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It is well known that the nontorsion part of the unit group of

a real quadratic field K is cyclic. With no loss of generality

we may assume that it has a generator "0 > 1, called the

fundamental unit ofK. The natural logarithm of "0 is called the

regulatorR ofK. This paper considers the following problems:

How large, and how small, can R get? And how often?

The answer is simple for the problem of how small R can be,

but seems to be extremely difficult for the question of how largeR can get. In order to investigate this, we conducted several

large-scale numerical experiments, involving the Extended Rie-

mann Hypothesis and the Cohen–Lenstra class number heuris-

tics. These experiments provide numerical confirmation for

what is currently believed about the magnitude of R.

1. INTRODUCTIONLet D denote a square-free integer and let K =Q (pD) be the quadratic �eld formed by adjoiningpD to the rationals Q . Setr = n 2 if D � 1 mod 4,1 otherwise.Then � = (2=r)2D is the discriminant of K. If! = 12(� +p�);then O = Z + !Zis themaximal order (the ring of algebraic integers)of K. If � 2 K we denote, as usual, the norm of �by N(�) = ���, where �� is the conjugate of �.If O� is the group of units in O and � > 0,we have O� = h�1; "0i, for a uniquely determined"0 > 1, called the fundamental unit of K. LetR = log "0 denote the regulator of K. Since "0 2 O,
c
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we have "0 = 12(x + yp�), where x; y 2 Z. Also,since ��N("0)�� = "0j�"0j = 1, it is easy to see that"0 � 1 < x < "0 + 1;"0 � 1p� < y < "0 + 1p� :Thus x; y > 0, and the regulator provides us with agood estimate for the value of log x and log(p�y).Because of the importance of the fundamental unit,particularly in characterizing all solutions of dio-phantine equations of the form N(�) = k, where� 2 O and k 2 Z, it is of considerable interest tostudy the size of R.When � = x2 + 4, where 2 -x, it is not di�cultto show that "0 = 12(x +p�). Thus, in this case,we have "0 = 12(p�� 4 +p�)and R = log� 12(p�� 4 +p�)�:In general, since "0 = 12(x + yp�) with x; y > 0and j"0�"0j = 1, we have x = py2�� 4 and"o = py2�� 4 + yp�2 � p�� 4 +p�2 :Hence R � log� 12(p�� 4 +p�)�: (1.1)Since x2 + 4 is square-free in�nitely often for oddx (see [Nagell 1922], for example), we see thatequality in (1.1) is achieved in�nitely often. Con-sequently, we know just how small R can be as afunction of �.The question of how large R can be is much moredi�cult. By a result of Hua [1982, p. 329], we cancertainly say thatR <q 12� � 12 log� + 1� ;but this is not very near to a sharp bound like (1.1).Thus, we are left with two questions:
(1) What is the largest value that R can attain asa function of �?
(2) How often does R become that large?

Both questions turn out to be extremely di�cult,as we can see by examining the analytic class num-ber formula 2Rh = p�L(1; ��): (1.2)Here h is the class number of K andL(1; ��) = lims!1L(s; ��);where the Dirichlet L-function is de�ned by
L(s; ��) = 1Xn=1 ��(n)ns =Yp �1� ��(p)ps ��1: (1.3)

The character �� here is the Kronecker symbol(�=n); the Euler product on the right of (1.3) istaken over all the primes p. Thus, in order for Rto be large it is necessary for h to be small andL(1; ��) to be large. How often h can be smalland how large (and how often) L(1; ��) can be arevery deep and di�cult questions in number the-ory. For example, the famous Gauss Conjecture as-serts that h = 1 in�nitely often, and the ExtendedRiemann Hypothesis (ERH) provides us with quiteclose bounds on L(1; ��).This article contains the results of some numer-ical experiments that we conducted in order to in-vestigate problems (1) and (2). We �rst describea large-scale computational trial that we imple-mented to verify the Cohen{Lenstra heuristics onthe distribution of the odd part of the class num-ber. We will next discuss further numerical exper-iments in which we attempted to see how closelythe bounds of [Littlewood 1928] and [Shanks 1973]come to bracketing the value of L(1; ��).
2. COMPUTATION OF RThe basic idea we used in our computation of hwas to �rst compute R and then L(1; ��) to suf-�cient accuracy that it is possible to use (1.2) todetermine the integer h. In this section we discusshow we compute R using a version of Lenstra'sidea [1982], as described in [Mollin and Williams,p. 290].
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The �rst step of this process is to estimate thevalue of L(1; ��). Here, instead of using a trun-cated Euler product and Oesterl�e's results [1979]to estimate the error as in [Mollin and Williams],we use an idea due to Bach [Bach 1994]. This isbased on using a weighted average of truncated Eu-ler products to compute an approximation S(Q;�)of logL(1; ��) which, under the ERH, has relativeerror O(log�=(pQ logQ)). For some preselectedvalue of Q we compute
C(Q) = Q�1Xi=0 (i+Q) log (i+Q) = 2Q�1Xi=Q i log i

and weights
aj = (Q+ j) log (Q+ j)C(Q) :

