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The authors have implemented three numerical quadrature
schemes, using the Arbitrary Precision (ARPREC) software pack-
age. The objective here is a quadrature facility that can effi-
ciently evaluate to very high precision a large class of integrals
typical of those encountered in experimental mathematics, rely-
ing on a minimum of a priori information regarding the function
to be integrated. Such a facility is useful, for example, to per-
mit the experimental identification of definite integrals based on
their numerical values. The performance and accuracy of these
three quadrature schemes are compared using a suite of 15 in-
tegrals, ranging from continuous, well-behaved functions on fi-
nite intervals to functions with infinite derivatives and blow-up
singularities at endpoints, as well as several integrals on an in-
finite interval. In results using 412-digit arithmetic, we achieve
at least 400-digit accuracy, using two of the programs, for all
problems except one highly oscillatory function on an infinite
interval. Similar results were obtained using 1,012-digit arith-
metic.

1. INTRODUCTION

Numerical quadrature has a long and distinguished his-
tory, including contributions by Newton, who devised the
basis of what is now known as the Newton-Cotes scheme,
and Gauss, who devised Gaussian quadrature. In the
20th century, numerous additional schemes were devised,
including extended Simpson rules, adaptive quadrature,
Romberg integration, Clenshaw-Curtis integration, and
others [Davis and Rabinowitz 84, Krommer and Ueber-
huber 98]. In addition, numerous “kernels” were devised
that permit these schemes to efficiently compute definite
integrals of functions that include a particular expression
as a factor.

Virtually all of the modern literature on these tech-
niques, as well as their practical implementations on com-
puters, have been targeted at computing definite inte-
grals to the accuracy of 15 digits or less, namely the limits
of ordinary IEEE 64-bit floating-point data, which has 53
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mantissa bits. Little attention has been paid to the issues
of very high precision quadrature, in part because few se-
rious applications have been known for such techniques,
and also because techniques that work well for standard
machine precision often do not scale well to the realm of
high precision. The software packages Mathematica and
Maple include arbitrary precision arithmetic, together
with numerical integration to high precision. These fa-
cilities are generally quite good, although in many cases
they either fail or require unreasonably long run times.

In the past few years, computation of definite in-
tegrals to high precision has emerged as a useful tool
in experimental mathematics. In particular, it is often
possible to recognize an otherwise unknown definite in-
tegral in analytic terms, provided its numerical value
can be calculated to high accuracy. Such experimental
evaluations of integrals often involve integer relation de-
tection, which means finding integers ai, not all zero,
such that for a given n-long real vector (xi), we have
a1x1 + a2x2 + · · ·+ anxn = 0. Integer relation computa-
tions are used here to determine whether the numerical
value of a definite integral is given by a formula of a cer-
tain type with unknown integer or rational coefficients.
The most frequently used integer relation detection al-
gorithm is the PSLQ algorithm [Bailey and Broadhurst
00]. It and other integer relation schemes require very
high precision (often hundreds or thousands of decimal
digits) in both the input data and in the operation of the
algorithm to obtain meaningful results.

As one example, recently one of the authors, together
with Jonathan Borwein and Greg Fee of Simon Fraser
University in Canada, were inspired by a problem in
the American Mathematical Monthly [Ahmed 02]. They
found by using one of the quadrature routines described
in this paper, together with a PSLQ integer relation de-
tection program, that if C(a) is defined by

C(a) =
∫ 1

0

arctan(
√

x2 + a2) dx√
x2 + a2(x2 + 1)

,

then

C(0) = π log 2/8 + G/2,

C(1) = π/4 − π
√

2/2 + 3
√

2 arctan(
√

2)/2,

C(
√

2) = 5π2/96,

where G =
∑

k≥0(−1)k/(2k + 1)2 is Catalan’s constant
(the third of these results is the result from the Monthly).
These experimental results then led to the following gen-

eral result, rigorously established, among others:

∫ ∞

0

arctan(
√

x2 + a2) dx√
x2 + a2(x2 + 1)

=

π

2
√

a2 − 1

[
2 arctan(

√
a2 − 1) − arctan(

√
a4 − 1)

]
.

As a second example, recently Borwein and one of the
present authors empirically determined that

2√
3

∫ 1

0

log6(x) arctan[x
√

3/(x − 2)]
x + 1

dx =

1
81648

[−229635L3(8) + 29852550L3(7) log 3

− 1632960L3(6)π2 + 27760320L3(5)ζ(3)

− 275184L3(4)π4 + 36288000L3(3)ζ(5)

− 30008L3(2)π6 − 57030120L3(1)ζ(7)
]
,

where L3(s) =
∑∞

n=1 [1/(3n − 2)s − 1/(3n − 1)s]. Gen-
eral results have been conjectured but not yet rigorously
established.

In some cases, Maple or Mathematica is able to eval-
uate a definite integral analytically, but the resulting ex-
pressions are quite complicated, and thus not very en-
lightening. For example, although the integrals

I1 =
∫ 1

0

t2 log(t) dt

(t2 − 1)(t4 + 1)
,

I2 =
∫ π/4

0

t2 dt

sin2(t)
,

I3 =
∫ π

0

x sin x dx

1 + cos2 x
,

are successfully evaluated by Maple and Mathematica,
the results are somewhat lengthy expressions involving
advanced functions and complex entities. In the third
problem, for instance, the expression produced by Math-
ematica continues for more than 30 lines. We suspect
that there are considerably simpler closed-form versions
of these integrals. Indeed, we can obtain the following,
based solely on the high-precision numerical values of
these integrals, combined with integer relation compu-
tations:

I1 = π2(2 −
√

2)/32,

I2 = −π2/16 + π log(2)/4 + G,

I3 = π2/4.

