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The Surface Evolver has been used to minimise the surface area
of various ordered structures for monodisperse foam. Addi-
tional features have enabled its application to foams of arbitrary
liquid fraction. Early results for the case of dry foam (negligi-
ble liquid fraction) produced a structure having lower surface
area, or energy, than Kelvin’s 1887 minimal tetrakaidecahe-
dron. The calculations reported here show that this remains
the case when the liquid fraction is finite, up to about 11%, at
which point an f.c.c. arrangement of cells becomes preferable.

INTRODUCTION

A foam consists of gas cells (bubbles) in a liquid
medium, separated by thin films wherever they im-
pinge on one another. Depending on their size
and the pressure of the liquid in their interstices,
the bubbles may remain approximately spherical
with little contact (Kugelschaum or wet foam) or
be pressed together to form polyhedra with curved
faces (Polyhederschaum or dry foam). Several ide-
alisations are commonly applied to describe such a
system in simple mathematical terms:

(@) The thickness of the thin films is neglected.

{(b) The bubble surfaces are associated with a con-
stant surface energy per unit area. No other
energy terms are considered.

(c) Gas and liquid are both incompressible.

The problem of finding an equilibrium structure
under given conditions then becomes one of area
minimisation under constraints, of the general kind
for which the Surface Evolver [Brakke 1992] has
been developed (see also [Brakke 1991; Hsu et al.
1992]). In this paper we describe such an applica-
tion of the Evolver, and present some results. The
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first result has already been reported [Weaire and
Phelan 1994a], and has excited widespread interest
[Rivier 1994]. It provides a structure for monodis-
perse dry foam having lower energy than that of
Kelvin [Thomson 1887]. We will therefore begin
by sketching the historical background and the im-
plications of this result. Further calculations will
be presented for other dry foam structures.

The Evolver has also been adapted to calculate
energies of wet foam structures. We will present
the first such results, and discuss the topological
changes that occur as the liquid fraction is varied.
The relevant details of the Evolver, its application
to dry foams, its adaptation to wet foams and other
technical aspects of the work are described in the
sidebar on page 184.

As the liquid fraction is varied, the mathemat-
ics dictating the structure of foam ranges from the
minimal spatial partitioning problem (space-filling
cells) in the dry limit to the optimal sphere pack-
ing problem in the wet limit touching (spherical
bubbles). Wet foam may give a valuable insight
into the connection between these and other fa-
miliar extremisation problems, such as that of the
mimimal sphere covering (filling space with equal
overlapping spheres of minimum total volume).

1. SOME HISTORY

In 1887 Lord Kelvin addressed the question of the
minimal partitioning of space into equal volumes
[Thomson 1887]. Why he did so is not immediately
apparent. Although he remarked that the problem
‘is solved in foam’, his motivation lay in the theo-
ries of George Green, and had to do with models of
the ether. The British school of physical scientists
of that period sought concrete realisations of their
ideas in mechanical models. In this case, it seems
that foam provided a model of the ‘labile ether’.
In terms of the above definitions, Kelvin was
concerned only with dry foam made up of cells of
equal volume (monodisperse foam). He proceeded
to describe a minimal structure for this case. Al-
though he did not directly assert that it was the

global minimum, that is, the structure of lowest
energy among all possible, this idea has been im-
puted to him, and the question of its validity has
been debated ever since.

Certainly Kelvin’s is the best, indeed essentially
the only, simple solution in which all cells are iden-
tical in shape and orientation, so that their centers
correspond to the points of a lattice. His minimal
tetrakaidecahedron (Figure 1) is associated with
the body-centred cubic lattice. Its four-sided faces
are flat, since they correspond to mirror planes of
the lattice, while the hexagonal faces are not.

FIGURE 1. The cubic unit cell of Kelvin’s struc-
ture, consisting of two of his tetrakaidecahedra.

