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Let M(P (z1, . . . , zn)) denote Mahler’s measure of the polyno-
mial P (z1, . . . , zn). Measures of polynomials in n variables arise
naturally as limiting values of measures of polynomials in fewer
variables. We describe several methods for searching for poly-
nomials in two variables with integer coefficients having small
measure, demonstrate effective methods for computing these
measures, and identify 48 polynomials P (x, y) with integer co-
efficients, irreducible over Q, for which 1 < M(P (x, y)) < 1.37.

1. INTRODUCTION

Given a Laurent polynomial P (z1, . . . , zn) with integer
coefficients, its Mahler’s measure M(P ) is defined as the
geometric mean of |P | over the real n-torus Tn,

M(P ) =

exp
(∫ 1

0

. . .

∫ 1

0

log |P (e(t1), . . . , e(tn))| dt1 . . . dtn
)
,

(1–1)

and here e(t) as usual denotes exp(2πit). We also define
the logarithmic Mahler’s measure of P , denoted m(P ),
by

m(P ) = logM(P ).

For a polynomial in one variable, one may obtain a more
elementary expression for the measure by using Jensen’s
formula. Writing P (x) = a0

∏d
j=1(x− αj), we have

M(P (x)) = |a0|
d∏
j=1

max(1, |αj |). (1–2)

Note that (1–2) also follows from the observation that
the measure is multiplicative, combined with the special
case

M(ax+ b) = max(|a| , |b|), (1–3)

which is easy to establish by elementary means.
Certainly M(P (x)) = M(P (−x)), and using (1–1) or

(1–2) it is easy to show that M(P (x)) = M(P ∗(x)),
where P ∗(x) = xdeg(P )P (1/x) is the reciprocal polyno-
mial of P (x). More generally, an important and useful
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property of Mahler’s measure for polynomials in several
variables is its invariance under a large class of variable
substitutions. Let z = (z1, . . . , zn), and for a matrix
A = (aj,k) ∈ GL(n,Z), let ±zA denote any of the 2n

n-tuples of the form
⎛
⎝±

n∏
j=1

z
a1,j

j , . . . ,±
n∏
j=1

z
an,j

j

⎞
⎠ .

Then
M(P (z)) = M(P (±zA)). (1–4)

See [Schinzel 00, page 226] for a proof.
In this paper, we investigate some questions regarding

the spectrum of values of Mahler’s measure; in particular,
we are interested in especially small values of the mea-
sure. Let L denote the set of values of Mahler’s measure
of univariate (Laurent) polynomials with integer coeffi-
cients,

L = {M(P ) : P ∈ Z[x]},
and let L denote the set of values of measures of polyno-
mials in any number of variables,

L =
⋃
n≥1

{M(P ) : P ∈ Z[z1, . . . , zn]},

so L ⊆ L.
For one-variable polynomials, clearly the minimal

value of L is 1, and a classical result of Kronecker im-
plies that M(P (x)) = 1 precisely when P (x) is a product
of cyclotomic polynomials and a monomial of the form
xm. Rather little is known, however, about values in L

near 1. In 1933, D. H. Lehmer [Lehmer 33] found that
the polynomial

x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1

has Mahler’s measure λ0 = 1.176280 . . ., and he asked
if there exist any smaller values in L exceeding 1. This
question of determining whether 1 is a limit point of L is
known as Lehmer’s problem.

Despite several extensive searches [Boyd 80, Boyd 89,
Mossinghoff 98, Mossinghoff et al. 98, Rhin and Sac-
Épée 03, Flammang et al. 06], the value λ0 remains
the second-smallest known value of L. Lehmer’s prob-
lem has, however, been solved in some special cases. In
1951, Breusch [Breusch 51] proved that if P (x) ∈ Z[x]
satisfies P (0) �= 0 and p �= ±P ∗, then M(P (x)) ≥
M(X3−x2−1/4) = 1.179652 . . . . This was sharpened by
Smyth in 1971 [Smyth 71] to M(P (x)) ≥M(x3−x−1) =
1.324717 . . . . This value, which we denote θ0, was in

fact shown by Siegel to be the smallest Pisot number
[Siegel 44]; the value λ0 is the smallest known Salem
number (see for instance [Boyd 77]).

Multivariable analogues of Kronecker’s result and
Smyth’s theorem are established in [Boyd 81a]. There
it is shown that if P (z) is an irreducible polynomial in n
variables with integer coefficients having M(P (z)) = 1,
then P (z) = Φ(za1

1 · · · zan
n ), for some cyclotomic polyno-

mial Φ(x) and integers a1, . . . , an (see also [Schinzel 00,
page 260]). Further, it is established that values smaller
than θ0 in L may be produced only by reciprocal multi-
variable polynomials: those for which P (z)/P (z−1) is a
unit times a monomial in z1, . . . , zn.

The spectrum of values of L is also connected to the
study of Lehmer’s problem, due to the important fact
that measures of polynomials in n variables are limit-
ing values of measures of polynomials in fewer variables.
Specifically, if r = (r1, . . . , rn) is a vector of integers and
if µ(r) denotes the quantity

µ(r) = min{‖s‖ : s ∈ Zn and r · s = 0},
then

lim
µ(r)→∞

M(P (xr1 , . . . , xrn)) = M(P (z)). (1–5)

This was conjectured in [Boyd 81b] and proved in [Law-
ton 83] (see also [Schinzel 00, page 237]). It was also
noted in [Boyd 81b] that a solution of Lehmer’s problem
would follow if one could show that every limit point of
L is an element of L, that is, if L is closed. We review
the proof here: suppose L is closed and that 1 is a limit
point of L. Because the measure is multiplicative, it fol-
lows that L = [1,∞), but this is impossible because L is
a countable set.

