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We propose an improvement upon the standard algorithm for
computing the kernel of a polynomial map, assuming that the
map sends monomials into monomials. Rather than computing
a Grobner basis in the joint polynomial ring, and then selecting
only the elements of interest, we show that a moderate number
of iterations of the Buchberger algorithm in the variables of the
domain suffices.

1. INTRODUCTION

We are interested in calculating a finite basis for
the kernel of a ring homomorphism 7 : K, — K,
between polynomial rings K, := K|z1,...,z,] and
K, :=Klyi,...,Ym)- It is well known [Adams and
Loustaunau 1994; Conti and Traverso 1991] that
this can be accomplished applying the Buchberger
algorithm [Buchberger 1985] over the polynomial
ring K, = K[T1,. .., To, Y1, - > Y]

Unfortunately, the complexity of the Buchberger
algorithm is a strongly increasing function of the
number of variables. Hence, it would be useful
to find an algorithm operating on K, alone. The
main result of this paper is that this can indeed be
done in the special case in which the map 7 is the
extension of a semigroup homomorphism. We will
see that in this case a moderate number (bounded
by [3n]) of Buchberger algorithms over K, is suf-
ficient to find a basis for ker 7, and, hence, that for
a large number of variables the proposed algorithm
will be more efficient than the standard algorithm.

For general information on Grobner bases, see
[Buchberger 1985; Cox et al. 1991].

The proposed algorithm has many applications,
e.g., in the area of integer programming [Conti
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and Traverso 1991; Natraj et al.; Thomas; Hosten
and Sturmfels 1994] as well in the realm of sam-
pling from conditional distributions [Diaconis and
Sturmfels].

We start by shortly reviewing the standard solu-
tion in Section 2. In Section 3 we then present the
new algorithm together with some examples. Fi-
nally, in Section 4 the running times of these two
algorithms are compared and the results are dis-
cussed.

2. THE SOLUTION BY MEANS OF A GROBNER BASIS
OVER K,

Let f; = n(z;) € K, and v; = z; — f; € K, ,, for
j=1,...,n. Denote by ({...}) the ideal generated
by {...}.

Lemma 2.1. Let G be a (reduced) Grébner basis for
{71,---,M}) in K, , with respect to a term order
that eliminates the y variables. Then G' = GNK,
is a (reduced) Grobner basis for ker .

Proof. The Elimination Theorem [Cox et al. 1991,
p. 114] implies that G' is a (reduced) Grdbner basis
for ({v1,...,7}) N K,. The claim then follows
since ({71,-..,7}) is equal to the kernel of the
(unique) homomorphic extension 7. : K, , — K,
of m, for which 7.(z;) = f; and 7.(y;) = v;. O
Example 2.2. Let 7 : K[zy,...,24] — Kly1,y2] map
Liy---yTg into y%a y%y% ylyga and yga respeCtiV61Y7
so that v, = ; — 93, etc. Then
G = {23 + TaT4, — LT3 + T1T4, —T5 + T1T3,

Ta — Y3, —TaYr + TaYz, —TaY1 + TaYa,

~Toy1 + T1Y2, Ty — Y1Y3, T2 — Y1Y2, T — Y1}
is the reduced Grobner basis for ({v1,...,74}) with

respect to lex order, y; > yo > x1 > -+ > @4.
Hence,

! 2 2
G = {—z3 + zox4, —T2w3 + T124, —T5 + T123}

is the reduced Grobner basis for ker m with respect
to lex order, ©; > - -+ > x4.

Example 2.3. Let 7 : K[zq,...
map T, ...

,.1‘6] - K[yla"'7y4]
,Te to, respectively, yiy3y3, y3ysy3ya,

Y1Y2Y3Ys, Y1Y3Ys, 1ysyi, and y3yi. The reduced
Grobner basis G for ({71,...,7s}) with respect to
lex order y; > ---yy > x; > -+ > xg consists of
1180 elements, and

10,.6 14,20 6,19 8
= {2325 — 2yzszgt, 21 2]’ — moxaiixl,
16,.18 14,8143 26,17 14,..17,8, .14
T3 Ty — Ty Ty Tg, Tz Ty — Ty Ty Tyl
36 .16 14 262 25 46 _4 15 14,35 36
L3 Ty — Ty Ty TyTg T3 Tyly — Ly Ty Tg

is the reduced Grobner basis for ker m with respect
to lex order xy > - -+ > xg.