These and numerous other examples that we could
cite underscore the need for a practical, general-purpose,
high-precision quadrature facility for experimental math-
ematics, by which we mean a computer program that can
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numerically evaluate a large class of definite integrals to
high precision, given nothing other than the function de-
finition in a separate user subprogram. In other words,
we seek a practical, self-contained tool that does not rely
on symbolic manipulation, the presence or absence of cer-
tain “kernels” in the integrand, or knowledge of the be-
havior of the function or its derivatives. We also seek a
scheme that is well suited to highly parallel implementa-
tion, so that a parallel computer system can be utilized
when required for significantly faster runtimes. This lat-
ter requirement by itself rules out reliance on commercial
products such as Mathematica and Maple, since these are
not yet available for highly parallel platforms.

The only a priori assumptions that we grant are that
the function to be integrated has a finite definite integral
and is infinitely differentiable within the given finite in-
terval. It may have a singularity (either a blow-up singu-
larity or an infinite derivative) at one or both endpoints.
We also consider functions defined on an infinite interval,
such as (0,∞), with the proviso that a linear transforma-
tion such as x → 1/(t + 1) converts the problem to the
above-mentioned class. Note that definite integrals of
functions with a finite set of discontinuities or other sin-
gularities within an interval may be computed as a sum
of definite integrals on subintervals, so that the assump-
tion given above encompasses a broad range of functions
of interest.

We acknowledge, however, that it is most likely not
possible to fashion a single numerical technique that
works for all functions of this class. Further, even a rea-
sonable problem may require an unreasonable amount of
computer time given current technology. Nonetheless we
aim to do as well as possible, within these constraints,
particularly within the domain of problems that com-
monly arise in experimental mathematics.

2. THE ARPREC SOFTWARE

The quadrature techniques we describe below have been
implemented using the Arbitrary Precision (ARPREC)
computation package [Bailey et al. 02]. This software is
based in part on the multiprecision package MPFUN90
(written in Fortran-90) [Bailey 95], which in turn is based
on the earlier MPFUN-77 package (written in Fortran-
77) [Bailey 93]. In MPFUN90, object-oriented facili-
ties built into the Fortran-90 language, namely custom
datatypes and operator overloading, were exploited to
permit Fortran programmers to utilize the MPFUN90 li-
brary by making only a few minor changes (mostly type

statement changes) to existing Fortran application pro-
grams.

The ARPREC library extends the functionality of the
MPFUN packages to the realm of C/C++ programs. In
particular, the ARPREC package combines the follow-
ing features, which we believe to be unique for currently
available software of this type:

• code written in C++ for high performance and
broad portability;

• both C++ and Fortran-90 translation modules,
which permit existing C++ and Fortran-90 appli-
cation programs to use the arbitrary precision li-
brary by making only a few minor changes to ex-
isting source code;

• arbitrary precision integer, floating, and complex
datatypes;

• support for datatypes with differing precision levels;

• interoperability with conventional integer and
floating-point datatypes;

• numerous common algebraic and transcendental
functions (sqrt, exp, log, sin, cos, tan, arccos, arcsin,
arctan, erf, gamma, and others);

• quadrature programs (for numerical integration);

• PSLQ programs (for integer relation detection);

• polynomial root programs, for both real and complex
roots;

• special routines, utilizing FFT-based multiplication,
for extra-high-precision (over 1,000 digits) computa-
tion.

The ARPREC package is based on the IEEE 64-bit
floating-point arithmetic standard, which is now imple-
mented on virtually all computer systems, thus permit-
ting a high degree of portability. It includes “configure”
and “make” scripts that for most Unix systems auto-
matically detect the software environment and perform
a valid installation. The software and documentation is
freely available on the Internet [Bailey et al. 02].

3. THE THREE QUADRATURE SCHEMES

We describe here three numerical quadrature schemes
that we have found suitable for computing definite inte-
grals to very high precision. We considered several other
schemes, including at least one adaptive method, but
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found that they are not competitive with these schemes
when high-precision results are required—their runtimes
scale too rapidly with the numeric precision level. Also,
most of these other schemes fail for integrands with infi-
nite derivatives or singularities at the endpoints (a diffi-
culty, as we shall see, that is shared by one of the schemes
we describe below).

QUADGS: A Gaussian quadrature scheme. Gaussian
quadrature certainly is not new, although most descrip-
tions in the literature do not address the requirements of
arbitrary precision implementation. This scheme approx-
imates an integral on [−1, 1] as the sum

∑
0≤j<n wjf(xj),

where the abscissas xj are the roots of the nth degree
Legendre polynomial Pn(x) on [−1, 1], and the weights
wj are

wj =
−2

(n + 1)P ′
n(xj)Pn+1(xj)

[Atkinson 93, page 187]. We compute an individual
abscissa by using a Newton iteration root-finding al-
gorithm with a dynamic precision scheme. The start-
ing value for xj in these Newton iterations is given by
cos[π(j − 1/4)/(n + 1/2)], which may be calculated us-
ing ordinary 64-bit floating-point arithmetic [Press et al.
86, page 125]. Our Newton iterations start with 40-digit
precision and iterate until convergence is achieved at this
level. Thereafter our program nearly doubles the work-
ing precision with each subsequent Newton iteration until
the full precision, p digits, desired for quadrature results
is achieved. Using this approach, the total runtime for
an individual abscissa computation is only about three
times the runtime of the final iteration. We compute
the Legendre polynomial function values using an n-long
iteration of the recurrence P0(x) = 0, P1(x) = 1, and

(k + 1)Pk+1(x) = (2k + 1)xPk(x) − kPk−1(x)

for k ≥ 2. The derivative is computed as P ′
n(x) =

n(xPn(x) − Pn−1(x))/(x2 − 1). For functions defined on
intervals other than [−1, 1], a linear scaling is used to
convert the Gaussian abscissas to the given interval.

