t4 + 122800st3 + 63905s2t2 + 5550s3t+ 9s4

+ 64000t3 + 91400st2 + 20040s2t+ 480s3

+ 50000t2 + 31100st+ 2260s2 + 18000t+ 4000s+ 2500 .

This is a positive sum of monomials and is thus positive
when 0 < s, t, which includes the set of monotone points.
(ii) Consider the Schubert intersection

X24 135(∞) ∩X13 245(−1) ∩X134 25(0) ∩X124 35(s)

∩X124 35(t)

on the flag variety F�(2, 3; 5). Since these Schubert con-
ditions have respective descents at 2, 2, 3, 3, 3, the set of
monotone points is

{(s, t) | −1 < s, t, s, t �= 0, and s �= t} . (4–9)

We display the discriminant in Figure 5, shading the re-
gion with monotone points.

s

t

−4

−4

−2

−2

2

2

4

4

FIGURE 5. Discriminant of problem (ii) in Theorem 4.11.

In Figure 6, we write this discriminant in terms of
t and s − t, whose positivity defines the region where
0 < s < t, a subset of the set of monotone points. This
discriminant is a positive linear combination of 49 homo-
geneous monomials of degree 9 in the terms t and s− t,
and is thus positive on the region defined by 0 < s < t.
There is a similar positive expression for the discriminant
in terms of 1 + t and s, and another in terms of 1 + t,
s− t, and −s. Together with the expression in Figure 6,
these show that the discriminant is positive on the set
−1 < s < t with s, t �= 0. Since the discriminant is sym-
metric in s and t, the symmetric counterpart of these
three expressions shows that the discriminant is positive
on the set (4–9) of monotone points.
(iii) Consider the Schubert intersection

X146 2357(∞) ∩X135 2467(0) ∩X1246 357(s) ∩X1256 347(1)

on the flag variety F�(3, 4; 7). Since the Schubert con-
ditions have descents 3, 3, 4, 4, the points are monotone
when 0 < s. Removing factors of s and 1 + s from the
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FIGURE 6. A discriminant.

discriminant, we obtain(
42966406s3 + 352158344s4 + 135425340s5

)
(1 − s4)2

+ 3515625 + 45243750s+ 221792500s2 + 565872594s3

+ 777678231s4 + 1273923370s5 + 932192307s6

+ 909742337s10 + 1560886138s11 + 867109112s12

+ 367416324s13 + 114976512s14 + 13608000s15

+ 648000s16,

which is obviously positive when 0 < s.

Remark 4.12. The first discriminant we computed, for
the Schubert intersection

Xσ1(t)∩X4 3 1256(∞)∩X13 25 46(−1)∩X1256 4 3(0)∩Xσ5(s) ,
(4–10)

was positive on more than just the monotone region.

Label Necklace 0 2

I ABCst 0 100000

II ABCts 0 100000

III ABstC 0 100000

IV ABtsC 0 100000

V AtsBC 0 100000

VI AstBC 0 100000

VII ABsCt 0 100000

VIII AtBCs 0 100000

IX AtBsC 0 100000

X ABtCs 24976 75024

XI AsBCt 26065 73935

XII AsBtC 38023 61977

TABLE 9. The discriminant for the Schubert problem
(σ1, 4 3 1256, 13 25 46, 1256 4 3, σ5) on F�(1, 2, 4, 5; 6).

I

V IX

II

VI

XIII

VIIXI

IV

VIII

XII

s = B s = C

t = B

t = C

FIGURE 7. The Schubert problem (σ1, 4 3 1256, 13 25 46,
1256 4 3, σ5) on F�(1, 2, 4, 5; 6).

The table for this Schubert problem is shown in Table
9, while Figure 7 displays a plot of the discriminant. A
comparison of the two proves that 9 of the 12 necklaces
will give only real solutions.