It was suggested in [Boyd 81b] that the smallest limit
points of L would be given by measures of two-variable
polynomials, and candidates were proposed for the small-
est two limit points, as well as a third value less than θ0.
A fourth measure smaller than θ0 was exhibited in [Moss-
inghoff 98]. It appears however that no systematic search
for other small limit points has been performed.

In this article, we search for additional small limit
points of L realized by measures of two-variable poly-
nomials and identify 48 limit points less than 1.37. We
need to consider only irreducible P (x, y) ∈ Z[x, y] with
M(P ) > 1, and we need only consider one representa-
tive from each class of polynomials related by (1–4). In
particular, we seek only primitive polynomials, that is,
those not of the form P (±zA) for A ∈ GL(n,Z) with
|det(A)| > 1. For example, we accept P (x, y) = 1+x+y,
but not 1 + x2 + y3 or 1− xy2 + x2y.
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We remark that from (1–5) one sees that M(P (z)) is
in fact a limit point of L if and only if

M(P (xr1 , . . . , xrn)) �= M(P (z))

for infinitely many r ∈ Zn. (1–6)

It seems rather difficult to establish (1–6) for any partic-
ular polynomial, but there is good reason to believe that
it can fail only for trivial reasons if P (z) is an irreducible
polynomial in more than one variable. So, in spite of
the fact that (1–6) has been proved for only a few of the
polynomials presented here, we refer to them as “limit
points” of Mahler’s measure. We add, however, that the
proof of the special case of (1–5),

lim
n→∞M(P (x, xn)) = M(P (x, y)), (1–7)

given in [Boyd 81b] is capable of yielding an explicit error
term, but only the case of P (x, y) = 1 + x + y has been
worked out in detail. In this case,

m(1+x+xn) = m(1+x+y)+c(n)/n2 +O(n−3), (1–8)

where c(n) = −√3π/6 if n ≡ 2 mod 3 and c(n) =√
3π/18 if n ≡ 0 or 1 mod 3. One could establish

(1–6) rigorously for a particular two-variable polynomial
by computing the error term in the same way, and for
most of the examples presented here, we expect the er-
ror term in (1–7) to have the form c(n)n−3/2 + O(n−2),
where c(n) is a nontrivial, almost periodic function of
n (cf. [Boyd 81b, page 466]). However, in Section 6 we
suggest a more algebraic approach that seems capable of
establishing in some generality that the M(P (x, y)) listed
here are indeed genuine limit points.

Section 2 describes several families of sparse recipro-
cal polynomials in two variables with small measure. Sec-
tion 3 discusses some methods for computing measures of
two-variable polynomials to high accuracy. Section 4 de-
scribes several methods we employed to search for small
limit points of measures, and Section 5 summarizes our
results. Section 6 proposes a technique for establishing
that the measure of a two-variable polynomial is a true
limit point of one-variable measures, and the last section
discusses some known and conjectured explicit formulas
for measures of multivariable polynomials.

2. HEXANOMIALS WITH SMALL MEASURE

A hexanomial is a polynomial composed of exactly six
monomials; the height of a polynomial is its largest co-
efficient in absolute value. We describe several families

of hexanomials in two variables having height 1 whose
members have rather small measure.

In [Boyd 81b], it was suggested that M(1 + x + y) =
1.381356 . . . is the smallest element of the second derived
set of L, i.e., the smallest limit point of limit points of
measures. It was also conjectured there that this value
is the smallest limit point of measures of nonreciprocal
polynomials. It is easy to see that M(1 + x + y) is
the measure of a reciprocal three-variable polynomial.
Taking

G(x, y, z) = x+ y + z + xy + yz + zx (2–1)

and treating this as a linear polynomial in z, we see from
(1–3) that

M(G) = M(z(1 + x+ y) + (x+ y + xy))

= M(max(|1 + x+ y| , ∣∣1 + x−1 + y−1
∣∣))

= M(1 + x+ y),

since 1+x−1+y−1 is the complex conjugate of 1+x+y for
|x| = |y| = 1. The polynomial G of (2–1) is the generic
reciprocal hexanomial of height 1.

By specifying z to be a power of x, one obtains from
(1–5) sequences of polynomials in two variables whose
measures converge to M(G(x, y, z)). For example, con-
sider the following set of reciprocal polynomials: let
ϕa(x) denote the polynomial (xa − 1)/(x− 1), and write

Pa,b(x, y) =

xmax(a−b,0) (ϕa(x) + ϕb(x)y + xb−aϕa(x)y2
)
. (2–2)

It is not hard to prove that Pa,b(x, y) is irreducible over
Q if gcd(a, b) = 1. If gcd(a, b) = c with a = a′c and
b = b′c, then Pa,b(x, y) = ϕc(x)Pa′,b′(xc, y). So we need
only consider gcd(a, b) = 1.

We compute

M(Pa,b) = M((xa − 1) + (xb − 1)y + (xb − xb−a)y2)

= M((x− 1) + (xb − 1)y + (xb − xb−1)y2)

= M((x− 1)y + (xb − 1) + xb(1− x−1)y−1)

→M((x− 1)y + (z − 1) + z(1− x−1)y−1)

= M(xy − y − 1 + z(1 + y−1 − x−1y−1))

= M(x+ y + 1 + z(1 + y−1 + x−1))

= M(1 + x+ y),
(2–3)

where we have made several uses of (1–4).
We write M(a, b) for M(Pa,b) in the following. The

smallest two known measures of polynomials in at least
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two variables are given by M(2, 3) = 1.255433 . . . and
M(1, 3) = M(2, 1) = 1.285734 . . . . Using methods de-
scribed in the next section, we compute the values of
M(a, b) for 1 ≤ a ≤ 15 and 1 ≤ b ≤ b∗(a), where b∗(a) is
approximately 3a. From this it appears that, for fixed a,

min
b
M(a, b) = M(a, 2a− 1). (2–4)