A minimal surface between equivalent cells must
have zero total curvature everywhere. Lord Kelvin
showed how the hexagonal faces could be distorted
in a way consistent with this requirement, in order
to satisfy the conditions that the cell faces must
meet at 120° and cell edges meet at an angle of
arccos(—3), the tetrahedral angle. These equilib-
rium conditions were familiar to him from the em-
pirical work of Plateau [1873]. Kelvin’s description
of the subtle curvature of the hexagonal faces was
based on an approximation that reduced the prob-
lem to one of solving Laplace’s equation for the
local displacement of the surface.

The surface energy of Kelvin’s structure was cal-
culated by Princen and Levinson [1987], who also
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compared it with other simple structures, most
of which are mechanically unstable or non-space-
filling. In the meantime it had become common
opinion that Kelvin’s analysis was irrelevant to real
foams. This was not just because it was concerned
with bubbles of equal size, but also because it was
thought that in practice such a macroscopic system
could not be expected to find its global minimum.
We shall not pursue the rather convoluted origins
of this thinking, or the experiments upon which it
was based [Matzke 1946]. Certainly Kelvin’s (at-
tributed) proposition remained unconfirmed either
by experiment or by proof for more than a cen-
tury.

The present study has overthrown the propo-
- sition, but that was not its original motivation.
It was primarily intended to throw light on the
dependence of foam structure (and related prop-
ertes such as elastic moduli) on the liquid fraction
[Weaire 1994]. It was natural to begin at the ex-
treme of dry foam, and compare Kelvin’s structure
with some others, not previously evaluated, on ac-
count of their complexity, and likely to be favoured
by increasing liquid fraction. The resulting com-
parison is presented in the next section, adding
some new results for dry foams to those already
published [Weaire and Phelan 1994a; 1994b].

2. RESULTS FOR DRY FOAM

The structures proposed in [Weaire 1994] for com-
parison with that of Kelvin were two clathrates
occuring in the chemistry of tetrahedrally bonded
materials. Note the close analogy between tetra-
hedral structures and our foam problem, provided
that the bonds form closed cages. (‘Clathrate’
refers precisely to this kind of structure, where
molecules of one kind are included in cavities of
the crystal lattice of another.)

The simpler of these two structures has cubic
symmetry and consists of eight cells of two types:
irregular pentagonal dodecahedra, and cells with
fourteen sides, twelve pentagonal and two hexago-
nal. The fourteen-sided cells are arranged as three

mutually perpendicular, interlocking columns with
the pentagonal dodecahedra lying between them
on a b.c.c. (body-centered cubic) lattice. The sec-
ond clathrate structure is also cubic with a unit cell
of 24 cells. There are sixteen pentagonal dodeca-
hedra and eight sixteen-sided polyhedra of twelve
pentagonal and four hexagonal faces. The latter
cells are arranged on the bonds of a tetrahedral di-
amond cubic network. Both structures have long
been recognised as particularly neat solutions to
the problem of space-filling with plane polyhedra
[Williams 1968).

An alternative viewpoint concentrates on the cell
centres, in which case the first clathrate structure
is identified with the so-called A15 or S-tungsten
structure, while the second is identified with the
C15 structure [Rivier 1994]. See Figure 2 for the
coordinates and arrangement of the A15 cell cen-
tres, and Figure 3 for the corresponding foam struc-
ture. Figure 4 (left) shows the minimised foam
based on the C15 centers.

The choice of these structures was based on some
vague structural principles, suggesting that the op-
timum number of sides for a cell is around fourteen,
and that four-sided faces are expensive in terms of
energy.

Recently Rivier [1994] has suggested that the
ideal dry foam structure may yet be another of the
many Frank-Kasper phases (which include both
the A15 and C15 structures). In particular he pro-
posed the structure of S-uranium. Figure 4 (right)
shows a foam with the 8-U topology.