Note that the above procedure requires the calcu-
lation of a Grébner basis G of ({v;}) in K, ,, but
the actual solution G’ is then just a small subset of
G, namely G' = G N K,. This is especially appar-
ent in the second example, where |G| = 1180 and
|G'| = 6.

3. THE SOLUTION BY MEANS OF GROBNER BASES
OVIR K,

Here we present an alternative way to calculate
kerm when 7(z;) is a monomial in K, for every
j=1,...,n. The solution is gradually built up by
a repeated application of the Buchberger algorithm
over K, (as opposed to K, ,). The efficiency of the
proposed algorithm is based on the (empirical) fact
that the complexity of the Buchberger algorithm
grows strongly in the number of variables, so that
for a large number of variables it is more eflicient
to calculate a moderate number of Grobner bases
over K, instead of one over K, ,. This is especially
true for the memory requirements of the proposed
algorithm (see Example 2.3).

Let M, denote the set of all monomials in K,
and likewise M,,. Let f; = m(z;) and assume that
fi eM,, for j =1,...,n. Note that all the infor-
mation about 7 is contained in the m x n matrix
M, with nonnegative integer entries, given by the
exponents of the monomials fi, ..., f,.

We use the usual compact multi-index notation
for monomials: e.g., for @ = (ay,...,a,) € N*,
the symbol £ denotes the monomial ;1 ... z,*".
Denote by log the isomorphism between M, and
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N” given by logz® := a for a € N*. There is a
similar map from M, to N™, which, by a slight
abuse of notation, we will denote by log also.

Let M € N™*" be defined by M;; = (log f;)i,
where M; ; is the entry of M in row 4, column j.
This matrix defines a Z-linear mapping w, : Z" —
Z™, by the usual row-by-column multiplication:

me(u) := Mu.

A Z-basis for kerm, can be calculated using a
variant of an algorithm that calculates the Smith
normal form of an integer basis [Cohen 1993, p. 72].
The connection between ker7 and kerw, is con-
veyed by a map ¢ : Z" — K., which will be
presently defined.

For u € Z define v and v~ by u* = max(u,0)
and v~ = max(—u,0). These definitions extend
naturally to elements in Z" if we apply them com-
ponentwise. Note that if u € Z" then ut,u™ € N*,
and that (—u)™ = v~ and (—u)” = u™. Now for
any u € Z" we define

+

o(u) =" —z*

Any binomial (difference of monomials) p = z* —
2P, where o, 3 € N*, can be written (in a unique
way) as p = % — 2? = m,p(u,), where m, € M,
and u, € Z". We will write p* for z*, and p~ for
and p~ =
z? = myz*». Let <' denote the natural partial
order on N™ obtained by forming the product of n
copies of N with its natural order. If o, 6 € N, we
denote by aV 3 the <'-smallest element of N* such
that a <" aV g and 8 <' aV (. In symbols,

(aV B); = max{ay, B}

We set ¢ V zP = V5,

2?. Then clearly pt = 2% = myz*"

forj=1,...,n.

Lemma 3.1. Let p and q be binomials in K,. Then

p~ Vgt pT vt
= P+ e q=mpgp(up+ug) (.1)

for some m, , € M.

Proof. Note that u, — (u,+u,)" = —uy — (up+u,) .
Therefore the left-hand side equals

p~Vg© _
B (" —q)
_p~ Vgt . p Vg
=——p - —q

p q
wp+(uy +log(my))V (uf +log(m,))

p~ Vgt

(" —p )+

=z
_ w—Uq+(u;+10g(mp))\/(u;+1°g(mq))

R —c (m(uw—uqﬁr _ x(uﬁuq)’)
= 2%p(up + ug),
where
a=up— (up+ug) " +(u, +log(my)) V (ug +log(m,))
= —tg — (up +uq) ~ +(u, +log(my))V (uy +log(my)).