These data also suggest that M(a, 2a−1) is increasing in
a. By (1–5), M(a, 2a−1)→M(1+x+y) = 1.381356 . . .
as a→∞. The numerical data for a ≤ 100 suggest that
the difference m(1 + x + y) − m(a, 2a − 1) ≈ cn−13/8,
although cn−3/2 would seem more plausible. For exam-
ple, the smallest values of a with M(a, 2a − 1) > 1.37
and M(a, 2a − 1) > 1.38 are respectively, M(9, 17) =
1.370142 . . . and M(34, 67) = 1.380050 . . . . Since we
wish to concentrate on M(P (x, y)) < 1.37, only (a, b)
with 1 ≤ a ≤ 8 should appear on our list, assuming (2–4)
is correct.

We also consider the similar families

Qa,b(x, y) =

xmax(a−b,0) (1 + xa + (1 + xb)y + xb−a(1 + xa)y2
)
,

(2–5)

with a+ b odd, and

Ra,b(x, y) =

xmax(a−b,0) (1 + xa + (1− xb)y − xb−a(1 + xa)y2
)
,

(2–6)

where a and b are both odd. The parity restrictions
are imposed to avoid considering essentially the same
polynomial more than once. In both cases, we require
gcd(a, b) = 1. Using a computation similar to (2–3), we
observe that M(Qa,b)→M(G) and M(Ra,b)→M(G).

Another family of small measure hexanomials that we
study is

Sa,b,ε(x, y) = 1 + (xa + ε)(xb + ε)y + xa+by2, (2–7)

where 1 ≤ a < b, gcd(a, b) = 1, and ε = ±1. If a
and b are both odd then Sa,b,−(−x,−y) = Sa,b,+(x, y),
so we need only take ε = +1 in this case. From (1–
5), we have M(Sa,b,ε) → M(1 + (x + 1)(y + 1)z + xyz2)
as b → ∞. We leave it as an exercise to verify that
M(1 + (x+ 1)(y + 1)z + xyz2) = M(G).

The last family of hexanomials of interest are those of
the form T (x, y) = yf(x)+f∗(x). Clearly, M(T (x, y)) =
M(f(x)), and we need only consider nonreciprocal poly-
nomials f(x). Experimentally, the smallest known mea-
sures of nonreciprocal polynomials arise from trinomials

of the form 1 ± xm ± xn, or as factors of such trinomi-
als. We may assume gcd(m,n) = 1, and in this case the
trinomial is either irreducible or factors as a nonrecip-
rocal irreducible polynomial and a cyclotomic factor of
the form 1± x + x2. Using (1–5) again, we see that the
measures M(1 ± xm ± xn) tend to M(1 + x + y) in the
limit.

3. COMPUTING MEASURES OF TWO-VARIABLE
POLYNOMIALS

In [Boyd 98b], an algorithm is given that, in principle,
can effectively compute M(P (z)) to arbitrary accuracy
without integration. Although this method has some
theoretical applications and can provide useful bounds
for M(P (z)), it is not a practical method for comput-
ing even moderately high-precision values of M(P (z)).
Instead, one uses Jensen’s formula (1–2) to reduce the n-
dimensional integral defining m(P (z)) to a sum of (n−1)-
dimensional integrals and computes these using standard
numerical techniques.

Suppose P (x, y) has degree d in y. Let y1(x), . . . , yd(x)
denote the d solutions of P (x, y) = 0, which may be
chosen to be continuous, piecewise analytic functions of
x. Write

P (x, y) = a0(x)
d∏
k=1

(y − yk(x))

and use (1–2) in its logarithmic form to write

∫ 1

0

log |P (x, e(s))| ds = |a0(x)|+
d∑
k=1

log+ |yk(x)| ,

where, as usual, log+ |u| := max(log |u| , 0). Now, let
x = e(t) and integrate over t to obtain

m(P (x, y)) = m(a0(x)) +
d∑
k=1

∫ 1

0

log+ |yk(e(t))| dt.
(3–1)

The endpoints of the integrals in (3–1) occur at points for
which P (x, y) = 0 on the torus T2. For reciprocal P (x, y)
with real coefficients, these occur at values of |x| = 1 that
are roots of the polynomial F (x) = discy P (x, y). To see
this, notice that if P (e(t), y) = 0, then also P (e(−t), y) =
0, by complex conjugation, and then P (e(t), 1/y) = 0,
since P is reciprocal. An endpoint of an interval of in-
tegration is a value t = α such that |yk(e(t))| > 1 for
α < t < α+ ε or α− ε < t < α and limt→α |yk(e(t))| = 1.
But 1/yk(e(t)) is a different root of P (e(t), y) for which
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limt→α

∣∣∣1/yk(e(t))
∣∣∣ = 1, hence P (e(α), y) = 0 has a dou-

ble root and so discy P (e(α), y) = 0.
We illustrate this in the case of the polynomials Pa,b

of (2–2). These are quadratic in y, so we may use the
quadratic formula to solve P (e(t), y) = 0. The equation
Pa,b(e(t), y) = 0 simplifies to

e((b− a)t/2) sin(aπt)y2 + sin(bπt)y

+ e(−(b− a)t/2) sin(aπt) = 0. (3–2)

Hence the roots of (3–2) are y1 and y2 = 1/y1, where
|y1| ≥ |y2|, so we may write |y1| = |f(a, b, t)| /g(a, t),
with g(a, t) = |xa − 1| = 2 |sin(aπt)| and

f(a, b, t) = |sin(bπt)|+
√

sin2(bπt)− 4 sin2(aπt).