One legitimate question that can be raised here is
whether the resulting Legendre polynomial function val-
ues are accurate for large n, due to the recurrence used
in the generation algorithm. Fortunately, we have found
that this error appears to be minor, based on our im-
plementations and tests with p up to 1,000 digits and
with n up to 12,288. As we shall see in Section 7, we
have obtained quadrature results accurate to over 1,000-
digit accuracy, for several problems suitable for Gaussian

quadrature, using a working precision (for both initial-
ization and quadrature calculations) of only 1,012 digits.

In our implementation, we precompute multiple levels
(i.e., multiple sets) of abscissa-weight pairs, where each
level has twice as many abscissa-weight pairs as the level
before. In particular, the number of abscissa-weight pairs
at level k in our program is 3 · 2k, so that the total for
m levels is

∑
k≤m 3 · 2k ≈ 6 · 2m. When evaluating an

integral using this program, we start with the first level,
obtain a quadrature result, and continue to apply ad-
ditional levels until we are satisfied with the estimated
accuracy of our result (see Section 5), or else we exhaust
our sets of precomputed abscissa-weight pairs.

Our program saves additional time by dynamically
increasing the working precision in the quadrature cal-
culation, in a similar manner as is used in calculating
abscissas. We use modest precision (80 digits) for the
first two levels. Thereafter, if the estimated number of
correct digits for the quadrature result (see Section 5)
at a given level is more than half the current working
precision, then the working precision is doubled before
proceeding to the next level, until the full precision of p

digits has been reached. This modification reduces run-
times by up to 35% for problems well suited for Gaussian
quadrature, with even greater savings for problems that
are not well suited, since full-precision arithmetic is not
wasted on such problems.

The cost of computing abscissa-weight pairs using this
scheme increases quadratically with n, since each Legen-
dre polynomial evaluation requires n steps. The abscissa-
weight pairs can alternately be computed using an eigen-
vector scheme due to Golub and Welsch [Golub and
Welsch 69], although this scheme requires considerably
more memory, and its computational cost also increases
quadratically with n. We know of no scheme for gen-
erating Gaussian abscissa-weight pairs that avoids this
quadratic dependence on n [Kahan 04]. For many well-
behaved integrand functions (as we shall see), Gaussian
quadrature achieves quadratic convergence, meaning that
doubling n achieves roughly twice as many correct digits
in the quadrature result, after a few initial levels. As-
suming this behavior is achieved for a given function,
this means that to achieve accuracy of p digits, one needs
n to scale linearly with p. With FFT-based multiplica-
tion (available in the ARPREC package, for instance),
the cost of basic arithmetic scales as p log p for practical
precision p (i.e., up to several million digits; in general
an additional factor of log log p is involved). Thus the
overall cost of the Gaussian initialization process scales
as roughly p3 log p.
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In a similar manner, we can estimate the cost of per-
forming a quadrature calculation for a given integrand
function once the initialization has been done. Fairly
simple quadratically convergent algorithms (in which the
number of accurate digits approximately doubles with
each successive iteration) are known for all algebraic
functions and many of the common transcendental func-
tions, including the exponential, logarithm, trigonomet-
ric and inverse trigonometric functions [Bailey 93, Bailey
95]. For such functions, the cost of a single evaluation
scales roughly as p log2 p, using FFT-based arithmetic, in
the range of practical precision (for algebraic functions,
it is only p log p). Assume for a moment that a tran-
scendental integrand function is well suited for Gaussian
quadrature, so that n scales linearly with p, as described
in the previous paragraph. Then the cost of evaluating
the integral of such a function scales roughly as p2 log2 p.

QUADERF: An error function-based quadrature scheme.

This program approximates an integral on [−1, 1] as a
sum

∑
wjf(xj), as with Gaussian quadrature, but here

the abscissas xj are given by erf(hj), where erf(x) =
(2/

√
π)

∫ x

0
e−t2 dt, and the weights wj are given by

(2/
√

π)e−(hj)2 . To compute the error function erf(x), we
use the following formula for erfc(t) = 1− erf(t) given by
Crandall [Crandall 96, page 85] (who in turn attributes it
to a 1968 paper by Chiarella and Reichel [Chiarella and
Reichel 68]),

erfc(t) =
e−t2αt

π


 1

t2
+ 2

∑
k≥1

e−k2α2

k2α2 + t2




+
2

1 − e2πt/α
+ E,

where t > 0 and |E| < 3e−π2/α2
. The parameter α is cho-

sen small enough to ensure that the error E is sufficiently
small. Given a precision of p digits, let α be defined by
the formula 10−p = 10e−π2/α2

, so that E < 10−p. Then
provided that t <

√
p log 10, the formula above is also

accurate to a relative error of 10−p. The generation of
xj and wj should be performed to a relative accuracy
of at least the primary precision, p1 digits, desired for
quadrature results.

In a straightforward implementation of the error func-
tion quadrature scheme, the calculation of abscissa-
weight pairs, for a given h, can be terminated when
wj < ε1 = 10−p1 . However, we have found that it
is advantageous to compute additional abscissa-weight
pairs, continuing until wj < ε2, where the secondary

epsilon ε2 = 10−p2 , and p2 = 2p1 (i.e., ε2 = ε21).
These calculations may still be done with a relative ac-
curacy of the primary working precision p1, provided
that α in the formula above for erfc is selected based
on p2 rather than p1. Additionally, we store the values
erfc(hj) for subsequent quadrature computation, rather
than xj = erf(hj) = 1 − erfc(hj), since the latter, many
of which are very close to 1, lose accuracy in subtraction.
Then when we evaluate integrand functions in a quadra-
ture computation, we perform linear scaling of precom-
puted abscissas using a secondary (higher) precision of
p2 digits (a linear scaling of abscissas is required when-
ever the interval of integration differs from [−1, 1], as
explained in Section 4). In this way, we can use more
accurate input values for an expression such as 1 − t ap-
pearing in a problem such as

∫ 1

0
et(1 − t)−1/2 dt. The

function itself does not need to be computed using this
higher precision, so the added computational cost of this
secondary precision procedure is negligible.