According to the explicit version of [Bach 1994,Theorem 9.2], under the ERH we have����logL(1; ��)� Q�1Xi=0 ai logB(Q+ i)���� � A(Q;�);
(2.1)where A(Q;�) = A log� +BlogQpQ : (2.2)

A and B can be determined, depending on thevalue of Q, by using Table 3 in [Bach 1994]. Also,B(x) is de�ned by the truncated Euler product
B(x) =Yp<x�1� (�=p)p ��1;

where the product is taken over all primes p < x:One of the real bottlenecks in computing esti-mates like
S(Q;�) = Q�1Xi=0 ai logB(Q+ i)

is the evaluation of the many Kronecker (Legendre)symbols (�=q). In order to accelerate this process,we �rst note the easily shown identityS(Q;�) = Xp�2Q�1w(p) log�1� (�=p)p ��1;
wherew(p) = � 1 for p < Q,PQ�1p�Q+1 aj for Q � p < 2Q� 1.Our technique of determining S(Q;�) consisted ofcomputing and storing in a large table the quad-ratic residues and nonresidues and the values ofw(p) log(p=(p� 1)) and w(p) log(p=(p+ 1)) for allthe primes p � 10000. We could then �nd the valueof w(p) log(p=(p�(�=p))) by little more than a sin-gle table look-up for each prime p � 10000; thus,we could easily evaluateS(Q;�) = Xp�2Q�1w(p) log� pp� (�=p)�and then compute an estimate of L(1; ��) by asingle exponentiation.After conducting some preliminary experimentswe found that a value of Q = 2000 was very of-ten su�cient (for � < 109) to estimate L(1; ��) inorder to establish h = 1. This is a huge improve-ment over the truncated product method used in[Stephens and Williams 1988], where all primes lessthan 18000 had to be used in the estimate (com-pared with only 4000 using Bach's method). Infact, we found that using Q = 5000 (i.e., primesless than 10000) was often su�cient to establishh � 3, and that this resulted in the best perfor-mance of our algorithm.For �xed Q and �, put E = 12p�exp(S(Q;�)).Then hR � E. By using (1.2) and (2.1) we know(under the ERH) thatjE � hRj < L2; (2.3)whereL2 = EmaxfeA(Q;�) � 1; 1� e�A(Q;�)g:
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In order to get some indication of the growth rateof L (for Q = 5000), we evaluated it for primeradicands D only, in various intervals: see Table 1.interval max(L) avg(L)1 26:01440 10:73694101 99:76966 50:64988201 120:47460 61:27755301 135:44843 68:64010401 146:94061 74:26657501 157:06318 78:86076601 166:13391 82:86471701 172:31836 86:53736801 176:91473 89:52843901 183:47702 92:598531000 191:06620 95:27484
TABLE 1. Growth of L. Here and throughout thearticle, \interval i" is the set of all prime valuesof D such that (i � 1) � 106 < D < i � 106. Thesecond and third columns give the maximum andaverage values of L found in each interval.With the value of L computed above we calcu-lated the regulator by using the modi�ed version ofthe second algorithm in [Mollin and Williams, x 7].This algorithm determines a value for h�R < E +L2, where h� is some integer. It then �nds the valueof h� and thus R. In particular, if R < E=pL, thisalgorithm will determine R quickly. However, usu-ally we have R � E=pL. In this case the set of allprimes q1 = 2, q2 = 3, : : :, qn < B = pL+L2pL=Emust be computed. It is then necessary to checkfor each of these primes q < B whether any re-duced principal ideal a at a distance from a1 = (1)very close to h�R=q is such that a = a1. If so, qdivides h�; otherwise it doesn't. If q jh� we mustalso check the reduced principal ideals at distanceh�R=q2, h�R=q3, etc., until we �nd one equal to a1at distance close to h�R=q�, but we do not �nd anyat distance close to h�R=q�+1. Then q� exactly di-vides h�: in symbols, q� kh�. Since h� < B, wemust ultimately �ndh� = nYi=1 q�ii :

