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If a projective plane II of order 15 contains a line-extended
(15,3)-Kirkman design >*, no collineation of 11 of order 7 fixes
(setwise) the point set of 2*.

INTRODUCTION

A (v, k, \)-design is a set of v elements (known as
points) and a collection of distinguished subsets
of cardinality k (called blocks) with the property
that each pair of points lies in precisely A com-
mon blocks. A (v, k)-Kirkman design is a (v, k, 1)-
design ¥ whose blocks (called lines) are partitioned
into “parallel” classes, each of which in turn parti-
tions the points of X. An extended (v, k)-Kirkman
design ¥* is obtained from ¥ by adjoining one new
point P(v) for each parallel class 7, enlarging each
line of v to include P(7v), and introducing new
lines, consisting only of new points, in such a way
that each pair of new points is joined by exactly
one new line. We call ¥* line-extended if there is a
single new line, and (projective) plane-extended if
the new lines induce a projective plane on the new
points.

In the language of the preceding paragraph, a
projective plane (of order n) is just an (n? +n + 1,
n+ 1,1)-design, and an affine plane (of order n) is
just an (n? 4+ n,n)-Kirkman design. Every affine
plane X of order n is contained in a projective plane
>* of order n, which is the line extension of . A
collineation of an affine or projective plane II is a
permutation of the points of II that induces a per-
mutation of the lines of II. In this note, we report
on an exhaustive computer search that produced
an improvement of the following theorem.

Theorem 1. [Drake and Ho 1988] Let II be a projec-
tive plane of order 15 that contains a line-extended
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(15, 3)-Kirkman design ¥*. If 11 has a collineation
o of order 7 that leaves invariant the point set of
¥*, then (o) is the full collineation group of II.

Several published papers contain nonexistence
results for planes of order 15 with special prop-
erties. These include [Cigi¢ 1983] and [Woodcock
1986], in addition to [Drake and Ho 1988]. The
result obtained in this article is this:

Theorem 2. Let 11 be a projective plane of order 15
that contains a line-extended (15, 3)-Kirkman de-
sign 3*. Then 11 has no collineation of order 7
that fizes (setwise) the point set of ¥*.

Theorem 2 is similar in flavor to the following
result.

Theorem 3. [Janko and van Trung 1980] Suppose
that I1 is a projective plane of order 12 that con-
tains a plane-extended (27,3)-Kirkman design ¥*.
Then I has no collineation of order 13 that fizes
(setwise) the point set of ¥*.

The desire to construct a projective plane of non-
prime power order is the principal motivation be-
hind many investigations of possible substructures
of such planes. No doubt, the hopes of Janko and
van Trung were raised by the following two facts:
(1) By Lemma 3.1 of [Bruck 1955], a projective
plane of order m is a proper subplane of a plane of
order n only if n = m? or n > m? + m (thus, for
a subplane of order 3, the limit case is a putative
plane of order 12). (2) If a plane II of order 12
has a collineation of order 13 that induces a collin-
eation of order 13 on a subplane of order 3, then
IT also contains a plane-extended (27, 3)-Kirkman
design.

The hopes of Drake and Ho were also raised by
the difficulty of raising the bound for a certain in-
equality. A blocking set is a subset of the point set
of a design that contains a point of every block,
but that contains no complete block. Bruen’s clas-
sical result [Bruen 1970] guarantees that all block-
ing sets in a plane of order n have cardinality at
least n + v/n + 1, a bound that is attained if and
only if the blocking set is itself a projective plane
of order y/n. Thus, in a putative plane of order
15, every blocking set has cardinality at least 20.
Bruen’s bound can be raised to 22 [Drake and Ho
1988], but further improvement seems to be very
difficult. A line-extended (15, 3)-Kirkman design

in a plane of order 15 would be a blocking set of
minimum cardinality 22.

A more successful engagement with putative
blocking sets of small cardinality was carried out by
Lam, Thiel and Swiercz [Lam et al. 1989]. These
researchers completed the proof of the nonexis-
tence of projective planes of order 10 by carry-
ing out computer searches that demonstrated that
such planes could not contain certain blocking sets
of size 19. Their searches completed a massive
program that began with independent computer
proofs in [Denniston 1969] and [MacWilliams et
al. 1973] of the nonexistence of certain blocking
sets of size 15.

1. FRAMEWORK OF PROOF OF THEOREM 2

Assume, by way of contradiction to Theorem 2,
that II is a projective plane of order 15, that II
contains the line extension X* of a (15, 3)-Kirkman
design ¥, and that II has a collineation o of order
7 that fixes (setwise) the point set of ¥*. We write
¢* for the line of ¥* that consists of the seven ideal
points, £ for the line of II that contains £*.

Step 1. [Drake and Ho 1988, Lemma 5.2] The fized
point set of o consists of one point Py of ¥ and two
points Py, Py of ¢\ 0*. The lines fized by o are just
the three lines determined by Py, Py and Ps.

Step 2. (This is a special case of Proposition 2.1 of
[Drake and Ho 1988]). The points of ¥* consti-
tute a blocking set of II. Each of the 210 points of
IT not in £ or X lies in two secants and fourteen
tangents to X*. Each point of £\ £* lies in fifteen
tangents to X*.