This optional modification permits the use of abscissas
that are closer to endpoints than the primary epsilon
ε1 would normally permit, thus achieving significantly
higher accuracy in the quadrature results for problems
with a blow-up singularity at an endpoint (see Section
4). For the test problems below, we found p2 = 2p1

(corresponding to ε2 = ε21) to be adequate; with more
extreme singularities, an even smaller value of ε2 may
be needed, in order that the function-weight products
wjf(xj), for abscissas xj very close to the endpoints, are
smaller than ε1. If our program encounters the need for
a smaller ε2 during a quadrature calculation (because
|wjf(xj)| > ε1 for xj close to an endpoint), it outputs
a message. This secondary epsilon procedure and the
usage of additional abscissa-weight pairs are not needed
for integrands that do not have a blow-up singularity at
an endpoint.

As with the Gaussian scheme, multiple “levels” of
abscissa-weight pairs are typically precomputed, with
each level having approximately twice as many pairs as
the previous level. In our implementation, this is con-
trolled by setting h = 22−k for level k. With h defined
in this manner, the even-indexed abscissa-weight pairs
at one level are merely the full set at the previous level.
Thus only the odd-indexed pairs need to be computed at
each level (after the first level), and, more importantly,
the function to be integrated needs to be evaluated only
at the odd-indexed abscissas at each level. Additional
time can be saved for many functions by terminating the
summation

∑
j wjf(xj) once the terms wjf(xj) are con-

sistently smaller than ε1.
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With the primary epsilon set to 10−400 and the sec-
ondary epsilon set to 10−800, as in the tests in Table
1 below, roughly n = 5.5 · 2k abscissa-weight pairs are
generated at level k, so that the total required for m

levels is approximately
∑

k≤m 5.5 · 2k ≈ 11 · 2m. As we
shall see, error function quadrature achieves quadratic
convergence for many problems, so that the number n of
abscissa-weight pairs needed for p-digit accuracy scales
roughly linearly with p. The cost of computing an indi-
vidual abscissa-weight pair is dominated by the cost of
the series evaluation in the formula for erfc. The num-
ber of terms that need to be calculated and summed for
an erfc evaluation is linearly proportional to p. Thus
the cost of the error function initialization process, using
FFT-based arithmetic, scales as p3 log p. Even though
this is the same general scaling formula as with Gaussian
quadrature, in practice the error function initialization is
much faster at a given precision and level.

For error function quadrature there is no point in
attempting to dynamically increase precision during a
quadrature computation. This is because doing so would
sacrifice the advantage of needing to evaluate the inte-
grand function only at the odd-indexed abscissas at each
level (which presumes that all previous function evalua-
tions are fully accurate). It is often useful, though, to
first try a given problem with modest precision, say 100
digits, thus not wasting high-precision computation on a
problem not well suited for this scheme.

As we will see below, the error function quadrature
scheme works very well for all of our test problems ex-
cept one highly oscillatory integrand. Assuming that
a given problem is well suited for this scheme, so that
the number of function evaluations needed scales linearly
with the precision p, then the cost of evaluating the inte-
gral of such a function using this scheme scales roughly
as p2 log2 p within a range of practical precision, or in
other words with the same scaling formula as Gaussian
quadrature.

QUADTS: A tanh-sinh quadrature scheme. This scheme
is similar to the error function scheme. In this case, the
abscissas are chosen as xj = tanh u2 and the weights
wj = u1/ cosh2 u2, where u1 = π/2 · cosh(hj) and u2 =
π/2 · sinh(hj).

In a straightforward implementation, the generation
of abscissa-weight pairs should be performed with the
primary precision p1 digits desired for quadrature results
and continues, for a given h, until wj < ε1 = 10−p1 .
In our implementation, as with the error function

quadrature scheme, at each level we calculate additional
abscissa-weight pairs, continuing until wj < ε2, where
ε2 = 10−p2 and p2 = 2p1 (i.e., ε2 = ε21). Also, as before,
we actually store 1− xj = 1/(eu2 cosh u2), and, during a
quadrature calculation, we perform linear scaling of these
precomputed values using the secondary precision p2.

In our tanh-sinh quadrature program, each level k of
abscissa-weight pairs uses h = 2−k. As with the error
function scheme, the even-indexed abscissa-weight pairs
at one level are merely the full set of pairs at the previous
level, and the integrand function needs to be evaluated
only at the odd-indexed abscissas at each level. Addi-
tional time can be saved for many functions by terminat-
ing the summation

∑
j wjf(xj) once the terms wjf(xj)

are consistently smaller than ε1. In the tests shown in
Table 1 below, where the primary epsilon is set to 10−400

and the secondary epsilon is set to 10−800, we find that
roughly 3.6·2k abscissa-weight pairs are generated at level
k, so that the total required for m levels is approximately∑

k≤m 3.6 · 2k ≈ 7.2 · 2m.
As with the other two schemes, the tanh-sinh scheme

achieves quadratic convergence for many integrand func-
tions, so that the number n of abscissa-weight pairs re-
quired to achieve an accuracy of p digits scales, for these
functions, roughly linearly with p. The cost of computing
an individual pair with this scheme is dominated by the
cost of exponential function evaluation, for which simple
quadratically convergent algorithms are known [Bailey
93, Bailey 95] (one is implemented in ARPREC). With
FFT-based arithmetic, and within a practical range of
precision, the cost of one exponential evaluation scales
as p log2 p. Thus the cost of the tanh-sinh initialization
process scales roughly as p2 log2 p, which is a more slowly
growing rate than that of the other two schemes.

As with error function quadrature, there is no advan-
tage in attempting to dynamically increase precision dur-
ing a quadrature computation, since this would sacrifice
the advantage of needing to evaluate the function only at
odd-indexed abscissas at each level.