Of course, if we �nd that q� kh�, then h�=q� <B=q�, allowing us to replace B by B=q�.It was this latter process that we modi�ed. Foreach prime qu < B, instead of �nding a reducedprincipal ideal am such that �m, the distance of amfrom a1 [Mollin and Williams, p. 285], is such that�m � h�R=qu, we determine a reduced principalideal aju such thath�Rqu < �ju < h�Rqu + �t:Here �t is that distance such that �t < L < �t+1.We next produce a list I of reduced principal idealsat0 , at1 , at2 , : : :, atm such that at0 = at, �tk � 2�tk�1and �tm�1 < 12h�R < �tm :In order to determine h�R, the list T made up ofeach reduced principal ideal ak and its distance �ksuch that �k < L had to be computed and stored;hence, we may assume that this list is still in ex-istence. If qu divides h�, then aju must be in Tand �ju = h�Rqu + �kwhen aju = ak. If, from the next prime, we havean ideal aju+1 such thath�Rqu+1 < �ju+1 < h�Rqu+1 + �t;we notice that, if we have a reduced principal idealaiu with distance �iu such that�iu � h�Rqu � �ju+1 ;�iu < h�Rqu � �ju+1and h�Rqu < �iu + �ju+1 < h�Rqu + �t;we can then set aju to be a reduced ideal equivalentto aiuaju+1 with �ju � �iu + �ju+1 andh�Rqu < �ju < h�Rqu + �t:
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Now suppose we let h�R=qu � �ju+1 = ��t, andput s = b�c+ 1. If we represent s in binary ass = br2r + br�12r�1 + : : :+ bo;where br = 1 and bj = 0; 1 for j = 0; 1; 2; : : : ; r� 1;then s�t = br2r�t + br�12r�1�t + � � �+ bo�t:In our list I we have �tk � 2�tk�1 , so we can �ndaiu with distance �iu � ��t by simply computing areduced ideal equivalent torYj=0bj=1 abjtj :Thus, starting with u = n, we �rst �nd a reducedprincipal ideal aju with distance �ju � E=qn; wecan then determine aju�1 ; aju�2 ; : : : by the methoddescribed above. Whenever we get ajv = ak, whereak 2 T, then qv divides h�. We then replace Eby E=qv and B by B=qv and repeat the process,starting at qv, until we �nd � such that q�v kh�.When this procedure has been done for all primesq1; q2; : : : ; qn < B or B = 1, we will have h�.To ensure that this modi�ed algorithm is in factfaster than the unmodi�ed algorithm or even Algo-rithm 7.1 of [Mollin andWilliams], we programmedall three in C and ran them on an IBM RS6000/590workstation. Algorithm 7.1 computes R with timecomplexity O(D1=4+"); the unmodi�ed algorithmmentioned above and the modi�ed version both ex-ecute in time O(D1=5+") under the ERH. In bothof these cases the computed value of R is provablycorrect; the ERH is needed only for the complexityestimate. The modi�ed version was always fasterthan the unmodi�ed version, and except for thesmallest values of D was the fastest overall. Algo-rithm 7.1 was the best for small D.
3. EVALUATION OF hFor a given D with Q = 5000, put~h = round�p�exp(S(Q;�))2R � ;

where by round (x) we denote the nearest integerto x. When ~h is large, say ~h > D1=8, it is oftenvery time-consuming to produce a new value forS(Q;�) (with a larger Q value) such that
h = round�p�exp(S(Q;�))2R � :

This problem can, to a very large extent, be over-come by �rst �nding a factor h1 of h such that h=h1is small.Since, by the heuristics of Cohen and Lenstra[1983; 1984], we expect that the class group of K isvery frequently cyclic, �nding such an h1 is usuallynot very di�cult. We simply select an ideal a lyingover a prime q where (D=q) = 1. We then computea reduced ideal b � a~h. Often b � (1), in whichcase we can put m = ~h. If b 6� (1), we computebi � bai, b�i � bai until we �nd bi � (1) or b�i �(1). In the �rst case we put m = ~h+ i and in thesecond we put m = ~h� i.Since we were con�ning our attention to �eldswith D < 109, we were able to check for ideal prin-cipality by searching an ordered list of all the re-duced principal ideals. This technique was feasiblebecause �elds with ~h relatively large (say ~h > 3)have relatively few principal ideals.The value of m here is very often the class num-ber; however, we must search over all the divisorsofm to �nd the least k such that ak � (1). We nowknow that k divides h. If k is too small, we repeatthe above process for other prime ideals and take asour value of h1 the least common multiple of all thek values that we �nd. We did this until we foundh1 > 13~h. This was possible in all but a few caseswhich were handled separately. We seldom had touse more than one trial ideal, but occasionally asmany as 12 were needed.We also experimented with using h� instead of~h. For �elds with large h, the value of h� is usuallya better approximation to h than ~h; thus, fewerideal multiplications are needed to �nd m. How-ever, when h is large, often R is determined imme-diately from the list T [Mollin and Williams] and
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h� is never evaluated. Hence no signi�cant savingsoccurred on using h� instead of ~h.Once the regulator R and a value for h1 > ~h=3had been determined, we used Algorithm 3.1 to�nd h.
Algorithm 3.1 (Class Number of Q (

p
D)). Input: �, thediscriminant of a real quadratic �eld.

Output: h and R.� Set Q = 5000. Compute S(Q;�), R, and h1 asdescribed above.� Repeat:� Compute F = p�exp(S(Q;�))=(2Rh1):� Set ~h2 = round (F ) and � = F � ~h2.� If A(Q;�) < log�(~h2 + 1)=(~h2 + j�j)�, outputh = ~h2h1 and terminate; otherwise, set Q =Q + 5000, recompute S(Q;�), and return tobeginning of loop.Only very rarely did we have to go beyond theQ = 5000 used in the initial approximation tologL(1; ��) : typically, for less than 10 out of ap-proximately 50000 �elds examined in each interval,as compared to less than 120 �elds using truncatedEuler products withQ = 18000. A more signi�cantimprovement is the maximum Q values requiredin an interval, which are much smaller than thoserequired by the truncated product method. Thisis important because Bach's method requires thewhole approximation to be recomputed in thesecases, whereas a truncated product approximationcan be improved simply by adding more terms.However, since we rarely require more accuracyand, if we do, the Q value needed is usually fairlysmall, our algorithm still runs faster using Bach'smethod. In these cases we used the usual Jacobialgorithm to evaluate the Legendre symbols (�=q).We emphasize here that the values of these classnumbers are dependent on the truth of the ERH;however, given the discussion in [Shanks 1971], itwould be a most unusual event, should the ERHbe false, for any of the class numbers computed bythis technique to be incorrect, assuming that thecalculations are carried out correctly.