A convenient means of comparing the relative
merit of different structures is to use (a version of)
the isoperimetric quotient, ‘361rV2 /A3, where A is
the average cell surface area. Table 1 lists this quo-
tient for several structures, including the Weaire—
Phelan (WP), the C15 and Kelvin’s structure. In
terms of surface energy, the WP structure uses ap-
proximately 0.3% less than Kelvin’s and C15 needs
approximately 0.4% more. The S-uranium struc-
ture suggested by Rivier is a more efficient space
filler than Kelvin but uses some 0.1% more surface
area than WP.
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T Y z x y z

0.00 0.00 0.00 | 0.50 0.50 0.50
0.25 0.50 0.00 | 0.75 0.50 0.00
0.00 0.25 0.50 | 0.00 0.75 0.50
0.50 0.00 0.25 | 0.50 0.00 0.75

FIGURE2. The cell centres in a cubic unit cell of the A15 structure are indicated by filled circles in the diagram;
their coordinates are given in the table. For clarity, some neighbouring centres also have been shown as open
circles. The body-centred positions correspond to dodecahedral sites, all other centres correspond to 14-hedral
sites. A Voronoi calculation, followed by volume equalisation and surface minimisation based on these centres,
using the Surface Evolver, generates the WP dry foam structure of Figure 3 [Weaire and Phelan 1994a].
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FIGURE3. The cubic unit cell of the WP structure, consisting of six fourteen-sided polyhedra and two irregular
pentagonal dodecahedra. This structure requires 0.3% less surface area than the equivalent arrangement of
Kelvin cells.

FIGURE 4. Left: The cubic unit cell of the second clathrate or C15 structure. It is built from sixteen irregular
pentagonal dodecahedra and eight 16-sided polyhedra. Right: The (tetragonal) unit cell of the S-uranium
structure.
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Weaire-Phelan 0.764
[-uranium 0.762
Kelvin 0.757
C15 0.749
f.c.c. (face-centered cubic) 0.7405

TABLE 1. The isoperimetric quotient 36mwV?2/A3
(figure of merit for surface area minimisation) of
some rival dry foam structures. The f.c.c. struc-
ture is unstable in this limit.

3. WET FOAM STRUCTURES

The (volume) liquid fraction of a foam may be
designated by ¢y,. The calculations of the pre-
vious section are for dry foam, that is, ¢;,=0. For
any given structure there is a maximum value of
©1iq, defining the wet foam limit, beyond which the
foam bubbles become separated. This has been
called the rigidity loss transition by Bolton and
Weaire [1990], and hitherto explored in detail only
for two dimensions [Weaire et al. 1994]. For b.c.c.
and f.c.c., the critical liquid fractions are 0.32 and
0.26, while for the WP structure it is 0.47. Con-
sideration of the range of ¢y intermediate between

the two limits raises a number of questions [Weaire
1994]. What is the ideal ordered structure for each
value of ¢};,” How are the transitions between rival
structures dictated by instabilities and topological
changes?

In order to address such questions, we adapted
the Evolver to allow both for thin film surfaces
where bubbles are in contact and for the rest of
the bubble surfaces. The surface energy to be asso-
ciated with the double-sided films is clearly twice
that of the bubble surfaces. Figures 7-5 present
typical examples of equilibrium structures gener-
ated in this way. In each case the individual cells
have rounded edges, in contrast to those of Fig-
ures 1, 3 and 4. A complementary view of the
structure is that based on the liquid-filled regions
(the Plateau borders), as shown in Figure 8.

We can extend the definition of the isoperimet-
ric quotient given above to the case of wet foams
by taking V to be the initial cell volume of the
dry foam structure. Generalised isoperimetric quo-
tients calculated using the program are presented
in Figure 9. In obtaining these data, we fixed the

FIGURE 5. The f.c.c. structure for a liquid fraction of approximately 1%. Note the eightfold vertices, which
are unstable in the limit ¢j;q — 0. These and the following images were generated using Geomview [Phillips et

al. 1993).
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FIGURE 6. The WP structure for a liquid fraction of approximately 1%.
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FIGURE 7. Kelvin’s structure for varying liquid fractions (left, about 1%; middle, about 10%; right, about
12%), showing the disappearance of the contacts corresponding to the quadrilateral faces. The Plateau border
network has been removed for clarity.