To see that a € N" note that (u, + log(m,)) Vv
(ug +log(m,)) is increasing (with respect to <') in
m,, and m,. Hence, it suffices to show that o € N*
in the case m, = m, = 1. Using the facts that
uy Voul = ur 4 (uf —uy)t and (u, +ug)t =
(uf —ul )" + (uf —u, )", we get that o = u} —
(uf —u;)* and, hence, o € N". O

Note that the S-polynomial [Cox et al. 1991, p. 82]
of p and ¢, as well as the reduction of p with re-
spect to ¢ (if possible), can be written in the form
of equation (3.1). This shows that if we calculate
the Grobner basis of a set of elements of the form
m;p(u;), where m; € M, and u; € Z", each ele-
ment of this Grobner basis will also have this form,
since this calculation can be done by computing a
sequence of S-polynomials (possibly) followed by
reductions. This can be seen in Examples 2.2 and
2.3 (each +; is a binomial in K, ,). We also have
the following special case. (The support of @ € N,
denoted by supp «, is the set of indices for which
the corresponding component of « is not zero.)

Corollary 3.2. Let p = ¢p(u,),q = p(uy) for some
Up,Uq € Z". If supp u; and suppu, are disjoint
(or suppu, is disjoint from suppu;) then

‘P(up + uq) € <‘p({up>uq})>'

Proof. From Lemma 3.1 with m, = m, = 1 we
have (using the same notation as in the previous

proof) a = u — (v —u,)". The hypothesis on
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the supports implies that (u} —u; )" = w} and,
hence, a = 0. U
Example 3.3. Let v = (1,—-2,3,-1) = u™ —u™ =
(1,0,3,0) — (0,2,0,1) and v = (2,1,0,-2) = v+ —
v™ = (2,1,0,0) — (0,0,0,2). Since

suppu’ Nsuppv™ = {1,3} N {4} = 2,
it follows from Corollary 3.2 that
(p(u + ’U) = ()0((37 _17 37 _3)) = wixg - .’Ezﬂ?i

belongs to ({z123 — z3z4, x3xs — x3}). Indeed, this

binomial equals z3(x123 — £324) + Tawa (2312 — 73).

In the next theorem we see that the connection
between ker 7, and ker 7 rests on the fact that ker «
is the ideal generated by ¢(ker ).

Theorem 3.4. ker m = (p(kerm,)).

Proof. 1t is simply based on a telescopic identity.
Details can be found in [Herzog 1970]. a

If K is a basis for ker, consisting of k£ elements
(to simplify notation, we will use K to denote a
basis for ker 7, as well as the matrix in ZF*™ whose
rows are the vectors in K), then it is not true in
general that ¢(K) will be a set of generators for
(p(span K)), as the next example shows.

Example 3.5. Let 7 be as in Example 2.2. Then

_ [ log(f1)1 log(fz)1 log(fs)1 log(fu)s
M= (log(fl 2 log(f2)2 log(fs)2 10g(f4)2)

)
_ ( 3 21 0)
- \0 123/
Calculating a Z-basis for ker m, we get

1 -1 -1 1
K:<—1 2 —1 0)‘

Hence, ¢(K) = {x124 — za23, 25 — 2123} and, cal-
culating the reduced Grobner basis with respect to
lex order, x; > --- > x4, we get the set

2 2 2
G = {x2x; — 2524, —T2X3 + T1%4, T3 — T1T3}.

Since this (reduced and therefore unique) Grobner
basis does not equal the Grobner basis we calcu-
lated in Example 2.2, we conclude that (p(K)) is
strictly contained in (p(span K)).

Example 3.6. There are many equivalent choices for
K. More precisely, if A € Z*** and det A = +1,
then K' = AK is an equivalent basis (span K' =
span K), and we write K’ ~ K. Conversely, any
two equivalent bases are related in this way. Hence,
we may ask if there always exists a K’ ~ K such
that (p(K')) = (p(span K)). Again the previous
example shows that this is not true.

But there is an important special case in which
¢(K) is already sufficient to generate (p(span K)).

Theorem 3.7. Let K € N¥*" . Then

(p(K)) = (p(span K)).

Proof. Let g;, + = 1,...,k, denote the rows of K.
It suffices to prove that if ¢(v) € (p(K)) and 7 €
{1,...,k} then (v £ g;) € (p(K)), since any u €
span K can be achieved in this way by starting with
v = 0. Hence, assume ¢(v) € (p(K)). Note that
g; € N so that supp g; Nsuppv™ = @. Therefore,
by Corollary 3.2,

p(v+9:) € (p({v,9:})) S (0(K)).