The algorithms for determining h1 and h werealso coded in C and run on an IBM RS6000/590workstation. Using Bach's method, our algorithmsexecuted about 1:5 times as quickly as they didusing the truncated Euler product method.
4. THE COHEN–LENSTRA HEURISTICSLetG be the class group ofK and letG� be the oddpart of G. Cohen and Lenstra [1983; 1984] providesome heuristics on the distribution of various G�.For example, if we de�ne
w(n) = Yp� kn 1p�(1� 1=p)(1� 1=p2) : : : (1� 1=p�) ;
the probability that h� = jG�j is equal to k is

Prob(h� = k) = Cw(k)k ; (4.1)

where C = :754458173 : : : Since w(1) = 1, we seethat this result would predict that h� = 1 about75% of the time, a �gure supported by the compu-tations in [Stephens and Williams 1988]. In fact,under this heuristic we would expect that the prob-ability that h� exceeds x is
Prob(h� > x) = C 1Xj>xj odd w(j)j : (4.2)

Now, if we putW (x) = Xn>xn odd w(n);we can use standard analytic methods such as thoseemployed in [Landau 1936] to show that there existconstants E1 and E2 such that
W (x) = E1 log x+ E2 +O� log xx �; (4.3)
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where E1 = (2C)�1 = �1(2)C1;C1 = 1Yj=1 �(j + 1) = 2:294856589 : : : ;
�1(2) = 1Yi=1 �1� 2�i� = :288788095 : : :

By using partial summation on (4.2) and the resultof (4.3) we getProb(h� > x) = 12x +O� log xx2 �: (4.4)Thus, under the Cohen{Lenstra heuristics we'd ex-pect that h� is most likely to be small. SinceProb(h� = 1) � 34 , we will write this as1� Prob(h� � x) = 12x+ 2 +O� log xx2 �:Thus we would expect thatk+1 = 12 � 11� Prob(h� � k)�+O� log kk2 �; (4.5)a result that can be used to test the accuracy of(4.4).Let h(p) be the class number of the �eld Q (pD),where p is a prime. By using some further assump-tions, Cohen was able to show thatXp�xp�1mod 4 h(p) � 18x; (4.6)

a result conjectured by Hooley [1984] at about thesame time.In order to test the validity of (4.1), (4.5) and(4.6), we computed all the class numbers for allthe �elds Q (pD) where D < 108 and all the �eldsQ (pp) where p is a prime up to 109. This computa-tion of over 108 class numbers required just underfour weeks on the DECstation 5000/200. In orderto describe its results, we introduce some notation.For a �nite group G we de�nefk(G) = n 1 when jGj = k,0 otherwise :

Let D denote any square-free positive integer, andletG�(D) represent the odd part of the class groupof Q (pD). PutD1(x) = fD � x j D � 1 mod 4g ;D2(x) = fD � x j D 6� 1 mod 4g ;P1(x) = fp � x j p � 1 mod 4; p primeg ;P2(x) = fp � x j p � 3 mod 4; p primeg :For each D(x) 2 fD1(x);D2(x);P1(x);P2(x)g, de-�ne
ri(x) =

XD2D(x) fi (G�(D))XD2D(x) 1 ;
ti(x) = 12� 11� si(x)�;

qi(x) = ri(x)iCw(i) ;
si(x) =Xj�i ri(x):Also, put H�(x) = Xd2D(x)h�(D):