FIGURE 8. Left: A single vertex from the Plateau border network. The four edges, approximately triangular
in cross section, meet at the tetrahedral angle. Right: A more extended sample of the Plateau border network,
showing two vertices.
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FIGURE 9. Generalised isoperimetric quotient as

a function of liquid fraction for Kelvin’s structure

(dotted lines), the WP structure (solid lines) and
f.c.c. (dashed lines). Errors have been omitted for
clarity. The bottom two diagrams focus on the
b.c.c. to f.c.c. crossover at pjiq = 9+ 1%, and on
the WP to f.c.c. crossover at about ¢j;q = 11+1%.

lattice parameters, suppressing instability. There-
fore, not all the structures plotted are necessarily
stable with respect to elastic distortion. In particu-
lar, Kelvin’s structure will be unstable beyond the
point at which the quadrilateral contacting faces
are lost (at ¢;q = 11 + 0.5%), as discussed in the
following section. ,

Ignoring this for the moment, we see that f.c.c.
has lower surface energy than b.c.c. beyond Pliq =
9+ 1%. The fractional error of the data in these
graphs is approximately 0.1%, as estimated from
a comparison of the final reported energy of the
minimisation procedure and a power-law extrapo-
lation of the energy based on previous refinement
levels. These errors have been omitted for clarity,
but yield an uncertainty in the estimation of the
crossover points of +1% liquid fraction. Figure 10
shows the surface energy of the WP structure fitted
to a functional approximation, valid for low liquid
fractions, suggested by Weaire [1994].
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FIGURE 10. Surface energy per unit volume S for
the WP structure consisting of unit volume cells,
fitted for low liquid fraction )i to the function
S = S0 + S1(1iq)!/? proposed by Weaire [1993],
where S is the dry foam energy. The second term
is based on a consideration of the spreading of the
Plateau borders along the cell edges. S, is approx-

imately —2.0.

The f.c.c.-b.c.c. comparison is rendered less im-
portant by the intervention of the WP structure,
which, as Figure 9 shows, remains lower in energy

o Pliq
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up to at least ¢;iq = 11+ 1%. We have not pushed
the calculation of its energy and detailed structure
far beyond this point, because topological changes
take place that are poorly described at the level of
tesselation used.

4. INSTABILITIES AND TOPOLOGICAL CHANGES

As @yq is varied, an instability may develop that
precipitates a structural change. Such a point will
define the limit of stability of that structure, and is
important in estimating the hysteretic effect to be
expected in practice in transitions between foam
structures.

For b.c.c. it has been argued [Weaire 1994] that
the limit of stability, as ¢y, is increased, is the
point at which the contact areas of what were orig-
inally quadrilateral faces are lost (see Figure 7).
The argument is as follows. Consider the inter-
action between two bubbles in a foam structure
to be crudely represented by Hooke's law springs.
There are springs corresponding to first and second
nearest neighbours, the hexagonal and quadrilat-
eral contacts, respectively. All are in compression
so long as there is bubble-bubble contact at the
corresponding face.

The shear modulus (c;1 — ¢12) has a negative
contribution from the nearest neighbours, because
their distances increase quadratically with the cor-
responding extensional shear along a cubic axis.
Within such a model, the structure is stabilised by
the second-nearest neighbour springs, whose con-
tribution is positive, but vanishes discontinuously
as contact is lost.

This is a classic argument in the metallurgical
literature, often used by Zener [1948] and otbers
in rationalising relative stability of metallic struc-
tures. The present context is probably a more
reasonable one for its application, but it should
nonetheless be noted that the model is not strictly
correct. The energy is not an additive function
of the distances between bubble centres. More-
over, Morse and Witten [1992] have shown that it
does not vary quadratically as contacts are made.

There is a logarithmic factor that implies that such
springs become softer as they are switched off. We
have, nevertheless, some faith in the heuristic value
of the model.