In practice, as we shall see, tanh-sinh quadrature
achieves quadratic convergence for many integrand func-
tions. Assuming that a given problem is of this class,
so that the number of function evaluation scales linearly
with precision p, then the cost of evaluating the integral
of such a function using this method scales roughly as
p2 log2 p, within a range of practical precision, or in other
words with the same scaling formula as with the other
two methods. The tanh-sinh scheme was first introduced
by Takahasi and Mori [Takahasi and Mori 74, Mori 91].
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4. THE EULER-MACLAURIN SUMMATION FORMULA

The error function and tanh-sinh quadrature schemes are
based on the Euler-Maclaurin summation formula, which
implies that for certain bell-shaped integrands, approxi-
mating the integral by a simple step-function summation
is remarkably accurate, much more so than one would
normally expect. The Euler-Maclaurin summation for-
mula can be stated as follows [Atkinson 93, page 180].
Let m ≥ 0 and n ≥ 1 be integers, and define h = (b−a)/n

and xj = a + jh for 0 ≤ j ≤ n. Further assume that the
function f(x) is at least (2m+2)-times continuously dif-
ferentiable on [a, b]. Then

∫ b

a

f(x) dx = h
n∑

j=0

f(xj) − h

2
(f(a) + f(b))

−
m∑

i=1

h2iB2i

(2i)!

(
f (2i−1)(b) − f (2i−1)(a)

)
− E,

where B2i denote the Bernoulli numbers, and

E =
h2m+2(b − a)B2m+2f

2m+2(ξ)
(2m + 2)!

for some ξ ∈ (a, b).
In the circumstance where the function f(x) and all

of its derivatives are zero at the endpoints a and b (as
in a smooth, bell-shaped function), note that the sec-
ond and third terms of the Euler-Maclaurin formula are
zero. Thus for such functions the error of a simple step-
function approximation to the integral, with interval h,
is simply E. But since E is less than a constant times
h2m+2/(2m + 2)!, for any m, we conclude that the error
goes to zero more rapidly than any power of h. For a
function defined on (−∞,∞), the Euler-Maclaurin sum-
mation formula still applies to the resulting doubly in-
finite sum approximation, provided as before that the
function and all of its derivatives tend rapidly to zero for
large positive and negative arguments.

This principle is utilized in the error function and
tanh-sinh schemes by transforming the integral of f(x) on
the interval [−1, 1] to an integral on (−∞,∞) using the
change of variable x = g(t). Here g(x) is some monotonic,
infinitely differentiable function with the property that
g(x) → 1 as x → ∞ and g(x) → −1 as x → −∞, and
also with the property that g′(x) and all higher deriva-
tives rapidly approach zero for large positive and negative

arguments. In this case we can write, for h > 0,

∫ 1

−1

f(x) dx =
∫ ∞

−∞
f(g(t))g′(t) dt

= h
∞∑

j=−∞
wjf(xj) + E,

where xj = g(hj) and wj = g′(hj). If g′(t) and its deriv-
atives tend to zero sufficiently rapidly for large t, posi-
tive and negative, then even in cases where f(x) has an
infinite derivative or an integrable singularity at one or
both endpoints, the resulting integrand f(g(t))g′(t) will
be a smooth bell-shaped function for which the Euler-
Maclaurin argument applies. Thus, in these cases, the
error E in this approximation decreases faster than any
power of h.

The error function integration scheme uses g(t) =
erf(t) and g′(t) = (2/

√
π)e−t2 . Note that g′(t) is merely

the bell-shaped probability density function, which is
well known to converge rapidly to zero, together with
all of its derivatives, for large arguments. The tanh-
sinh scheme uses g(t) = tanh(π/2 · sinh t) and g′(t) =
π/2 · sinh t/ cosh2(π/2 · sinh t), for which the convergence
to zero is compound exponential, even faster than the
probability density function.

The doubly infinite sum in the formula above can be
approximated by a finite sum provided one takes rea-
sonable care to insure that the truncated tails are in-
significant. This is the rationale for the secondary ep-
silon scheme mentioned in Section 3: in cases where the
integrand has a blow-up singularity at an endpoint, this
scheme permits one to sum additional terms, with abscis-
sas very close to the endpoints, until the rapidly decreas-
ing weights overwhelm the large function values. If this
is done properly, the finite sum will be within the target
tolerance of the full doubly infinite summation. Along
this line, whenever the given interval of integration is
other than [−1, 1], a linear scaling must be performed on
the precomputed abscissas during the quadrature com-
putation. As we mentioned in Section 3, when using the
secondary epsilon scheme it is important to perform this
scaling using a (higher) secondary precision, so that ar-
guments for the integrand function evaluation near the
endpoints are as accurate as possible.

5. ERROR ESTIMATION

As mentioned above, we seek a practical, general purpose,
high-precision numerical integration facility that does not
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depend on a priori bounds of the function or its deriv-
atives. Rigorous error bounds are not possible for any
quadrature scheme without such knowledge [Davis and
Rabinowitz 84, page 420]. Instead, we use the following
heuristic error estimation scheme, which is inspired by
(although it does not rely on) the quadratically conver-
gent behavior often achieved by these schemes. In spite
of its heuristic nature, it appears to work well in practice,
both on problems for which highly accurate quadrature
results are obtained, as well as for those for which highly
accurate results are not obtained.

Let Sk be the computed approximations of the integral
for levels k up to level n. Then the estimated error En at
level n is one if n ≤ 2, zero if Sn = Sn−1, and otherwise
10d, where d = max(d2

1/d2, 2d1, d3, d4) (except d is not
set greater than 0). In this formula,

d1 = log10 |Sn − Sn−1|,
d2 = log10 |Sn − Sn−2|,
d3 = log10(ε1 · max

j
|wjf(xj)|)

d4 = log10 max(|wlf(xl)|, |wrf(xr)|)

Here xl is the closest abscissa to the left endpoint and xr

is the closest abscissa to the right endpoint. The term d4

is not present for Gaussian quadrature. In our Gaussian
quadrature program, ε1 = 10−q, where q is the current
working precision in digits, which for a given problem
starts at 80 digits and then is dynamically increased, as
described in Section 3, until it achieves the full precision
p. For the error function and tanh-sinh programs, ε1 =
10−p1 , where p1 is the primary precision, in digits, as
described in Section 3. Calculations of d may be done to
ordinary double precision accuracy (i.e., 15 digits), and
the resulting value may be rounded to the nearest integer.