Tables 2 and 3 provide values of qi(x) for variouschoices of i and x for � � 1 mod 4, � < 108 and for� = p � 1 mod 4 and p < 109. The correspondingtables for D(x) = D2(x) and P2(x) are so similarthat in the interest of brevity we do not includethem here. Tables 4 and 5 provide values of ti(x)for various choices of i and x and D(x) = D1(x)and P1(x). Again, because of the similarity ofthe corresponding tables for D(x) = D2(x) andP2(x), we do not include them here. Finally, Ta-ble 6 provides values for H�(x) and 8H�(x)=x forD(x) = P1(x). The table for D(x) = P2(x) is verysimilar.Notice that all of these results provide numeri-cal support for the Cohen{Lenstra heuristics, andin particular that small values of h� seem to oc-cur in�nitely often, even when we restrict the rad-icands of the �elds to prime values. In these cases,of course, we have h = h�.
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x q1(x) q3(x) q5(x) q7(x) q9(x) q11(x) q27(x)1000000 1:06119 0:85263 0:95644 0:94918 0:70424 0:90228 0:4734710000000 1:03676 0:89604 0:99125 0:99564 0:83023 0:97519 0:6908620000000 1:03178 0:90683 0:99465 1:00142 0:84625 0:98812 0:7471830000000 1:02923 0:91246 0:99592 1:00250 0:85705 0:99247 0:7658740000000 1:02752 0:91613 0:99663 1:00194 0:86264 0:99791 0:7875350000000 1:02634 0:91893 0:99664 1:00315 0:86638 0:99846 0:7966060000000 1:02541 0:92078 0:99588 1:00446 0:87092 0:99982 0:8070570000000 1:02461 0:92235 0:99632 1:00504 0:87567 1:00148 0:8149480000000 1:02389 0:92374 0:99637 1:00623 0:87874 1:00372 0:8201490000000 1:02333 0:92480 0:99702 1:00608 0:88182 1:00418 0:82863100000000 1:02284 0:92605 0:99695 1:00581 0:88409 1:00528 0:83205
TABLE 2. Values of qi(x) for � � 1 mod 4.x q1(x) q3(x) q5(x) q7(x) q9(x) q11(x) q27(x)1000000 1:03912 0:87049 0:98999 1:05015 0:74868 0:89694 0:8022810000000 1:02286 0:91026 1:00832 1:00988 0:89654 1:00820 0:8399120000000 1:01992 0:91885 1:01125 1:01036 0:89047 1:00770 0:8767830000000 1:01878 0:92317 1:00562 1:02080 0:89756 1:00138 0:8821940000000 1:01746 0:92762 1:00621 1:02143 0:89815 1:01307 0:8936950000000 1:01679 0:93026 1:00793 1:01899 0:90235 1:01437 0:8944560000000 1:01614 0:93257 1:00686 1:01727 0:90852 1:01408 0:9014070000000 1:01563 0:93519 1:00600 1:01803 0:91051 1:01274 0:9076880000000 1:01515 0:93662 1:00488 1:01891 0:91308 1:01263 0:9051490000000 1:01493 0:93712 1:00600 1:01489 0:91691 1:01078 0:89925100000000 1:01468 0:93864 1:00478 1:01335 0:91944 1:00665 0:90274200000000 1:01314 0:94558 1:00057 1:01216 0:92337 1:00713 0:90869300000000 1:01241 0:94866 1:00118 1:00676 0:92586 1:00590 0:91010400000000 1:01169 0:95144 1:00229 1:00406 0:92779 1:00362 0:91560500000000 1:01122 0:95334 1:00100 1:00519 0:93096 1:00409 0:91528600000000 1:01077 0:95493 1:00120 1:00534 0:93239 1:00461 0:92144700000000 1:01045 0:95583 1:00199 1:00608 0:93323 1:00523 0:92348800000000 1:01020 0:95683 1:00179 1:00619 0:93468 1:00506 0:92527900000000 1:00998 0:95777 1:00186 1:00629 0:93499 1:00509 0:927321000000000 1:00976 0:95830 1:00239 1:00646 0:93604 1:00508 0:92706
TABLE 3. Values of qi(x) for p � 1 mod 4.

5. THE SIZE OF L(1; �)Littlewood [1928] and Shanks [1973] have shownthat, under the ERH, we have(1+o(1)) (c1 log log�)�1<L(1; ��)< (1+o(1)) c2 log log�;
(5.1)where c1 and c2 depend upon the parity of �:

c1 = 12e
=�2 and c2 = 2e
 when 2 -�,c1 = 8e
=�2 and c2 = e
 when 2 j�.In his numerical examination of (5.1), Shanks [1973]de�ned for a �xed � the upper and lower Little-wood indices asULI = L(1; ��)= (c2 log log�) ;LLI = L(1; ��)c1 log log�:
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x t1(x) t3(x) t5(x) t7(x) t9(x) t11(x) t27(x)1000000 2:50786 5:42530 8:91565 12:81041 17:88166 22:96408 109:650910000000 2:29561 4:75574 7:38079 10:02841 13:58368 16:60010 55:0124920000000 2:25667 4:64952 7:14116 9:61024 12:91103 15:64977 48:4362030000000 2:23723 4:59746 7:02378 9:40226 12:59204 15:19731 45:4381440000000 2:22443 4:56286 6:94593 9:26159 12:36781 14:88841 43:5371850000000 2:21560 4:54032 6:89384 9:17287 12:22767 14:68742 42:2365160000000 2:20874 4:52115 6:84708 9:09414 12:10904 14:52054 41:3693870000000 2:20287 4:50462 6:81076 9:03188 12:02043 14:39801 40:6110480000000 2:19765 4:48987 6:77728 8:97656 11:93639 14:28389 39:9464590000000 2:19354 4:47810 6:75275 8:93314 11:87337 14:19501 39:48465100000000 2:18998 4:46955 6:73308 8:89798 11:82131 14:12367 39:02412
TABLE 4. Values of ti(x) for � � 1 mod 4.x t1(x) t3(x) t5(x) t7(x) t9(x) t11(x) t27(x)1000000 2:31449 4:69162 7:22253 9:92777 12:95470 15:41109 55:4886710000000 2:19018 4:39240 6:59663 8:67220 11:47744 13:64301 36:3833520000000 2:16904 4:34869 6:50789 8:52074 11:18966 13:23712 34:2853330000000 2:16105 4:33701 6:46395 8:47241 11:13404 13:14434 33:6929240000000 2:15178 4:32065 6:42954 8:41497 11:03731 13:03696 32:9814950000000 2:14711 4:31417 6:42053 8:39339 11:01621 13:01053 32:6383960000000 2:14260 4:30673 6:40077 8:35532 10:97404 12:95108 32:3534670000000 2:13905 4:30460 6:39342 8:34469 10:96322 12:93295 32:2137880000000 2:13576 4:29791 6:37521 8:31590 10:92319 12:87703 32:0435690000000 2:13419 4:29391 6:36986 8:29684 10:90465 12:84707 31:84695100000000 2:13247 4:29399 6:36629 8:28698 10:89705 12:82721 31:69778200000000 2:12197 4:28339 6:33025 8:22313 10:80130 12:69580 30:99612300000000 2:11706 4:27754 6:31934 8:19169 10:75619 12:63083 30:63904400000000 2:11217 4:27035 6:30698 8:16446 10:71624 12:57083 30:40868500000000 2:10902 4:26615 6:29396 8:14535 10:69473 12:54227 30:24493600000000 2:10600 4:26107 6:28353 8:12824 10:67037 12:50989 30:15319700000000 2:10388 4:25650 6:27594 8:11728 10:65447 12:48937 30:07765800000000 2:10222 4:25425 6:27045 8:10837 10:64429 12:47502 30:02542900000000 2:10075 4:25251 6:26689 8:10267 10:63557 12:46310 29:988531000000000 2:09927 4:24886 6:26053 8:09245 10:62169 12:44402 29:92182
TABLE 5. Values of ti(x) for p � 1 mod 4.If (5.1) is true, then as � increases, we would ex-pect that extreme values of the ULI and LLI wouldtend to approach 1.In fact, Chowla [1949] has shown that, for anypositive " < 1, the inequalities ULI > 12(1� ") andLLI < 2(1 � ") hold, each for an in�nite sequenceof values of �. Furthermore, Joshi [1970] showedthat, if c and d are relatively prime positive inte-gers and 8 j d, then as � runs through prime values

congruent to c mod d, we have
ULI > 1� "2 Ypjd 1� 1=p1� (p=c)=p

and LLI < 2(1� ")Ypjd 1� 1=p1� (p=c)=p
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x H�(x) 8H�(x)=x1000000 97521 0:7801710000000 990162 0:7921320000000 1988884 0:7955530000000 2976321 0:7936940000000 3984781 0:7969650000000 4987508 0:7980060000000 5987504 0:7983370000000 6987254 0:7985480000000 7972707 0:7972790000000 8997355 0:79976100000000 10010538 0:80084200000000 20090934 0:80364300000000 30153902 0:80410400000000 40367003 0:80734500000000 50551652 0:80883600000000 60651064 0:80868700000000 70801346 0:80916800000000 80950648 0:80951900000000 91082121 0:809621000000000 101284007 0:81027
TABLE 6. Values of H�(x) for p � 1 mod 4.in�nitely often. Thus, if � is a prime and � � 5mod 8; we would haveLLI < 43(1� ")in�nitely often. Also, if � is a prime and � � 1mod 8; we would haveULI > 12(1� ")in�nitely often. Assuming that the size of L(1; ��)and h are independent, this result (together withthe Cohen{Lenstra heuristics) suggests that we'dhave R > (1� ") 14c2p�log log� (5.2)in�nitely often. Figure 1 plots the frequency dis-tribution of the values ofZ = Rp�log log�for all prime values of � � 1 mod 8, where 8 �108 < � < 109: The vertical line on this �gureintersects the Z axis at 12c2. Notice that a small

but not insigni�cant portion of the frequency dis-tribution is to the right of this line. The results of[Joshi 1970] are not as good as the extreme valuessuggested by the truth of the ERH, and Figure 1provides some evidence that a better result than(5.2) might hold; thus, it is of some interest toconduct a numerical investigation into how large(small) the ULI (LLI) values can be.Shanks tested (5.1) by attempting to producevalues of � for which he might have locally ex-treme values for the LLI and ULI. For example, if� � 5 mod 8 and (�=q) = �1 for all of the smallprimes q less than some bound p, then we wouldexpect by (1.3) that L(1; ��) would be small. Onthe other hand, if 14� � 7 mod 8 and (�=q) = 1for all the primes q � p, then we would expectL(1; ��) to be large. Shanks made use of Lehmer'snumerical sieving device, the DLS-157, to �nd suchspecial values of �. He found no ULI larger than1; in fact, the largest ULI that he found was .7333.Also, he found only a few LLI's less than 1 (theseoccurred for small values of � only). The valuesof the LLI's tended to remain stable on average,