If |sin(bπt)| < 2 |sin(aπt)|, then f(a, b, t) is complex and
|f(a, b, t)| = 2 |sin(aπt)| = g(a, t), so |y1| = 1 = |y2|;
while if |sin(bπt)| > 2 |sin(aπt)|, then f(a, b, t) is real and
f(a, b, t) > g(a, t), so that |y1| > 1 > |y2|. Since the lead-
ing term a0(x) is the product of cyclotomic polynomials
ϕa(x), Equation (3–1) thus reduces to

m(Pa,b) =
∫ 1

0

log+ |y1| dt = 2
∫ 1/2

0

log+ |y1| dt,

by symmetry. Let (αk, βk) denote the subintervals of
(0, 1/2) for which |sin(bπt)| > 2 |sin(aπt)|. Then

m(Pa,b) = 2
∑
k

∫ βk

αk

log |f(a, b, t)| dt

− 2
∑
k

∫ βk

αk

log |g(a, t)| dt.

The integrals involving log g(a, t) are standard Clausen
integrals, easily evaluated since they are values of the
Bloch-Wigner dilogarithm D(x), which has a rapidly con-
vergent series expansion. The function D(x) is denoted
by polylog(2,x,1) in PARI/GP [Batut et al. 00]. In
terms of D(x), we have

∫ β

α

log |2 sin(aπt)| dt =
∫ 2πβ

2πα

log |xa − 1| dx
ix

=
[
−D(xa)

2πa

]e(β)

e(α)

.

The integrals involving log |f(a, b, t)| are proper integrals
unless f(a, b, t) = 0. But since we assume gcd(a, b) = 1
and |sin(bπt)| ≥ 2 |sin(aπt)|, this can only occur at t = 0.

In this case, we write

∫ β1

0

(log |f(a, b, t)| − log |g(a, t)|) dt =

∫ β1

0

log(|f(a, b, t)/g(a, t)|) dt,

and the latter integral has a finite limit at t = 0. As
discussed above e(αk) and e(βk) are multiple roots of
P (e(t), y) = 0 and hence the graph of f(a, b, t) has a ver-
tical tangent at the endpoints of the intervals of integra-
tion. This is easily handled by splitting the interval in the
middle and then using the change of variable t→ αk + t2

and t → βk − t2 at the endpoints. Then the standard
Romberg integration routine intnum of PARI/GP easily
computes the integrals to any desired accuracy.

Most of the polynomials P (x, y) that we study here
are quadratic in one variable, and their measures may
be evaluated using a similar method. In this case,
the two roots y1(t) and y2(t) of P (e(t), y) are given
by
(
r(t) ±√r(t)2 − s(t)2)/s(t), where r(t) and s(t) are

trigonometric polynomials. We integrate one of the
±yk(e(t)) over each interval [α, β] where the discriminant
is positive. Often the function s(t) is zero at a point γ in
an interval of integration, but integrating by parts allows
one to remove the singularity:

∫ β

α

log |s(t)| dt =

(β − γ) log |s(β)|+ (γ − α) log |s(α)|

+
∫ β

α

(γ − t)s
′(t)
s(t)

dt.

Some polynomials that we study have degy(P (x, y)) =
3 or 4. While the cubic formula may be used in a similar
way to compute measures when the degree is 3, we find it
simpler to use numerical methods. All the polynomials
with degree 3 or 4 in y that we study have the prop-
erty that at most one branch has |yk(e(t))| > 1 for any
t, so a polynomial root finder and a numerical integra-
tion routine (polroot and intnum in PARI/GP) suffice
to compute the required integrals. In general, however,
when the degree is large one expects many values of k
with |yk(e(t))| > 1, and then one must isolate each con-
tinuous branch. In this case, one combines the numerical
solution of P (e(t), y) = 0 with the numerical integration,
in order to treat each branch yk(e(t)) individually. This
has been used in the studies described in [Boyd 02], but
since it is not needed here we do not go into more details.
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4. SEARCHING FOR SMALL MEASURES

We describe three principal methods used to search for
polynomials in two variables with small measure.

4.1 Patterns in Coefficients

The first few limit points were found by recognizing pat-
terns in the lists of small measures of polynomials with
small degree [Boyd 80, Boyd 89, Mossinghoff 98, Moss-
inghoff 04]. In fact, the smallest two limit points are
already apparent in the list of Salem numbers less than
1.3. For example, x10 − x6 − x5 − x4 + 1, x10 − x7 −
x5 − x3 + 1, and x8 − x5 − x4 − x3 + 1 are all min-
imal polynomials of small Salem numbers, suggesting
the family P1,3(±xm,±xn) and thus the small measure
M(P1,3(x, y)). After finding P1,3 and P2,3 in this way,
the generalization to Pa,b is natural, and thus the discov-
ery that all of these have relatively small measures. The
third smallest known limit point,

(1 + x) + (1− x2 + x4)y + (x3 + x4)y2, (4–1)

was discovered in a similar way in [Mossinghoff 98], after
observing a number of polynomials with small measure
having the form

x4n + x3n−1 + x2n+3 − x2n+2 + x2n+1 + xn+1 + 1.

These earlier calculations also produced a number of
single-variable polynomials with small measure without
obvious patterns in their coefficients. One might hope
that multiplying one of these sporadic polynomials by a
product of cyclotomic polynomials would reveal a sparse
polynomial that indicates a limit point. A systematic
method of searching for appropriate multiples uses the
LLL lattice reduction algorithm. For example, beginning
with the polynomial from [Mossinghoff 04],

f(x) = x44 − x42 + x35 − x33 + x31 − x29 + x26

− x24 + x22 − x20 + x18 − x15 + x13

− x11 + x9 − x2 + 1,

(4–2)

which has M(f) = 1.291273 . . . , consider the lattice
spanned by f(x)gk(x), where g0(x) = xm and gk(x) =
xm+k + xm−k for 1 ≤ k ≤ m. Employing LLL to find a
small vector in this lattice, when m = 4 one detects the
sparse multiple

x52 + x51 + x39 + x38 + x26 + x14 + x13 + x+ 1,

which, for y = x13, is

F (x, y) = y4 + y4x−1 + y3 + y3x−1 + y2 + xy+ y+ x+ 1.

