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We propose a new kind of Ramanujan-type formula for 1/7?
and conjecture that it is related to the theory of modular func-
tions.

1. INTRODUCTION
In my papers [Guillera 02, Guillera 03], I prove the iden-

tities
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Inspired by these results and by Ramanujan’s formulas
[Borwein and Borwein 87, Chudnovsky and Chudnovsky
88, Ramanujan 14], T had the feeling that more formulas
of the same type could exist. So, I experimented in order
to find them. I now describe that research.

2.  RAMANUJAN-TYPE FORMULAS

The kind of formulas we are looking for have the form
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where d, k, a, b, ¢ are integers, B(n) = n!=% C(n) or
B(n) = (=1)"n!=3C(n), and C(n) is the product of 5
rising factorials of fractions smaller than unity satisfying
the following condition: For every denominator in the
fraction of a rising factorial, we must have rising factorials
with all possible nonreducible fractions corresponding to
that denominator. Taking this into account, we have the
following cases for C(n):
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For ¢, we consider
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where j is also an integer. We will look for integer rela-

tions between
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This means that we want to find integers a,b,c, and d
such that aFy + bF) + cFy +dG =0, d # 0. The algo-
rithms that solve this problem are called integer relations
algorithms. The software we are using for this purpose
is PARI-GP, because it is very fast at making numerical
calculations and has the LINDEP function which looks
for integer relations. To avoid the integer variable k, we

also use a variant of this method and look for integer
relations between
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This variant is especially interesting if there exist formu-
las with large values of k. The new formulas my computer
found using these numerical methods are
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Once the software PARI-GP found these series, I used
Maple to check again if they were correct. The numer-
ical results show that they are correct to hundreds of
digits. Now examine the following Ramanujan-type for-
mulas [Borwein and Borwein 87, Chudnovsky and Chud-
novsky 88, Ramanujan 14]:
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It is interesting to observe that the numbers 48, 803, 74
are repeated in the denominators. This leads me to
think that formulas of type (2-1), such as (1-1), (1-2),
(1-3), (2-2), (2-3), (2-4), and (2-5), can be proved us-
ing the theory of modular functions, as is the case with
Ramanujan-like formulas, (2-6), (2-7), and (2-8).



3. SUPPORTING THE CONJECTURE

To support this conjecture, I will explain the origin of
the number 802 in formula (2-7). We begin by consid-
ering Klein’s absolute invariant [Borwein and Borwein
87, Chudnovsky and Chudnovsky 88]
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It is known [Chudnovsky and Chudnovsky 88] that when
d is an integer such that Q(v/—d) has class number 1,
then J (H—‘Q/Td
values, there exist [Chudnovsky and Chudnovsky 88] in-
tegers a, b, ¢, k such that

n= nB3Jn (HTM) (an+b) = —.

where

) is also an integer. For these singular
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There are not many numbers with that property: 2,
3, 7, 11, 19, 43, 67, and 163. For d = 43,
J (1+‘/—43) _

=) =

we have
—960%, and the corresponding formula

s (2-7). Our new formula (2-4) is intriguing because of
the repetition of the numbers 80 and 5418. I think that
one can find a proof of this formula using the theory of
modular functions.

In [Berggren et al. 00], one can find the references
[Chudnovsky and Chudnovsky 88] and [Ramanujan 14]
and many more fascinating papers. In addition, the pa-
per, [Berndt and Chan 01], reinforces the hope that the
theory of modular forms is the key to proving the formu-
las developed in this paper.

4. RELATED FORMULAS

Boris Gourevitch [Gourevitch 02] has sent me, by email,
the formula below for 1/7%. He has found it by using
integer relations algorithms:
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On the other hand, we consider the functions

1 5
e I:)); [20(n + k) + 8(n + k) + 1]

Guillera: About a New Kind of Ramanujan-Type Series 509

& n (1 5
Gk) =) (;13, %[820(%1@)%180(%1@)“3]
n=0
< 1 (A+k)
109 =3

+14(n + k) +1].

[168(n + k)* + 76(n + k)?

We have seen in (1-3), (1-1), and (4-1) that
8 128 32
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It is very curious that using the Simon Plouffe inverter
[Plouffe], we find

F (;) —7.¢(3), G <;) —956-¢(3), H (;) - %4

The evaluation G(1/2) has been proved by T. Amdeber-
han [Amdeberhan 97].
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