0:2 0:4 0:6 0:8 1 Z
10000
20000
30000
40000
50000
60000frequency

FIGURE 1. Frequency values of Z for � = p, withp � 1 mod 8 prime in the range 8�108 < p < 109.
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or change very slowly; whereas the ULI's tendedto increase very slowly for these special � values;thus, these numerical trials lend support to (5.1).We used a new sieving device, the MSSU, to ex-tend Shanks' computations. As this instrumenthas been described in some detail elsewhere [Lukeset al. 1995; Lukes et al. a], we will only mentionhere that it conducts its search for the kind of num-bers that we sought at the rate of over 4�1012 persecond, a considerably faster search rate than thatof the DLS-157. ForD � 5 mod 8, we found all val-ues of D such that 0 < D < 1019 and (D=q) = �1for q = 3; 5; 7; : : : ; 199. For D � 1 mod 8 we foundall the values of D such that 0 < D < 4 � 1019and (D=q) = 1 for q = 3; 5; 7; : : : ; 199 and forD � 6 mod 8 and D � �1 mod 4 we foundall the values of D such that 0 < D < 1019 and(D=q) = 1 for q = 3; 5; 7; : : : ; 199. We evaluatedthe class number, regulator, and L(1; ��) for eachof the several thousand numbers that resulted byusing the Shanks heuristic [Mollin and Williams,p.283]. We then selected the \L(1; ��)-lochamps"and \LLI-lochamps" from the values of D � 5mod 8; namely those D with the property thattheir corresponding L(1; ��) value (or LLI value)is less than that of any smallerD. From each of theother sets of D values we selected the \L(1; ��)-hichamps" and \ULI-hichamps," those D with theproperty that their corresponding L(1; ��) value(or ULI value) is greater than that of any smallerD in the same set. For these D with the most ex-treme L(1; ��), LLI, and ULI values we computedh, R, and L(1; ��) using the techniques of Sec-tions 2 and 3. In every case the results were thesame as those produced by the Shanks heuristic.The largest ULI we found is ULI = 0:741429825 : : :(with L(1; ��) = 4:98741315 : : :, h = 2), forD = 2323617473234474719:The least LLI we found is LLI = 1:24745080 : : :(with L(1; ��) = 0:158960540 : : :, h = 4), forD = 18974003020179917:

Since the techniques of Sections 2 and 3 for com-puting h require the truth of the ERH, the factthat both these techniques and the Shanks heuris-tic give the same results increases our con�dencethat the computed values are correct, even if theERH is false. Also, the Shanks heuristic is muchfaster than the method of Sections 2 and 3, so itprovided us with a relatively quick way to examineall the numbers produced by the sieve. Even if theclass numbers computed by the Shanks heuristicare wrong, they will still be very close to the actualvalue, and their corresponding L(1; ��) values willbe quite accurate. At any rate, we would only ex-pect the Shanks heuristic to give erroneous resultsfor very large class numbers which, by the Cohen{Lenstra heuristics [Cohen and Lenstra 1984], areextremely rare.Following Shanks we de�ne the symbols aRp and(aNp) to represent the least integers congruent toa modulo 8 such that�aRpq � = 1 and �aNpq � = �1for all odd primes q � p. We computed tablesof aRp for a = 3; 6; 7 and aNp for a = 5. Wealso computed similar tables of aRp and aNp whenwe added the extra constraint that aRp and aNpbe prime. We provide example tables here for thecombined results for the prime values of 3Rp and7Rp and for the prime values of 5Np, together withthe ULI and LLI values. Corresponding tables fora = 1 can be found in the supplementary pages to[Lukes et al. a]. Notice that the tendency for theULI's is to very slowly increase and for the LLI'sis to remain stable with minor 
uctuations about43 . These tendencies were also displayed in all theother tables. Thus, the results that we have ob-tained completely support Shanks' earlier �ndingsand therefore support the truth of (5.1). At least,we have not found anything that would lead us tobelieve that the ERH has been violated.Although such values of D surely must exist, itseems to be very di�cult to produce a value ofD with a ULI close to 1. We attempted to do
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p Rp R h L(1; �) ULI3 7 2:76865 1 1:04645 0:4881405 19 5:82893 1 1:33724 0:5122417 79 5:07513 3 1:71299 0:54952311 331 36:25638 1 1:99283 0:56725513 751 57:94214 1 2:11433 0:57061717 1171 25:37280 3 2:22439 0:58513419 7459 73:05341 3 2:53759 0:61083223 10651 270:87206 1 2:62463 0:62271029 18379 367:19773 1 2:70856 0:62934931; 37 78439 813:56346 1 2:90486 0:64257641 399499 1890:86355 1 2:99159 0:63165043 1234531 3537:86780 1 3:18412 0:65361647; 53 1427911 3841:39768 1 3:21468 0:65763059 4355311 6958:99836 1 3:33454 0:66536861 5715319 8109:80131 1 3:39226 0:67301767 49196359 24407:90384 1 3:47987 0:66240671 117678031 38495:70798 1 3:54866 0:66542573 180628639 49263:42426 1 3:66548 0:68249279; 83 452980999 78083:74919 1 3:66877 0:67326189; 97 505313251 83941:62341 1 3:73419 0:684123101; : : : ; 109 9248561191 127289:80150 3 3:97079 0:698473113 152524816291 6690:84067 239 4:09457 0:696458113; 127; 131 348113924239 2445102:46006 1 4:14415 0:698553137 916716646759 3976755:53799 1 4:15347 0:693040139 1086257787619 637789:47424 7 4:28360 0:713513149 4606472154439 707977:15943 13 4:28823 0:704162151 4726529308939 9447793:54167 1 4:34569 0:713422157 35032713351619 8533304:31730 3 4:32515 0:697114163; : : : ; 179 46257585588439 30459726:68748 1 4:47852 0:720076181 251274765020899 23977422:86688 3 4:53784 0:719268191 316934672172031 81024861:17467 1 4:55127 0:720036193; : : : ; 229 2871159201832639 246120736:62994 1 4:59324 0:714308233; : : : ; 263 632590969227841471 3833565622:42494 1 4:81993 0:722316
TABLE 7. 3Rp and 7Rp: least prime solutions.this by �nding a D value with a large L(1; ��)value. We used an unpublished idea of Lehmerwhich he employed to �nd the 20 digit value of Dwith a small L(1;�) value that appears in [Lehmeret al. 1970, p. 439]. We examined numbers of theform D = A + BX, where B = Qki=j pi, for pi thei-th prime, and (A=pi) = 1, for i = j; j + 1; : : : ;k. In our case we used B = 271 � 277 � : : : � 313 �5:277 � 1019 and the least nonsquare value of A.We then employed the MSSU to sieve on values of