In this case, xF (x−1, y) = P2,5(y, x) and M(P2,5) =
1.332051 . . . , but this is certainly not apparent
from (4–2).

4.2 Clusters of Measures

A second method of searching for small limit points
of Mahler’s measure involves computing the measures
of a large number of single-variable polynomials of a
particular form. We first consider primitive reciprocal
hexanomials of height 1: polynomials with the form
1 + rxa + sxb + sxd−b + rxd−a + xd, with r and s equal
to ±1, 0 < a < b < d/2, and gcd(a, b) = 1. Comput-
ing the measure of all 454, 368 of these with d ≤ 150
and counting the number in each interval of the form
((k−1/2)/1000, (k+1/2)/1000], we obtain the histogram
shown in Figure 1. We also consider heptanomials, or
seven-term polynomials. The histogram for the mea-
sures of the 456, 968 primitive reciprocal heptanomials
with height 1 and d ≤ 150 is displayed in Figure 2.

It is apparent that these distributions are not uniform,
and one can distinguish many peaks of various widths in
both graphs. By examining the list of polynomials with
measures in the neighbourhood of each peak, one can
usually find a pattern that identifies a limit point P (x, y).
For example, our two smallest measures, 1.2554 . . . and
1.2857 . . . , are readily apparent in both graphs. Their
appearance in Figure 1 is clear from the discussion in
Section 2; their appearance in Figure 2 stems from the
fact that P2,3(x, y) and (1 − x + x2)P2,1(x, y) are hep-
tanomials of height 1. As we note in Section 6, the sharp
spikes in Figure 1 are due to the geometric convergence
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FIGURE 1. Reciprocal hexanomials: height 1, degree ≤ 150.
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FIGURE 2. Reciprocal heptanomials: height 1, degree ≤ 150.

of M(xnf(x) + f∗(x)) to M(yf(x) + f∗(x)). The spike
arising from f(x) = x3−x−1 with M(f(x)) = 1.3247 . . .
is readily apparent in Figure 1. The sharp spikes in Fig-
ure 2 have a similar cause. For example, the spike near
1.465 in Figure 2 is due to the limit point P (x, y) = (1 +
x+x3)+x2y+x(1+x2 +x3)y2, which has M(P (x, y)) =
M(1 + x+ x3) = 1.4655712318767680267 . . . .

Each graph has one broad central peak corresponding
to an element of the second derived set of L and a three-
variable polynomial. The main peak in Figure 1 centers
on the generic reciprocal hexanomial of height 1,

M(x+ y + z + 1/x+ 1/y + 1/z) =

1.3813564445184977933 . . . ;

that of Figure 2 lies on the generic reciprocal heptanomial
of height 1,

M(x+ y + z + 1 + 1/x+ 1/y + 1/z) =

1.4483035845491699038 . . . . (4–3)

The first of these is relatively easy to compute accurately
since it reduces to M(1+x+y) and thence to a single in-
tegral by Jensen’s formula (in fact, it is made even easier
by an exact formula of Smyth that we mention in the final
section). The second can be reduced to a double integral
by Jensen’s formula, but it would be time-consuming to
attain the accuracy claimed in (4–3) by numerical inte-
gration. However, as Rodriguez Villegas remarks in [Ro-
driguez Villegas 99], the methods of that paper extend
to certain families of K3 surfaces, and Bertin [Bertin 05]

recently used these methods to produce a rapidly conver-
gent series for M(x+ y+ z + k+ 1/x+ 1/y+ 1/z). This
was used to compute (4–3).

We remark that the two largest limit points of
measures of hexanomials appearing in Figure 1 are
M(Q1,2) = 1.535098 . . . , with Qa,b given by (2–5), and
the golden ratio. The two largest visible limit points for
heptanomials in Figure 2 are the golden ratio (arising
from 1 − x − x2 + xy − (1 + x − x2)y2) and M(1 + x +
(1− x+ x2)y + x(1 + x)y2) = 1.853120 . . . .

4.3 Systematic Searches

We conducted several systematic searches for two-
variable polynomials with small measure. We first com-
puted the measures of several polynomials from each fam-
ily of hexanomials described in Section 2.

• Pa,b(x, y), for 1 ≤ a ≤ 15, gcd(a, b) = 1, and
1 ≤ b ≤ b∗(a), where b∗(a) is given by the list
[16, 17, 13, 15, 18, 19, 23, 25, 28, 29, 30, 31, 37, 39, 41].

• Qa,b(x, y), for a ≤ 20, b ≤ 20, gcd(a, b) = 1, and
a+ b odd.

• Ra,b(x, y), for a ≤ 19, b ≤ 19, gcd(a, b) = 1, and a

and b both odd.

• Sa,b,ε(x, y), for 1 ≤ a < b ≤ 15, gcd(a, b) = 1, and
ε = ±1.

• T (x, y) = f(x) + yf∗(x), for trinomials f(x) with
height 1 and deg(f) ≤ 50.

We also searched two large families of two-variable poly-
nomials.