Indeed, the shaded region is where the discriminant is
negative. The (s, t)-plane is divided into 12 regions by
the lines s = t and s, t = 0,−1, which are points that
cannot be used in the intersection (4–10). Each region
corresponds to a necklace, and is labeled by the row of
its corresponding necklace. For the necklaces, we use t,
A, B, C, and s to denote the conditions σ1, 4 3 1256,
13 25 46, 1256 4 3, and σ5, respectively.

5. METHODS

The raison d’être for this paper is our computer exper-
imentation investigating the number of real points in
Schubert intersections of the form

Xw1(t1) ∩Xw2(t2) ∩ · · · ∩Xwm
(tm) , (5–1)

for Schubert problems (w1, w2, . . . , wm) on small flag
manifolds. We determined this number for 520 420 135
different intersections involving 1126 different Schubert
problems on 29 different flag manifolds. This used 15.76
gigahertz-years of computer time.

Table 10 shows the effort devoted to studying the three
main conjectures: the Shapiro conjecture for Grassmann-
ians (Conjecture 2.1), our monotone conjecture for Grass-
mannian Schubert problems (Conjecture 3.2), and the re-
fined monotone conjecture (Conjecture 4.4). Since these
are in increasing order of generality, each of the last two
rows of Table 10 shows only the extra effort devoted to
the corresponding conjecture. The numbers for the last



218 Experimental Mathematics, Vol. 15 (2006), No. 2

Number of Number of gigahertz
Problems Intersections years

Conjecture 2.1 212 132 919 238 3.57

Conjecture 3.2 376 25 524 191 1.23

Conjecture 4.4 201 7 223 660 0.77

TABLE 10. Resources devoted to the conjectures.

two conjectures are only a small fraction of the total ef-
fort expended in this experimentation. This is because
only a small fraction of necklaces are monotone.

A significant part of our investigation was devoted
to the Shapiro conjecture for Grassmannians (Conjec-
ture 2.1), for Gr(3, 6), Gr(3, 7), and Gr(4, 8). While
this conjecture had been studied before [Sottile 00a], the
scope of previous experiments was limited.

Section 5.1 explains how we determined the number
of real solutions in an intersection (5–1). Section 5.2 de-
scribes how we investigated such intersections for many
necklaces and choices of points for a single Schubert prob-
lem. Section 5.3 discusses the design of the experiment,
that is, how we chose which Schubert problems to inves-
tigate.

5.1 Computation of a Single Schubert Intersection

All computations were done on Intel processors running
Linux, using the computer algebra systems Singular 2-0-5
[Greuel et al. 01] and Maple, which were called from bash

shell scripts. Maple managed the data, created the Sin-
gular scripts, and counted the real solutions to univariate
eliminants.

To study a Schubert intersection (5–1), we generated
the ideal of the intersection in local coordinates Mw1 by
parameterizing the Schubert cell X◦

w1
(∞). For this, we

fixed t1 = ∞. The other points t2, . . . , tm were rational
numbers, and the ideal was generated by the equations
for each Schubert variety Xwi

(ti) as described in Sec-
tion 2.1 and in Section 2.2 (where the flags F•(ti) were
described). Because Gröbner basis computation is ex-
tremely sensitive to the number of variables, the first
Schubert condition w1 was chosen to minimize the num-
ber of coordinates in the parametrization Mw1 of the
Schubert cell X◦

w1
(∞).

Singular computed a degree reverse-lexicographic
Gröbner basis for this ideal and then used the FGLM
algorithm [Faugère et al. 93] to compute a square-free
univariate eliminant with degree equal to the degree of
the Schubert problem. This guaranteed that the origi-
nal intersection would be transverse and that its number
of real points would equal the number of real roots of

the eliminant (see the discussion in [Sottile 02, Section
2.2]). This number of real roots was computed using the
realroot command in Maple. When such an eliminant
could not be computed, data describing the intersection
were set aside and later studied by hand.