Lemma 3. [Cole 1922; Mathon et al. 1983] There
are precisely three (15,3)-Kirkman designs with an
automorphism of order 7. Fach of the three has a
nonabelian automorphism group G of order 21.

Step 4. It is possible to label the point orbits of o
in ¥ by {Py}, 07,08, and the line orbits of o in X
by Of, 0 < j <4, so that the following conditions
hold:

(i) Each line of Of contains the point Py =0 and
intersects each of OF and O} in a single point;
(ii) the lines of Of meet O in three points each

(and they constitute a projective plane of order
2 on OF);
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(ii1) every line of Of meets OF in i points for 2 <
j<4dandi=1,2.

Proof: The design ¥ consists of 15 points and 35
lines. Denote the orbit of lines that are incident
with Py by 05, the other orbits by Of, 1<5<
4. Conclusion (i) follows from the fact that Py is
joined to each point of O} U OL. Say that a o-
orbit of lines of X is of type [z, y] if each of its lines
contains z points of O} and y points of O. Since
the seven points of O} must be joined to the seven
points of OF, we get 49—7 = Y Txy, where the sum
is taken over all four line orbits Oﬁ with j # 0. For
each of the four, the set {z,y} is {0,3} or {1,2}.
To yield a sum of 42, three of the four must be
{1,2}. At most, a permutation of labels of point
and line orbits is required to yield conclusions (ii)
and (iii). O

A o-orbit of points not in £ U 3 is said to be of
type (j,m) if the two secants through any one of
its points are in the secant orbits Of and Of with
Jj<m.

Step 5. If {z,y} C {2,3,4} with x < y, there is
exactly one point orbit of type (x,y).

Proof: Each orbit Of contains one line from each of
the seven parallel classes of 3. In particular, each
line g of Of, is parallel, in ¥, to one line h of Of;
(and g and h meet in a point of £*.) By Step 4, ¢
intersects one line of Of; in a point of OF, and four
lines of 05 in points of OF. Altogether, g meets
six of the seven lines of 05 in points of ¥* and,
thus, must meet exactly one in a point of an orbit
of type (z,y). O

Step 6. Without loss of generality, one may assume
that PyP; and Py Py contain the unique point orbits
of types (2,4) and (2,3), respectively. Also, PyP;
contains one of the three point orbits of type (1,3);
and PyPa, one of the three of type (1,4).

Proof: The line PyP; consists of points P; and Py
and two o-orbits of size 7, which are, say, of types
(z,y) and (z,w). Since PyP; meets all lines of Of
in Py = 0, we must have {z,y,z,w} = {1,2,3,4}.
Thus, one of the types must be one of (2,3), (2,4)
or (3,4). The line PyP, must also contain an orbit
of one of these three types.

By Lemma 3, ¥ has a nonabelian group G of
order 21. If 7 is an element of GG of order 3, 7 nor-
malizes (o) and therefore permutes o-orbits. Since

Y. does not induce isomorphic incidence structures
on O} and OF, 7 fixes the point orbits O} and O
as well as {0} and the line orbit Of. Since each
line of Of meets each point orbit O} and O} in a
single point, every line of Oé fixed by 7 must be
pointwise fixed. Since | Of |= 7,7 fixes one, four
or seven lines of Of. If 7 fixed four or more lines
of Oé, it would fix at least four and, hence, all
seven points of the Fano plane Of; it thus would
fix all lines of Of and, hence, all points of OF.
Then 7 would be the identity map on 3. By the
contradiction, 7 fixes precisely one line of OS and
thus exactly one point of O, say P. Thus, the six
lines of ¥ that meet O in P and a second point
constitute two 7-orbits of size 3. It follows that 7
permutes the line orbits Of with ¢+ = 2,3,4 in a
T-orbit of size 3.

In view of Step 2, the action of the group G ex-
tends naturally to an action as a group of automor-
phisms of the substructure I of IT that consists of
all points of II and all 36 secants to ¥X*. The ex-
tended automorphism 7 permutes the point orbits
of types (2,3),(2,4),(3,4) in a 7-orbit of size 3.
Thus, one may assume that PyP; U Py P> contains
the orbits of types (2, 3),(2,4). It requires no more
than an interchange of the labels P, P> to insure
that the orbit of type (2,4) is the one contained in
PyP;.

It remains only to observe that the number of
o-point orbits of type (1,4) is three for each i =
2,3,4. By Step 4, each line of Of meets one line of
Of in a point of £*, three lines of Of in points of
O?, and none in points of O5 U{0}. Then, it must
meet the remaining three lines of Of in three point
orbits of type (1,1). O

2. CONCLUSION OF PROOF: COMPUTATIONAL
DETAILS

In view of Step 2 and Lemma 3, the 36 secants
to X* are determined as lines of II for each of the
three possible X*. By Step 6, there are, for each of
the three %*, only nine possible definitions of the
pair of lines PyP;, PyPs in II. For each of these
3 -9 = 27 possible sets of 38 lines of II, we have
verified, by exhaustive enumeration, that there is
no way to define the remaining seven lines through
Py and the remaining fourteen lines through each
of P, and P, in a manner that is consistent with
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(i) (1 23456 7 8 9101112131415
156 73 42 8 013121014 911
(ii) ( 23 45 6 7 8 9101112131415
1 811 010 6 2 4 3 9141312 7 5
(i) (1 23 45 6 7 8 9101112131415
1 26 75 3 4 8101213 0 91411

TABLE 1.