To prove that ¢(v—g;) € (p(K)), note that v—g; =
v+ (—¢:), and that

supp(—g;)* Nsuppv™ = suppg; Nsuppv~ = @.
0

In general, given a K € Z¥*™ there will not exist a
K' ~ K such that K’ € N**", Nevertheless we can
always find an equivalent basis with all base vec-
tors lying in the same orthant, as the next lemma
shows.

Lemma 3.8. Let K € ZF*™. Then there exists a
K' ~ K such that each column of K' is either in
N* or in (—N)*.

Proof. First note that, if the j-th column of K is the
zero k-tuple, the j-th column of any K’ ~ K is an
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element of N* (being also the zero vector). Hence,
without loss of generality, we can assume that each
column of K contains at least one nonzero entry. If
we can show that there exists a K’ ~ K such that
some row of K’ has all nonzero entries then by
adding suitable (positive) multiples of this row to
all other rows (thereby not changing the row space)
we can generate the desired equivalent matrix. To
see that such a K' exists, consider the set

{i:1<i<nand |K;;| >0},

called the support of the j-th row of K and de-
noted by supp g;. Define K' by ¢g; = g; and g; =
gj +aj1g;_, for j = 2,...,k, where a; ; is any
integer such that supp g; = supp g; Usupp g;_, (for
instance, a;_; = 1+ max; |g;;|). Clearly K' ~ K
and

k
SUpp gy, = U suppyg; = {1,...,n}.

i=1
Therefore all components of g; are nonzero. O

Example 3.9. Let m be as in Example 2.2 and Ex-
ample 3.5. Then

1 -1 1 -1 -1 1
M_(O —1)(—1 2 -1 0)
_ ( 2 =30 1)
“\1 -210
is an equivalent basis for ker 7w, with both rows in
the same orthant.

Lemma 3.10. Let K € ZF*", and assume there ex-
ists a finite set U C span K such that (p(U)) =
(p(span K)). If G is the reduced Grébner basis for
(p(U)) (with respect to some fized order <) then
G = o(U) for some U C span K.

Proof. By the remark following Lemma 3.1, each el-
ement ¢ in the reduced Grobner basis has the form
g = mp(u) for some m € M, and v € span K.
Assume that m # 1 for some g € G. Now, ¢(u) €
(p(U)) implies that ¢(u) (and, hence, g) is re-
ducible by G \ {g}, contradicting the fact that G
was already reduced. O

For j € {1,2,...,n} define T} : Z* — Z" as the
operator that switches the sign of the jth compo-
nent of the vectors in Z". Further, if p € K, has
the form p = p(u) for some v € Z", we define
T;(p) = ¢(Tyu).

Theorem 3.11. Let K € ZF*™ and assume that there
exists a finite set U C span K such that (p(U)) =
(p(span K)). If G is the reduced Grébner basis for
(p(U)), with respect to a term order that eliminates

z;, then (T;G) = (p(span(T;K))).

Proof. First observe that, by Lemma 3.10, there is
a finite subset U C span K such that G = o(U).
Thus T;G = @(T;U) is well defined. Moreover,
since T;U C span(T;K), we have

(T;G) C (p(span(T; K))).

To prove the other inclusion, let u € span K. Since
G is a Grobner basis, there exists a g € G that gives
rise to a head reduction of ¢(u). Without loss of
generality, we may assume that (u) = z$p—q and
g= ;v;’-r—s, where a,b € N, a > b and p, g, r, s are
monomials in K[z1,...,2;-1,%j41,...,%,]. Thus
p = rm for some m € K[x1,...,Tj—1,%j11, ., Ty
and
p(u) =zip—q= (LE;'T - 8)$?’bm + (m?’bsm )
= gac;?’bm + (@),
where m is a monomial in

K[;I;l, e ,l'j_]_,mj_._]_,. .. ,.’L'n],

4 € span K by Lemma 3.1, and the leading term of
p(u) is strictly smaller (with respect to the chosen
term order) than the leading term of ¢(u). We
have p(Tju) = p — zq and Tjg =1 — :1:?-5. Hence,