We have carefully identified the point at which
the second-nearest-neighbour contacts are lost in
our calculations (see Figure 7), finding it to be
11% = 0.5%. This is remarkably close to the pre-
vious rough estimate [Weaire 1994}, and also close
to the f.c.c.—b.c.c. crossover point in Figure 9. We
have examined an extensional shear along a cu-
bic axis and found a negative elastic constant (and
hence an instability) for liquid fractions above 11%.

For f.c.c. the situation is reversed. The structure
is stable for large ¢y;q and becomes unstable as ¢);q
is decreased. This must be so because there are
eight-fold junctions of Plateau borders, and only
fourfold junctions can be stable in the limit of dry
foam. So far, this instability has completely eluded
us, in various calculations of energy versus strain
for supercells of f.c.c. Its location and mechanism
remain an intriguing challenge to future work.

In the case of the WP structure, we believe that
the first instability to be encountered is at 15+2%,
but can only crudely estimate its position on the
basis of present calculations.

5. IMPLICATIONS FOR EXPERIMENTS

Results for the relative energies of ordered struc-
tures such as those discussed above, have a bearing
on current experimental investigations of monodis-
perse foams and emulsions.

Weaire and Phelan [1994c] have reported clear
identification of a small fragment of the WP struc-
ture in a dry foam, but this isolated observation
has not yet been pursued any further.

Monodisperse emulsions are the subject of active
investigation by a number of groups; see [Weitz
1994}, for example.

In either case, our present results tend towards
the following predictions. Assuming that the sam-
ple is first prepared as a wet foam (or its equivalent
for an emulsion), it should crystallise as a close-



Phelan, Weaire and Brakke: Computation of Equilibrium Foam Structures Using the Surface Evolver 191

packed phase, probably but not necessarily face-
centered cubic. Upon extraction of the continuous
phase to move towards the dry foam limit, there
should be a sharp structural transition due to me-
chanical instability, resulting in the WP structure.
Upon reversal of this procedure, the WP structure
should remain stable up to a liquid fraction of ap-
proximately 15%.

6. CONCLUSIONS

Much remains to be done to complete the picture
of structural transformations in wet foams that has
been partially delineated here. In particular, accu-
. rate calculations of elastic constants will be most
valuable. Semiquantitative models, which have al-
ready provided useful predictions, require further
development and comparison with full computer
" calculations.

The foams and emulsions that are of commer-
,cial interest are polydisperse random structures.
They present us with structural changes that are
smoother when macroscopically averaged, and also
more complex when identified at the local scale,
than those considered here. They will require or-
ders of magnitude more computing time and stor-
age if we are to simulate them in detail, but this
seems a reasonable prospect for the near future.

Previous work on the simulation of foams has re-
lied on two-dimensional models (for a review in the
context of rheology, see [Weaire and Fortes 1995]).
This offered qualitative insights, but a fully realis-
tic theory requires the full three-dimensional sim-
ulations described here.

In the short term, the goal should be accurate
static structures of wet foams for a few hundred
cells, and hence an accurate simulation of those
properties that can be described in the quasistatic
approximation. Two-dimensional simulations have
taught us that the study of dry foams can be quite
misleading, since quite small Plateau borders can
have large effects. Beyond this goal, a variety of
non-equilibrium time-dependent effects will remain
to be addressed. These effects relate to the rheo-

logical response at finite strain rates and also to
drainage, the process by which a freshly made wet
foam comes into equilibirum under gravity. Finally
the familiar collapse of a foam, due to the bursting
of its bubbles, also remains to be understood.

These problems bring into play a nexus of ques-
tions ‘of stability, surface chemistry and physics,
and fluid dynamics: they will not be easily solved
in any detail. The Surface Evolver, or some adap-
tion of it, will provide only one of the necessary
ingredients. Nevertheless it has already enabled us
to make rapid progess on three-dimensional struc-
tures that seemed unattainable until recently, and
should continue to throw up interesting and unex-
pected results.
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