)

{0,1,8}
{2,3,5}
{4,10,13}
{6,9,14}
{7,11,12}

{0,1,10}
{4,6,7}
{2,9,12}
{3,8,14}
{5,11,13}

{0,1,9}
{4,6,7}
{2,13,14}
{3,10,12}
{5,8,11}

28> 40 —-49 -5 —> 47 — 14 — 17

11 -53 —+21 40 - 28 —+42 — 5

6+2—>1—-7—-3—>4—5

Relation between our notation and that of [Mathon et al. 1983] (abbreviated [MPR]). Each row

corresponds to a Kirkman design: rows (i) and (ii) refer to Kirkman systems 1 and 2 of Steiner system 1 on
page 18 of [MPR], while row (iii) refers to the unique Kirkman system of Steiner system 61 on page 80 of [MPR].
Within each row are given: the relabeling of points; the lines of the “basic” parallel class (after relabeling); the
number of the basic parallel class in [MPR], and of its successive images under o.

the assumption that II is a projective plane. This
contradiction yields Theorem 2.

By Lemma 3, X has a group G of order 21. As a
first step toward simplifying the programming, it
was useful to label the points of ¥ in such a way
that an element of G of order 7 has the following
cycle representation on the points of X:

o =(0)(1,2,3,4,5,6,7)(8,9,10,11,12,13,14).

Table 1 produces such labelings from the label-
ings in [Mathon et al. 1983] (henceforth abbrevi-
ated [MPR]). For example, for Kirkman system 1
of Steiner system 1 on page 18 of [MPR], we rela-
beled the points by the bijection displayed in row
(1), left. After relabeling, [MPR]’s parallel class 28
for this Kirkman design consists of the five lines
shown in row (i), middle. Successive applications
of o map this class into MPR’s classes 40, 49, 5,
47, 14 and 17, as shown in row (i), right.

Initially, we labeled the lines of the “basic” par-
allel classes shown in the middle column of Ta-
ble 1 by [0,0],[0,1],[0,2],0,3],[0,4], and we de-
noted [0, j]o® by [i,j]. We wrote O] and O}, re-
spectively, for the point orbits {1, 2,..., 7} and
{8,9,..., 14}, and Of for the line orbit { [z, j] :
0 <i <6} for 0 <j < 4. Clearly, this labeling
satisfies the conclusions of Step 4 (with Pp = 0).
In view of Step 2, we labeled a point P that is not

in /U X by (i,4,k,m), where P is the intersection
of secants [i, j] and [k, m]. Then

(i,4,k,m)o = (i+ 1,5,k + 1,m),

where addition is performed modulo 7.

In the actual computer program, we referred to
the points and lines by the numbers from 0 to 240.
We labeled point P; by ¢ for ¢ = 0,1,2. Point ¢ of
> was relabeled ¢ + 2 for 1 <14 < 14. By construc-
tion, the collineation o fixes points 0, 1 and 2, and
otherwise has orbits of seven consecutive integers.

For each of the 27 initial sets of data, we assigned
numbers to all the points and entered the 38 known
lines. We numbered the points as uniformly as
possible: first the fixed points, then O} and O%,
followed by the ideal points and the other 7-orbit
of points on P; P», the two 7-orbits of PyP; followed
by the two 7-orbits of PyPs, the orbits of points on
secants through Fy, and last, the orbits of points
on tangents through Pj.

We used a crude form of parallel processing by
running our program in the background on 24 Sun
350s with 27 starts at different times. The program
was basically a tree search. Taking advantage of
the assumed collineation, new lines were adjoined,
an orbit of seven at a time.

The number of possible choices for the remain-
ing orbit of lines through Fy ranged from a low
of 161 to a high of 252 for the 27 various starts.
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For such an orbit, there were typically about 2000
compatible orbits of lines through P;. We col-
lected information on the number of partial suc-
cesses, where a partial success is defined to consist
of four compatible orbits of lines: the remaining
orbit of lines through Fy, the two remaining orbits
of lines through Pj, and one of the two remaining
orbits of lines through P». For all but two of the
27 starts, there were partial successes, typically a
few hundred. It was impossible to extend any par-
tial success by adjoining a final compatible orbit of
lines through P».

Both exceptional starts were associated with the
Kirkman system (iii) of Table 1; the full auto-
morphism group of this Kirkman system has order
21, whereas the other two Kirkman systems have
groups of order 168. For the two exceptional starts,
it was not even possible to obtain compatible com-
plete sets of lines through Py and P;.

Since long running times were expected, the pro-
gram was designed to be easy to start and stop.
The quickest running time was about two weeks,
whereas one set of data was restarted twelve times
and ran for nearly five months.
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