5.2 Investigation of a Single Schubert Problem

For a given Schubert problem (w1, . . . , wm), we deter-
mined the number of real points in many different Schu-
bert intersections of the form (5–1). Once a problem
was selected, data necessary for the experimentation were
precomputed and stored in a data file. These data in-
cluded a list L of permutations of the numbers {2, . . . ,m}
and a set S of rational numbers. The list L typically
consisted of one permutation representing each necklace
we decided to investigate. This data file was updated
throughout the computation as it also recorded the num-
bers of real solutions found for the different necklaces and
for different choices of points.

Most Schubert problems were run on a single com-
puter. The actual computation was organized by a shell
script, whose main part was a loop. In each iteration,
the loop variable was used as a seed for Maple’s random-
number generator to select a random subset t2, . . . , tm
of the points from S, which were ordered such that
t2 < · · · < tm. For each permutation σ of L, the number
of real points in the intersection

X◦
w1

(∞) ∩Xw2(tσ(2)) ∩Xw3(tσ(3)) ∩ · · · ∩Xwm
(tσ(m))

(5–2)
was determined and included in the data file. The data
file also kept track of the CPU time used in the compu-
tation, and recorded the average size of the univariate
eliminants. The number of iterations of the shell script
depended on our interest in the problem and the compu-
tational cost.

After the computations were completed for a given
Schubert problem, the data file was used to generate a
web page that displayed information from the experimen-
tation on that Schubert problem. Figure 8 illustrates a
typical such page.

This web page has a key in the form of a table with
one row for each Schubert condition. Each row shows the
condition as a permutation, and then in a shorthand that
is well suited to Grassmannian conditions—the letter in-
dicates on which member of the flag it is imposed, and
the partition index indicates the corresponding Schubert
condition on the Grassmannian. Next is the symbol for
that condition used in listing the necklaces, and finally its
codimension. The figure under “Point Selection” shows
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Enumerative problem W (X )2(Y )4 = 7 on F�(1, 2, 3; 5)

Experimental data Related Problems

Number of Real Solutions
Necklace 1 3 5 7
abbcccc 0 0 0 25000
abccccb 0 0 0 25000
accbbbb 0 89 10500 14411
acbbccc 0 2374 5740 16886
abccbcc 0 2560 13204 9236
abcccbc 0 4456 9753 10791
aabccbc 29 2571 14627 7773
abcbccc 1120 5364 9633 8883
acbcbcc 3446 5566 9132 6856

Projections
Variety Problem #

Fl(2,3;5) (X )2X (Y )4 7

Problems fibered over W (X )2(Y )4

Variety Problem #

Fl(1,2,3,4;5) W (X )2(Y )4Z 7

Fl(1,2,3,4;5) W (X )2(Y )3Z 7

Fl(1,2,3,4;5) A4125(X )2(Y )4 7

Point Selection

Key
Condition Name Symbol Codimension

412 W a 3
132 X b 1
124 Y c 1

Total time of computation: 27,491.26 GHz-seconds or 7.64 GHz-hours on Noether

225 000 Polynomial systems solved

The coefficients of a typical eliminant had 29 digits.
The typical eliminant had size 271 bytes.

This table automatically generated from the data in This File using This Maple Script

Created: Fri Jul 15 15:42:38 CDT 2005

FIGURE 8. Web page for the problem
(
412, (132)2, (124)4

)
on F�(1, 2, 3; 5).

the positions of the points in S on RP1, represented as a
circle, where the point at the top is ∞. This web page
also records the total computation time, the machine
used (Noether is a computer owned by Sarah Wither-
spoon), the total number of polynomial systems solved,
and the size of a typical eliminant.