• Reciprocal polynomials P (x, y) with height 1 having
degx(P ) ≤ 9 and degy(P ) = 2. These polynomials
have the form P (x, y) = f(x)+xag(x)y+xbf∗(x)y2,
with g(x) reciprocal and a and b chosen so that P
is reciprocal. If f(0) = 0, then P (x, xy)/x is a re-
ciprocal polynomial of height 1 with the same mea-
sure as P , so we may assume f(0) = 1 without loss
of generality. However, this operation increases b,
so the normalized polynomial might lie outside our
search space. Consequently, we enforced the weaker
constraint that P (x, 0)P (0, y) �= 0, together with
some simple constraints to guarantee that none of
P (−x, y), P (x,−y), −P (x, y), y2P (x, y−1), or some
combination of these, is constructed once P (x, y) is
checked.
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• Symmetric, reciprocal P (x, y) with height 1 and
d ≤ 6, where d = degx(P ) = degy(P ), and the
same set for d = 7 in the case that P (x, 0) has at
most two terms. The coefficients of these polynomi-
als are symmetric about both diagonals, so there are
(d+ 1)2/4 coefficients that may be set to 0, 1, or −1
for odd d and d(d+ 2)/4 such coefficients when d is
even. The number of possibilities is reduced some-
what by requiring that P (x, 0) �= 0 and ensuring that
we construct only one of {±P (x, y),±P (−x,−y)}.

The numerical methods of Section 3 are impractical
for testing the large number of candidate polynomials in
these latter two categories. We require instead a sim-
ple procedure to determine if M(P (x, y)) < M0 for a
particular bound M0. In searches of single-variable poly-
nomials [Boyd 80, Boyd 89, Mossinghoff 98], the method
of root squaring, together with bounds on coefficients of
polynomials having bounded measure, provides a sim-
ple and fast means of screening candidate polynomials.
The multivariable version of this algorithm introduced
in [Boyd 98b] could, in principle, be used in the same
way. Fixing the support of a multivariable polynomial P
and supplying an upper bound M0 on M(P ), Mahler’s
inequalities [Mahler 62], [Schinzel 00, page 247] provide
bounds on the coefficients of P . For two-variable polyno-
mials, the role of root squaring is supplied by the operator
T , defined by

T P (x, y) =P (x1/2, y1/2)

× P (−x1/2, y1/2)

× P (x1/2,−y1/2)

× P (−x1/2,−y1/2).

It is clear that T P (x, y) is a polynomial with M(T P ) =
M(P )4. Thus, the coefficients of T k(P ) must satisfy
Mahler’s inequalities with the bound M4k

0 . If 	1(P ) de-
notes the sum of the absolute values of the coefficients
of P , then 	1(T kP )1/4

k

approaches M(P ) as k → ∞
[Boyd 98b]. While it appears that this could provide
an effective method for detecting polynomials P having
M(P ) > M0, in fact, the support of T kP grows exponen-
tially with k, and this limits the utility of this method.

Instead, we use (1–7) for screening out unsuitable
polynomials. Given a polynomial P (x, y), we compute
the mean of the single-variable measures M(P (x, xni))
for a particular set of positive integers {n1, . . . , nr} and
discard P (x, y) if this average exceeds a particular bound
B. Of course, without an error bound in (1–7), this is
only a heuristic method since one may make a partic-
ularly unlucky choice of the ni, but it is reasonably ef-

ficient. We iterate this procedure, gradually decreasing
the bound B while increasing the ni. For example, we
tested 480,068 polynomials P (x, y) with height 1 having
degx(P ) = 9 and degy(P ) = 2. All but 8,677 of these
(or their irreducible factors) were removed in an initial
screening using B = 1.65, and only 928 survived a second
round with B = 1.45. Two more rounds with B = 1.40
then B = 1.38 leave 300 polynomials. Examining each
of these reveals that 223 have measure less than 1.37,
and that each one is equivalent to one of 36 polynomials
in the list given in the next section (specifically, those
ranked 1–22, 24–29, 33, 34, 36–38, and 44–46).

5. LIMIT POINTS LESS THAN 1.37

Our searches detected 48 irreducible polynomials in two
variables having integer coefficients and Mahler’s mea-
sure greater than 1 and less than 1.37. These are listed
in Table 1. Thirty have the form Pa,b(x, y) as in (2–2);
these are labeled as P (a, b) in the table. One polyno-
mial from each of the families Qa,b(x, y) and Ra,b(x, y)
in (2–5) and (2–6) also appears; these are labeled in a
similar way. Six are instances of Sa,b,ε(x, y) in (2–7);
these are marked as S(a, b, sgn(ε)). Five more are linear
in y, having the form T (x, y) = yf(x) + f∗(x) discussed
in Section 2. These are denoted by T (f(x)), where f is
a trinomial that realizes the measure. If f is reducible,
the coefficients of its noncyclotomic part are also shown.

The remaining five polynomials are identified by dis-
playing the rows of their coefficient matrix, using + and
− as abbreviations for 1 and −1 (all have height 1). For
example, the third smallest known limit point (4–1) is
identified by the sequence [++000, +0−0+, 000++].

At least 44 of the measures in our list are realized by
hexanomials: the 43 in the described families plus the
bicubic ranked number 30. One can recognize many of
these values as “spikes” in the histogram of Figure 1.
The third limit point is evident in Figure 2, but is not
apparent in Figure 1, so we can be fairly confident that
our heptanomial (4–1) does not divide a hexanomial of
height 1 with the same measure.

Occasionally in our searches we detect an irreducible
polynomial of height 2 with small measure (when it
occurs as a factor of a polynomial with height 1).
The smallest measure we find here is M(x3 + x(1 +
x + x2 + x3)y + x(x + 1)2y2 + (1 + x + x2 + x3)y3 +
xy4) = 1.3724860771580461413 . . . ; another interest-
ing example is M((1 + x + x2)(1 + y + y2) + xy) =
1.3823754938807745701 . . . .