(Tju) =p — Tiq = (r— x?s)m + (sm — Ty
= (T;9)m + go(Tjﬂ)m;’-rh.
We see that ¢(T;u) € (T;G) will follow from

p(Tya) € (T;G).

b b

Q)xj

The latter follows by induction, from the obser-
vation that the same procedure can be applied to
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@(u) (since @ € span K) and that the leading term
of ¢() is strictly smaller than the leading term of

o(u). O

We are now ready to describe our algorithm to
calculate kerw. Let K be a basis for kerw,. By
Lemma 3.8 there exists an equivalent basis K’ such
that each column of K’ is either in N or in (—N)".
Let J C {1,2,...,n} be the index set of all columns
with negative entries, and let K, be the matrix ob-
tained from K' by reversing all signs in the columns
indexed by J. By Theorem 3.7,

(o(K7)) = (p(span K7)).

If J = @ we are done. If J # @, let j be any ele-
ment of J. Theorem 3.11 enables us to derive from
¢(K) afinite set of generators for (p(span K7, 3))-
Compute the Grobner basis for ¢(K';) with respect
to a term order that eliminates x; and apply the
operator T} to it. Proceeding recursively, we can
calculate a finite set of generators for p(span K;),
which by Theorem 3.4 equals ker 7.

Summary of the Algorithm. 1. Calculate a basis K
for ker 7,.

2. Find an equivalent basis K’ such that all rows
of K' lie in the same orthant.

3. Let J be the index set of all columns with neg-
ative entries and let K, be the matrix obtained
from K' by reversing the signs of the columns
indexed by J.

4. Let Gy = o(KY).

5. Until J = &, repeat this: Take 5 € J and let
G y\(j3 be the result of T operating on the re-
duced Grobner basis for G; with respect to a
term order that eliminates x;; then let J «
I\ {5}

6. Output G, a generating set for ker .

Example 3.12. Let m be as in Examples 2.2, 3.5,
and 3.9. Then G = ¢(Kp,) = ¢(IK') =
{z12523 — 1, 23z3z4 — 1}. Calculating a Grobner
basis of Gyoy with respect to lex order, zo > z; >
T3 > T4, We get

2 3 2 2
{—zjz1+23, T4—T225, —T4T1T24x3, —14+x,2523}.

Hence, Gy := T2Gyoy = {—xjz1 + 23, zoxs — 3,
— x4y + ToT3, —T3 + T1T3} IS a generating set for
ker ¢. Calculating a reduced Grébner basis of Gy
with respect to lex order z; > --- > x4, we obtain
{—23 + zomy, —Ta23 + T1T4, —T3 + T173}, Which
agrees with our previous result derived in Example
2.2.

Example 3.13. Let 7 be as in Example 2.3. Then

O ot W N
= W N Ot
=N R
=N O =
w ot O
N O N O

10 6 -1 11
14 8 —-16 14 -18 3 /)’
K — 0O -9 10 6 -1 11
-\ 14 —-10 4 26 —20 —19 /-
Hence,
G256y = ‘P(Kjgz,s,e})
= {2921048210 1! La310,4,26,20, 00 13

2%y TyTy Tg — 1, T @y T3y Ty Ty

Calculating a Grobner basis of Gy 5,63 with respect
to lex order zg > x; > ... > x5 and then applying
Ts we get the following set Gya 5y:

61,146 154172201 23 54 56,.62,.73

{3 Tz — Ty Ty Ty , T3 Ty + Ty Ty Ty,
98,.110,.128 38,92 4228 55 15,.38, 2

—Xy1 Ty Ty Ty T3 Te, —Ty Ty Ty + Ty Ty Ty,
8 .16 14,1418 3 28, 34,37 7,225

—TyTy” + Ty Ty Ty Tg, —T] Ty Ty + ToT3" Tg,
—a:}4$2:cioa:é9 + :cgmg, —mgaréomiccs + a:él}.
In the same way we can calculate Gy,y, which has
22 elements, and finally G4, with 14 elements. Cal-
culating a Grobner basis of G5 with respect to lex
order x; > --- > xg one can check that this result
coincides with the one derived in Example 2.3.