The web page for the problem W (X )2(Y )4

is linked to web pages of problems fibred over
W (X )2(Y )4 and to web pages of problems over
which W (X )2(Y )4 is fibred (called “Projections”).
It is also linked to the data file and to the Maple
script used to generate the web page. At its top

is a link to the web page for the flag variety
F�(1, 2, 3; 5). That page lists all 163 Schubert prob-
lems we studied on F�(1, 2, 3; 5), is linked to the
other 8 flag varieties in 5-space that we investigated,
and to a page with information about the 29 differ-
ent flag varieties in our investigation. This archive
of our data is part of a web page containing ad-
ditional information about this project, which can
be found at www.math.tamu.edu/˜sottile/pages/Flags/.
The page displayed has further extension Data/F1235/
W3Xe2Ye4.7.html. Subsequent addresses will give only
the extension from . . . /Flags/Data/.
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5.3 Design of Experiments

While we investigated many Schubert problems on many
small flag manifolds, by no means did we study all Schu-
bert problems on these flag manifolds. We did inves-
tigate all Schubert problems on the manifolds of flags
in C4, and all with degree at least 3 on F�(1, 2, 3; 5),
F�(1, 2, 4; 5), F�(1, 2; 5), F�(1, 3; 5), F�(2, 3; 5), F�(2, 4; 5),
F�(3, 4; 5), and Gr(3, 6). Only a small fraction of feasible
Schubert problems were investigated on the other 18 flag
manifolds.

There were limitations of resources that made choices
necessary. For example, the complexity of Gröbner basis
computation limited us to Schubert problems of low de-
gree (typically fewer than 20 solutions). For the compu-
tations on Grassmannians, a more advantageous choice
of local coordinates was possible, which allowed sig-
nificantly larger problems—we studied one problem on
Gr(3, 7) with 91 solutions.1

Many Schubert problems had literally thousands of
necklaces, such as the problem of Table 3 with 11 352
necklaces. A systematic study of all necklaces for such a
problem would be infeasible and the data would be in-
comprehensible. We did consider all 1272 necklaces for
one such problem.2 Limiting our investigation to prob-
lems of small degree and with few necklaces would still
have been infeasible, since there are many thousands of
such smaller Schubert problems on some of these flag
manifolds.

On the flag manifolds for which it was impossible to
investigate all Schubert problems, we studied most fea-
sible Grassmannian Schubert problems, as well as many
related to these Grassmannian problems through projec-
tion, lifting, fibration, and the notion of child problems
as discussed in Sections 4.1 and 4.4. We looked at some
with potentially interesting geometry such as the prob-
lem of Section 3.3.5. We also selected many problems
completely at random, intending to sample the range of
possibilities.

Table 11 lists the Schubert problems discussed here,
their associated web pages, and the resources expended
on each.

6. CONCLUSION AND FUTURE WORK

We have presented a geometrically vivid example of the
failure of the Shapiro conjecture for Schubert intersec-
tions given by osculating flags on flag manifolds, as well

1F37/We7W2W21.91.html.
2F12456/Ve2We2W32Ye3Ze2.4.html.

Location Web Page CPU
Table 1 F235/Xe4Ye4.12.html 213.38
Table 2 F12345/We2Xe3Ye3Ze2.12.html 47.61
Table 3 F123456/Ve2We2XX321Ye2Ze2.8.html 5.25
Table 4 F347/WW31e2Xe2X211.10.html 63.43
Table 5 F12345/A1325e2A2143e3.7.html 1.94
Table 6 F1356/A21436e2A31526Xe2.8.html 12.84
Table 7 F2346/A1432A1254We2X21Ye2.12.html 61.86
Table 8 F246/We4Y11e4.6.html 13.57
Figure 7 F12456/A13254A43125A12564VZ.2.html 1.31

TABLE 11. CPU time (in gigahertz-days) used for computa-
tions shown here.

as a refinement of the conjecture for flag varieties. Sig-
nificant evidence, both theoretical and experimental, has
been presented in support of this refinement. We have
also described some new phenomena discovered in this
experimentation.

The proof of the conjecture for certain two-step flag
manifolds by Eremenko et al. leads to an extension con-
cerning secant flags. The further investigation of this
secant flag conjecture is a worthwhile future project.
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