More detailed results of our searches are available in
[Mossinghoff 04].
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Measure Polynomial
1. 1.2554338662666087457 P (2, 3)
2. 1.2857348642919862749 P (1, 3) or P (2, 1)
3. 1.3090983806523284595 [++000, +0−0+, 000++]
4. 1.3156927029866410935 P (3, 5)
5. 1.3247179572447460260 T (1 + x − x3)
6. 1.3253724973075860349 P (3, 4)
7. 1.3320511054374193142 P (2, 5)
8. 1.3323961294587154121 S(1, 3, +)
9. 1.3381374319388410775 P (3, 2)

10. 1.3399999217381835332 P (4, 7)
11. 1.3405068829308471079 P (3, 1)
12. 1.3497161046696958653 T (1 + x2 − x7) [+++0−−]
13. 1.3500148321630142650 P (3, 7)
14. 1.3503169790598690950 S(1, 4,−)
15. 1.3511458956697046903 P (4, 5)
16. 1.3524680625188602961 P (5, 9)
17. 1.3536976494626355711 Q(1, 6)
18. 1.3567481051456008311 P (4, 3)
19. 1.3567859884526454967 P (5, 8)
20. 1.3581296324044179208 [++00000, +0−−−0+,

00000++]
21. 1.3585455903960511404 P (4, 1)
22. 1.3592080686995589268 P (4, 9)
23. 1.3598117752819405021 P (6, 11)
24. 1.3598158989877492950 S(1, 6, +)
25. 1.3599141493821189216 T (1 + x + x8) [+0−+0−+]
26. 1.3602208408592842371 P (5, 7)
27. 1.3627242816569882815 P (5, 6)
28. 1.3636514981864992177 S(3, 5, +)
29. 1.3641995455827723418 T (1 − x2 + x5)
30. 1.3644358117806362770 [+000, 00++, ++00, 000+]
31. 1.3645459857899151366 P (7, 13)
32. 1.3646557293930641449 P (5, 11)
33. 1.3650623157174417179 S(2, 7,−)
34. 1.3654687370557201592 P (5, 4)
35. 1.3659850533667936783 [++000, ++0−0, 00000,

0−0++, 000++]
36. 1.3661459663116649518 P (5, 3)
37. 1.3665709746056369455 P (5, 2)
38. 1.3668078899273126149 P (5, 1)
39. 1.3668830708592258921 R(1, 5)
40. 1.3669909125179202255 P (7, 12)
41. 1.3677988580117157740 P (8, 15)
42. 1.3678546316653002345 T (1 + x4 + x11)

[+−0+0−+0−+]
43. 1.3681962517212729703 P (6, 13)
44. 1.3682140096679950123 P (1, 9)
45. 1.3683434385467330804 [++00000, ++0−0++,

00000++]
46. 1.3687474425069274154 P (6, 7)
47. 1.3689491694959833864 P (7, 11)
48. 1.3697823199880122791 S(1, 9, +)

TABLE 1. Known limit points less than 1.37.

6. TRUE LIMIT POINTS

We suggest a possible method of proving that M(P (x, y))
is a limit point of one-dimensional measures by showing
that M(P (x, xn)) �= M(P (x, y)) for all sufficiently large
n. We begin by discussing the distribution of the zeros
of P (x, xn). For simplicity, we first consider a specific
example, P = P2,1. For each x let yk(x), with k = 1
or 2, denote the zeros of P (x, y) = 0. If R(x) denotes
the polynomial discy P (x, y) = x4 − 2x3 − 5x2 − 2x+ 1,
then R has two zeros on the unit circle, ξ and ξ, with
α = arg ξ = 2.724359 . . . . Using the methods of Sec-
tion 3, we find that |y1(e(t))| > 1 for α < |t| ≤ 1/2 and
|y1(e(t))| = 1 for |t| ≤ α. Since P (x, xn) is a sparse
polynomial of fixed length, an elementary analysis shows
that the arguments of its zeros are uniformly distributed
around the unit circle. Further, since P (x, xn) = 0 is
equivalent to yk(x) = xn for k = 1 or 2, it is not hard
to see that for a zero of the form x = ρ(t)eit, one has
asymptotically ρ(t) ≈ |yk(e(t))|1/n for k = 1 or 2. Thus
the number of zeros of P (x, xn) outside the unit circle is
asymptotic to δ deg(P (x, xn)), where δ = (π−α)/(2π) =
.06640475 . . . . Note that deg(P (x, xn)) = 2n.

In general, let P (x, y) be of degree d in y, let ν(x)
denote the number of roots of P (x, y) = 0 with |y(x)| > 1.
Define δ = δ(P ) :=

∫ 1

0
ν(e(t)) dt. Then 0 ≤ δ ≤ 1 (δ ≤

1/2 if P is reciprocal). If 0 < δ < 1 then the number of
zeros of P (x, xn) outside the unit circle is asymptotically
∼ δdn. For example, δ(1+x+y) = 1/3 and δ(P1,3) = 1/6,
but usually, as with δ(P2,1) = .06640475 . . . , the value
of δ(P ) is irrational. It is possible that δ = 0, as for
P (x, y) = y(x3 − x − 1) + (x3 + x2 − 1) or P (x, y) =
(x4 + x+ 1)y2 + x2y + (x4 + x3 + 1). Similarly, δ = 1 is
possible, as for P = x + y + 3. The argument described
in the next paragraph assumes that {P (x, y) = 0} has a
nontrivial intersection with the torus, by which we mean
that 0 < δ(P ) < 1.