The rationale for the four terms in the formula for d

is as follows. The first term is a simple multiplicative
projection based on the differences between the quadra-
ture result at the current level and the past two levels.
The second term stems from the observation that the
best one can hope for is quadratic convergence; in other
words, the number of correct digits cannot be more than
twice the previous level. The third term derives from the
observation that the error cannot be less than the current
epsilon times the largest function-weight element that is
being summed. The fourth term is based on the fact that
in the two Euler-Maclaurin-based schemes, the accuracy
of the quadrature result is limited by the sizes of the final
function-weight terms near the two endpoints, since the
infinite sum mentioned in Section 4 is truncated there.

One does not need to rely on this estimation scheme if
one is willing to continue computation until the quadra-
ture results from two successive levels agree to within
the full primary precision (or the final precomputed set
of abscissa-weight pairs is exhausted). This would sig-
nificantly increase the runtime for many problems, since
it would be necessary to compute with at least one ad-
ditional level of abscissas and weights. Also, even two
consecutive values in full agreement still do not consti-
tute a mathematically rigorous guarantee of correctness.

6. TEST PROBLEMS

The following 15 integrals were used as a test suite to
compare these three quadrature schemes. In each case
an analytic result is known, as shown below, facilitating
the checking of results. The 15 integrals are listed in five
groups:

• 1–4: continuous, well-behaved functions (all deriva-
tives exist and are bounded) on finite intervals;

• 5–6: continuous functions on finite intervals, but
with an infinite derivative at an endpoint;

• 7–10: functions on finite intervals with an integrable
singularity at an endpoint;

• 11–13: functions on an infinite interval;

• 14–15: oscillatory functions on an infinite interval.

1 :
∫ 1

0

t log(1 + t) dt = 1/4

2 :
∫ 1

0

t2 arctan t dt = (π − 2 + 2 log 2)/12

3 :
∫ π/2

0

et cos t dt = (eπ/2 − 1)/2

4 :
∫ 1

0

arctan(
√

2 + t2)
(1 + t2)

√
2 + t2

dt = 5π2/96

5 :
∫ 1

0

√
t log t dt = −4/9

6 :
∫ 1

0

√
1 − t2 dt = π/4

7 :
∫ 1

0

√
t√

1 − t2
dt = 2

√
πΓ(3/4)/Γ(1/4)

8 :
∫ 1

0

log2 t dt = 2
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QUADGS QUADERF QUADTS

Prob. Level Time Error Level Time Error Level Time Error

Init 12 25,130.59 12 224.51 12 51.50

1 6 1.04 10−404 9 7.93 10−404 8 3.36 10−405

2 6 0.92 10−403 9 4.35 10−403 8 2.48 10−404

3 5 0.29 10−401 9 5.07 10−402 7 1.60 10−402

4 6 0.81 10−403 9 12.52 10−403 8 4.99 10−403

5 12 13.15 10−13 9 7.62 10−404 7 1.84 10−404

6 12 1.23 10−15 9 0.56 10−403 8 0.25 10−403

7 12 2.29 10−5 9 1.15 10−401 8 0.49 10−402

8 12 12.55 10−8 9 8.47 10−404 7 1.72 10−402

9 12 17.72 10−9 9 9.87 10−402 8 4.77 10−401

10 12 6.56 10−5 9 2.52 10−401 8 1.32 10−400

11 7 0.07 10−412 10 0.94 10−403 9 0.36 10−403

12 12 7.51 10−5 11 7.75 10−401 10 4.95 10−402

13 10 8.25 10−404 12 8.66 10−403 10 3.59 10−402

14 12 62.35 10−404 12 17.62 10−402 11 14.54 10−402

15 5/12 6.47 10−24 9/12 2.05 10−22 7/12 3.82 10−25

TABLE 1. 400-digit runs.

9 :
∫ π/2

0

log(cos t) dt = −π log(2)/2

10 :
∫ π/2

0

√
tan t dt = π

√
2/2

11 :
∫ ∞

0

1
1 + t2

dt =
∫ 1

0

ds

1 − 2s + 2s2
= π/2

12 :
∫ ∞

0

e−t

√
t

dt =
∫ 1

0

e1−1/s ds√
s3 − s4

=
√

π

13 :
∫ ∞

0

e−t2/2 dt =
∫ 1

0

e−(1/s−1)2/2 ds

s2
=

√
π/2

14 :
∫ ∞

0

e−t cos t dt =
∫ 1

0

e1−1/s cos(1/s − 1) ds

s2

= 1/2

15 :
∫ ∞

0

sin t

t
dt =

∫ π

0

sin t

t
dt

+40320
∫ 1/π

0

t7 sin(1/t) dt − 1
π

+
2
π3

− 24
π5

+
720
π7

=
π

2
Problem 4, as was mentioned above, appeared in

the September 2002 American Mathematical Monthly

[Ahmed 02]. All are typical of the sorts of problems that
the authors have encountered in experimental math re-
search, except that in each of these cases, analytic solu-
tions are well known. Problems 11–15 are integrals on
an infinite interval, which is in each case here [0,∞).
Except for Problem 15, such integrals are evaluated by
using the transformation s = 1/(t + 1), as shown above.

In Problem 15, the integral is written as the sum of in-
tegrals on [0, π] and [π,∞). Then integration by parts is
applied several times to the second integral of this pair,
resulting in the expression shown above. This expression
requires the evaluation of the integrals

∫ π

0
t−1 sin t dt and∫ 1/π

0
t7 sin(1/t) dt, which are significantly better behaved

than the original, resulting in faster convergence. Even
with this transformation, however, Problem 15 remains
the most difficult of the set, as we shall see.