4. SIMULATION RESULTS AND DISCUSSION

The proposed algorithm requires the determination

of at most |3n] Grobner bases over K,. Based

on the (empirical) fact that the complexity of the
Buchberger algorithm is a strongly growing func-

tion of the number of variables, we conclude that it
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is in general more efficient to evaluate |3n| Gréb-
ner bases over K, than one Grobmner basis over
K, ,. In the special cases where either ker 7, (hence
also ker ) is trivial or ker , is spanned by a single
element in Z™, no determination of a Grébner basis
is required in the proposed algorithm; more gener-
ally, we observe that the starting point of the pro-
posed algorithm is a collection of binomials, whose
cardinality is equal to the nullity of a generic linear
map from Z" to Z™: namely, max{n —m,0}.

Table 1 compares the running times of the stan-
dard versus the proposed algorithm for some pa-
rameters of n and m. For each pair (n,m) the
time listed is the median of the running times, in
seconds, of 500 random examples, where each entry
in the matrix M was chosen independently accord-
ing to a uniform distribution on the set {0,...,5}.
The simulation was performed on a NeXT com-
puter (25Mhz, 20 MBytes of RAM) using Math-
ematica [Wolfram 1991] (which uses lex order) to
perform the Grébner basis calculations and PARI
[Batut et al. 1993] to perform the calculation of the
integer kernel.

From this table we see that for all listed cases
but the case (n,m) = (6, 2) the proposed algorithm
performs better than the standard algorithm. As
expected, the difference in performance becomes
the more significant the larger m is compared to
n. Beside the significant decrease in running time,
the proposed algorithm also requires a significantly
smaller amount of memory. For the mapping given
in Example 2.3 the largest intermediate Grébner
basis required for the proposed algorithm has 22
elements, compared to 1180 elements that the stan-
dard algorithm requires.

The listed running times could be further re-
duced in several ways. Instead of using Mathemat-
ica to perform the Grébner basis calculation, one
could use Macaulay [Bayer and Stillman], which
is significantly faster. More substantially, all oc-
curring ideals are toric ideals, for which special-
ized Buchberger algorithms have been investigated
[Conti and Traverso 1991; Hosten and Sturmfels
1994]. These speedups apply to the standard as

(n,m) standard alg. present alg.
(3,2) 0.233 0.015
(3,3) 0.383 0.015
(4,2) 0.433 0.298
(4,3) 1.350 0.015
(4,4) 2.450 0.015
(5,2) 0.883 0.864
(5,3) 4.300 0.681
(5,4)  11.333 0.031
(5,5)  19.117 0.015
(6,2) 1.450 2.046
(6,3)  10.433 3.279
(6,4)  43.283 1.448
(6,5)  93.950 0.046
(6,6)  190.233 0.031

TABLE 1. Comparison of running times between
the standard and the present algorithms. Times
listed are in seconds, and represent the median
running times of 500 random examples where each
entry of M is independent and uniformly distrib-
uted in the set {0,...,5}.

well as to the proposed algorithm. There are at
least two more potential ways in which the pro-
posed algorithm can be made more efficient. First,
it is known that the lexicographical ordering is in
general not very efficient, so a potential improve-
ment would be to replace lex order by a more ef-
ficient order which eliminates z;. Secondly, in the
above simulations no special effort was made to
choose a specific K’ from the many possible equiv-
alent bases in order to minimize the subsequent
calculations.

Although the original task of the proposed algo-
rithm was to compute the kernel of a polynomial
map, assuming that the map sends monomials into
monomials, the algorithm also applies to ring ho-
momorphisms 7 : K, — K, ,-1, where K, ,-1 :=
K1y s Yms Y15 - - -, Y t]- For these maps, the en-
tries of the corresponding matrix M will be inte-
gers (rather than non negative integers), but the
algorithm works as well.
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Finally, we observe that in the standard method
one could use the FGLM algorithm [Marinari et al.
1993, which given a Grébner basis with respect to
a certain ordering produces a basis with respect to
another ordering. Since ({71,...,7.}) is already
a Grobner basis (with respect to any term order
that eliminates the z variables), one could apply
this FGLM algorithm to ({1,...,7.}) to compute
a Grobner basis with respect to a term order that
eliminates the y variables, rather than computing
this basis from scratch. But it seems that no sub-
stantial improvement in running times results from
this approach. Further, this approach is limited to
the original case where the map sends monomials
into monomials, and does not extend to the more
general case.
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