Notice that β = ±M(P (x, xn)) is the product of the
zeros of P (x, xn) outside the unit circle and hence is
an algebraic integer. Since P (x, xn) has degree dn and
has about δdn zeros outside the unit circle, formally, β
has roughly

(
dn

�δdn�
)

conjugates, and this number tends
to infinity exponentially with n. On the other hand, if
M(P (x, xn)) = M(P (x, y)) for all large n, then β has
a fixed set of Galois conjugates independent of n. For
this to occur, the Galois group of P (x, xn) would have to
be highly unusual. Even granted that P (x, xn) may be
reducible and, furthermore, is a reciprocal polynomial so
its Galois group is nongeneric, it seems highly implausi-
ble that the Galois orbit of β can be restricted in this
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way. It would be interesting to see this argument made
rigorous even for a single example such as P1,3 or P2,3.

The above argument does not apply to P (x, y) =
yf(x) + f∗(x) with f(x) nonreciprocal. In this case
it is easy to see by Rouché’s theorem that for suffi-
ciently large n, P (x, xn) has the same number of zeros
outside |x| = 1 as f(x) does. Then M(P (x, xn)) ap-
proaches M(P (x, y)) = M(f(x)) geometrically, in fact,
like O(ρn) where 1/ρ is the minimum of |α| for those
roots of f(x) with |α| > 1. This geometric conver-
gence explains why the “spikes” in Figure 1 correspond-
ing to these M(P (x, y)) are so sharp, compared with the
broad peaks corresponding to the M(Pa,b(x, y)), for ex-
ample. It is also easy to establish for these P (x, y) that
M(P (x, xn)) �= M(P (x, y)) for all n, so that M(P (x, y))
is a true limit point. For example, if f(x) = x3 − x− 1,
the minimal polynomial of the smallest Pisot number θ0,
then P (x, xn) defines a sequence of Salem numbers θn
with |θn − θ0| ∼ 1/(|f ′(θ0)| θn0 ). This is a well-known
result of Salem [Salem 45].

7. EXPLICIT FORMULAS

Explicit formulas are known for some of the M(P (x, y))
appearing in the list in Section 5. These are more natu-
rally expressed in terms of the logarithmic Mahler’s mea-
sure m(P (x, y)). The earliest of these was Smyth’s for-
mula [Boyd 81b],

m(1 + x+ y) =
3
√

3
4π

L(2, χ−3) = L′(−1, χ−3), (7–1)

where L(s, χ−3) denotes the Dirichlet L-series for the
character χ−3(n) =

(−3
n

)
, i.e.,

∑∞
n=1 χ−3(n)n−s.

In [Boyd and Rodriguez Villegas 02], a generalization
of Smyth’s formula is given for polynomials of the form
P (x, y) = yf(x) + g(x), where f(x) and g(x) are cyclo-
tomic polynomials. In many cases, these formulas re-
duce to a single term of the form rL′(−1, χ−d), where r
is a rational number. However, none of these values of
m(yf(x) + g(x)) is small enough to appear on our list.

There are also conjectured formulas for m(P (x, y)) for
many polynomials that define algebraic curves of genus 1
or 2. Some of these do appear in our list; for example,
the two smallest known limit points appear to satisfy

m(1+x+(1+x+x2)y+(x+x2)y2) ?= L′(14A, 0) (7–2)

and

m(1 + (1 + x+ x2)y + x2y2) ?= L′(15A, 0). (7–3)

Here, L(E, s) denotes the L-function for an elliptic curve
E, and 14A and 15A denote (isogeny classes of) elliptic
curves of conductors 14 and 15, respectively. The symbol
?= indicates that the identity has been verified to at least
28 decimal places, but has not yet been proved.

Formula (7–3) was conjectured by Deninger
[Deninger 97], and this led to the infinitely many
conjectures of [Boyd 98a], including (7–2). Other poly-
nomials in our list for which formulas are conjectured
are

m(P3,4) ?= −L′(185B, 0)/12,

m(P3,2) ?= L′(34A, 0)/3,

m(P3,1) ?= L′(105A, 0)/12,

m(P1,4) ?= −L′(57A, 0)/2, and

m((1 + x+ x2)(1 + y + y2) + xy) ?= L′(40A)/3.

The last polynomial is one of the examples we cited with
height 2.

It is worth remarking that it was the existence of a
list of accurately computed values of m(Pa,b) that led
to the experiments of [Boyd 98a] following Deninger’s
remarkable prediction (7–3).

Of course, we also have explicit formulas for the exam-
ples m(yf(x)+f∗(x)), but these are of a more elementary
nature. There are other elementary examples in which
m(f(x)y2+g(x)y+f∗(x)) = m(f(x)), for example, when
f(x) = 1 + x + x4 and g(x) = x2, and similar examples
of higher degree in y.

All the other polynomials on our list with degy(P ) > 1
define curves of genus greater than 2 and, so far, we
do not have even conjectured formulas for these. The
main theorem of [Deninger 97] assumes that P (x, y) does
not vanish on the torus, so it does not apply to any
of the polynomials on our list. However, the ideas in
[Deninger 97] would suggest that there may be explicit
formulas even for these higher genus cases.

There are also formulas known (in fact, infinitely
many) for the measure of the so-called A-polynomial
(n.b., not the Alexander polynomial) A(x, y) of a hyper-
bolic manifold [Boyd 02]. In such cases A(x, y) may de-
fine a curve of large genus, but m(A(x, y)) is expressible
in terms of dilogarithms so is more akin to the formula
(7–1). These formulas are explained by the way the curve
Z = {A(x, y) = 0} intersects the torus T2 rather than by
the cohomology of the curve Z. None of these examples
seems to have particularly small Mahler’s measure and,
hence, these do not appear in this paper.
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On the other hand, Silver and Williams [Silver and
Williams 04] have shown that many of our small limit
points occur as measures of Alexander polynomials of
two-component links. For example, the first two numbers
in our list are the measures of the Alexander polynomials
of the links 72

1 and 62
2, respectively. They show that the

third smallest known limit point also arises as Mahler’s
measure of the Alexander polynomial of a link.
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