7. RESULTS OF TESTS

The three quadrature programs, QUADGS, QUADERF,
and QUADTS, were each implemented using the
ARPREC arbitrary precision computation package [Bai-
ley et al. 02], in a very similar programming style, with
the primary user working precision set at 400 digits (the
actual internal working precision employed by the soft-
ware is roughly 412 digits). We sought results good to
the target accuracy of the corresponding primary epsilon,
namely 10−400. A secondary precision of 800 digits and
a corresponding secondary epsilon of 10−800 were em-
ployed in QUADERF and QUADTS, as described in Sec-
tion 3, to achieve improved accuracy on problems with
blow-up singularities (800-digit arithmetic is used here
only in linear scaling of precomputed abscissas, and thus
has negligible overall cost). One exception to these spec-
ifications is in Problem 15, where a primary precision
level of 100 digits and a secondary precision of 200 digits
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QUADGS QUADERF QUADTS

Prob. Level Time Error Level Time Error Level Time Error

Init 12 73,046.28 13 3,891.63 12 390.83

1 7 6.86 10−1012 10 97.16 10−1004 9 37.33 10−1010

2 7 9.13 10−1011 11 112.11 10−1003 9 32.64 10−1010

3 7 10.01 10−1009 10 90.29 10−1004 9 41.23 10−1008

4 7 9.31 10−1010 11 453.92 10−1003 9 67.39 10−1009

5 12 14.70 10−13 10 88.43 10−1004 8 18.54 10−1010

6 12 1.39 10−15 10 6.75 10−1004 9 2.29 10−1010

7 12 2.49 10−5 10 15.21 10−1001 9 4.40 10−1002

8 12 13.89 10−8 10 98.25 10−1004 8 19.19 10−1009

9 12 18.66 10−9 10 113.49 10−1004 9 48.18 10−1008

10 12 7.06 10−5 10 35.80 10−1001 9 15.55 10−1002

11 8 0.41 10−1012 11 10.41 10−1003 10 3.03 10−1009

12 12 7.98 10−5 13 211.03 10−1001 11 65.05 10−1002

13 11 98.50 10−1011 13 117.09 10−1003 12 85.61 10−1007

TABLE 2. 1,000 digit runs.

were used (these are more than ample, given the accu-
racy achieved). In each of the three programs, 12 lev-
els (i.e., 12 sets) of abscissa-weight pairs were precom-
puted. Additional levels could have been precomputed,
but this would not have materially changed these results.
Each quadrature program was run blindly—beginning
at level one and continuing at successively higher levels,
each of which approximately doubles the runtime, until
one of these two conditions was met: (1) the maximum
level (level 12) was completed; or (2) the estimated error
achieved the accuracy target, namely 10−400. These runs
were made on a 2 GHz Apple G5 system, using the IBM
xlC and xlf90 compilers, with O3 optimization.

The results of these tests are given in Table 1 below.
The first line gives the runtime, in seconds, for the ini-
tialization process. The initialization time is listed here
separately from the integral evaluations, since we expect
that in many practical applications, the abscissas and
weights will be computed once and then stored for nu-
merous subsequent evaluations. Initialization produced
24,670 abscissa-weight pairs for QUADGS, 43,951 pairs
for QUADERF, and 28,965 pairs for QUADTS. Table 1
includes the number of levels used by each of the three
programs for the various problems. In Problem 15, where
two individual integrals are evaluated, the number of lev-
els used for both steps are shown in the table. The errors
are shown to within one order of magnitude and are based
on the analytic evaluations given in the previous section.

We have also successfully run these three programs
with 1,000-digit precision (1,012-digit internal precision).
In Table 2, we include 1,000-digit results for Problems

1–13 (in other words, for all categories of problems ex-
cept the last). For these problems, 24,670 abscissa-weight
pairs (12 levels) were generated for QUADGS, 138,982
pairs (13 levels) for QUADERF, and 32,708 pairs (12
levels) for QUADTS. No modifications were made to the
programs for these runs, other than to change the pre-
cision and epsilon levels: 1,000 digits primary precision,
2,000 digits secondary precision, and corresponding ep-
silons.

8. ANALYSIS

The Gaussian quadrature program (QUADGS) did ex-
tremely well on the first set of problems, namely inte-
grals of bounded, well-behaved continuous functions on
finite intervals. In both Table 1 and Table 2, it was be-
tween four and 40 times faster than QUADERF on these
problems, and between three and seven times faster than
QUADTS. Its accuracy on these problems was consis-
tently less than the target tolerance. QUADGS also did
well on Problems 11, 13, and 14, achieving the target tol-
erance in reasonable runtimes. But for the other prob-
lems, which are characterized by functions that are not
well behaved at endpoints, its accuracy was quite poor,
even when all 12 levels of abscissas and weights were uti-
lized (it is well known that Gaussian quadrature is not
very effective for such integrands [Kahan 04]). Another
major drawback of the Gaussian scheme is that its ini-
tialization time is many times higher than that of the
other two schemes.
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Level Prob. 2 Prob. 4 Prob. 6 Prob. 8 Prob. 10 Prob. 12 Prob. 14

1 10−1 10−1 10−1 100 10−1 100 100

2 10−2 10−5 10−3 10−3 10−3 10−1 10−1

3 10−6 10−6 10−8 10−10 10−8 10−3 10−2

4 10−13 10−12 10−17 10−21 10−16 10−6 10−3

5 10−26 10−25 10−34 10−43 10−33 10−11 10−5

6 10−52 10−51 10−68 10−87 10−66 10−20 10−10

7 10−104 10−102 10−134 10−173 10−132 10−37 10−19

8 10−206 10−204 10−266 10−348 10−264 10−70 10−37

9 10−411 10−409 10−529 10−696 10−527 10−132 10−68

10 10−821 10−819 10−1004 10−1004 10−1001 10−249 10−128

11 10−1003 10−1003 10−472 10−242

12 10−896 10−460

13 10−1001 10−876

TABLE 3. QUADERF errors at each level of computation.