X by using as moduli 8 and primes p1; p2; : : : ; pmwith pm � 269 such that A+XB � 6 mod 8 and((A+XB)=pi) = 1;for i = 1; 2; : : : ;m. Henri Cohen used the tech-nique of [Cohen et al. 1993] to evaluate the L(1; ��)values for some of these D values. The largest ULIoccurred forD = 13208708795807603033522026252612243246;



Jacobson, Lukes and Williams: An Investigation of Bounds for the Regulator of Quadratic Fields 223

p Np R h L(1; �) LLI3 5 0:48121 1 0:430408 0:443555 53 1:96572 1 0:540024 1:612467; 11 173 2:57081 1 0:390910 1:3879913 293 2:83665 1 0:331438 1:2466917 2477 6:47234 1 0:260093 1:1580219; 23 9173 12:47223 1 0:260446 1:2469629 61613 36:23370 1 0:291948 1:5176431; 37; 41 74093 7:21597 5 0:265098 1:3875843 170957 16:93918 3 0:245810 1:3249147 360293 68:23691 1 0:227363 1:2550453 679733 92:04349 1 0:223282 1:2559259; 61 2004917 48:29722 3 0:204656 1:1854967 69009533 869:69643 1 0:209383 1:3118271 138473837 1369:29769 1 0:232725 1:4771373 237536213 1725:64096 1 0:223931 1:4350879 384479933 2087:35754 1 0:212907 1:3758083 883597853 3018:26471 1 0:203076 1:3304189; : : : ; 113 1728061733 4021:14004 1 0:193463 1:28086127 9447241877 1252:37753 7 0:180389 1:22431131; 137; 139 49107823133 18804:68086 1 0:169715 1:17733149 1843103135837 119080:85359 1 0:175427 1:26915151; 157 4316096218013 192239:83257 1 0:185066 1:35078163; 167 15021875771117 344898:80858 1 0:177975 1:31520173; 179 82409880589277 804942:51462 1 0:177339 1:33146181 326813126363093 1551603:41110 1 0:171656 1:30445191; 193 390894884910197 1650908:48845 1 0:167002 1:27101197 1051212848890277 547589:04349 5 0:168892 1:29600199; 211; 223 4075316253649373 5291574:72421 1 0:165780 1:28593227 274457237558283317 45653225:95687 1 0:174286 1:39371229 443001676907312837 6097479:67224 9 0:164899 1:32287233 599423482887195557 65388978:22854 1 0:168914 1:35780239 614530964726833997 64783176:97206 1 0:165280 1:32880241; : : : ; 263 637754768063384837 22908547:79705 3 0:172116 1:38410
TABLE 8. 5Np: least prime solutions.where L(1; ��) = 5:324999338 : : : (h = 1). This isa large L(1; ��), but when we evaluate the ULI weonly get ULI = :669706597 : : :

6. CONCLUSIONElliot [Elliot 1969] has shown that if " > 0 is given,then there exist constants c3 and c4 (depending on") and a set S = S(x) for x � 2, such that for allprime values of � � x, � =2 S, we have

c3log log� � L(1; �) � c4 log log�:Furthermore, S has cardinality at most O(x"). Inview of the Cohen{Lenstra heuristics and the nu-merical evidence presented above, this would seemto permit us to conjecture that there exists an in-�nite set of values of � for whichR� p�log log� : (6.1)



224 Experimental Mathematics, Vol. 4 (1995), No. 3

In fact it even appears that there must exist anin�nite set of values of � such thatR�p�log log�:At present the best result of this type is that ofHalter{Koch [Halter-Koch 1989] where it is shownthat there exists an in�nite set of values of � suchthat R� log4�: (6.2)This result is so much worse than (6.1) that itshould be possible (without appealing to the ERHor the Gauss Conjecture) to get a better result than(6.2).
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