In the results in Table 1, the error function quadra-
ture program (QUADERF) produced highly accurate an-
swers, each less than the target tolerance of 10−400, on
all problems except the last one, including all problems
with infinite derivatives and blow-up singularities. It was
several times slower than QUADGS on the first set of
problems, but its timing was comparable to QUADGS
on Problems 13 and considerably faster than QUADGS
on Problem 14. In the results in Table 2, it achieved
the full target tolerance of 10−1000 on all problems, with
reasonable runtimes.

The tanh-sinh quadrature program (QUADTS) also
achieved accuracies within the target tolerance in every
case in both tables except for Problem 15 in Table 1.
What’s more, its runtimes were consistently better than
QUADERF. Its initialization times were four times faster
than QUADERF at 400 digits, and ten times faster at
1,000 digits.

Quadratic convergence, or in other words, the near-
doubling of correct digits with each successive level, after
the first few levels, was evident in all three schemes for
problems in which fully accurate results were obtained.
As an illustration, we include in Table 3 the actual errors
of the QUADERF program at each of 13 levels, for a
selection of the test problems, based on 1,000-digit runs.

The value of the secondary epsilon scheme mentioned
in Section 3 is evident in the highly accurate results
achieved by both QUADERF and QUADTS on prob-
lems with blow-up singularities, notably Problems 7, 10,
and 12. When these three problems are run without
the secondary epsilon scheme at 400 digit precision (i.e.,
when p2 = p1 = 400 and ε2 = ε1 = 10−400), both
the QUADERF and QUADTS programs produce results

accurate to only 200 digits. At 1,000-digit precision,
without the secondary epsilon scheme, the two programs
achieve only 500 correct digits. But with the secondary
epsilon scheme, both programs produce fully accurate re-
sults on all three problems.

None of the three programs did well on Problem 15
(see Table 1). Indeed, this problem was included, in part,
to illustrate that even rather sophisticated quadrature
programs can stumble on some rather innocent-looking
problems. In this particular problem, none of the three
quadrature programs could not handle the highly oscil-
latory behavior of the integrand t7 sin(1/t) near t = 0,
where the mth derivative increases as 1/t2(m−4)+1 for
small t. So, for example, when this function is trans-
formed to the entire real line, as described in Section 4,
its high-order derivatives do not go to zero for large t,
and thus the Euler-Maclaurin theorem does not imply a
high-accuracy quadrature result. Note that the function
itself is bounded, so the secondary epsilon scheme does
not help here. For that matter, even 100-digit arithmetic
is clearly wasted on this problem—a result correct to 25
digits or so can be computed in a fraction of a second
by employing the double-double or quad-double software
(accurate to 32 and 64 digits, respectively) available at
the ARPREC website [Bailey et al. 02].

The error estimation scheme given in Section 5 per-
formed very well in these tests. For all problems and
for each of the three programs, it produced estimated er-
ror values that were within four orders of magnitude of
the actual errors in the results, and in most cases were
within one order. This was true both for cases where the
final quadrature result was fully accurate and for those
for which it was not.
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We should also comment here that as far as we can tell,
our implementations of these quadrature algorithms, as
well as the evaluation of the functions involved in the in-
tegrands and the accumulation of sums, do not appear to
suffer significantly from numerical round-off error. This
is indicated not only by the highly accurate results we
have achieved, but also by some separate tests that we
have done. Evidently in these calculations, the 412-digit
(or 1,012-digit) internal working precision is sufficient to
cover the numerical error that arises in the computation
of abscissa-weight pairs and in function evaluations. In
cases (such as Problem 15 in Table 1) where only a few
accurate digits were obtained, numerical round-off error
was not a factor.

9. SUMMARY

Each of these quadrature programs has proven its value in
a certain domain of quadrature problems. The Gaussian
quadrature program is extremely fast and accurate for
continuous, well-behaved integrands, although it requires
a lengthy initialization. Both the error function and
tanh-sinh programs were able to evaluate all problems
except for Problem 15 in Table 1, including all problems
with infinite derivatives and blow-up singularities at the
endpoints, to the full target precision of 400 or 1,000 dig-
its. We have also tried these programs at even higher
precision levels, with similarly accurate results (but sig-
nificantly longer runtimes, as expected).

Overall, the tanh-sinh scheme appears to be the best
for integrands of the type most often encountered in ex-
perimental math research. In addition to its excellent ac-
curacy and runtime performance, the initialization cost
for this scheme is much less than the other two, particu-
larly at 1,000-digit precision. This is not surprising, since
the computational cost of this procedure has a lower-rate
growth formula than the other two schemes (p2 log p in-
stead of p3 log p). The tanh-sinh scheme is not a “uni-
versal” quadrature scheme, since, for instance, it was not
able to handle Problem 15, but as we mentioned in the in-
troduction, it is unlikely that a truly “universal” quadra-
ture scheme exists.

Our implementations of these three schemes (both
C++ and Fortran-90 versions), as well as the associated
ARPREC arbitrary precision computation software, are
available from the website http://crd.lbl.gov/∼dhbailey/
mpdist.

We wish to add here that each of the three schemes
described above are well suited for parallel computation,
both for computation of the abscissa-weight pairs and for
the evaluation of integrals. This is because the key parts

of the computation are naturally parallel. Note, for ex-
ample, that each of the individual abscissa-weight pairs
can be computed independently, in all three quadrature
initialization schemes. The same applies to each individ-
ual function evaluation in the accumulation of the ap-
proximation to the integral, at a given level, although
some care must be taken to insure good load balance on
a parallel system. Initial results indicate scalability of
over 700 times, for large (2,000-digit) problems, using up
to 1,024 CPUs, thus sharply reducing runtimes for these
quadrature calculations [Bailey and Borwein 05].
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