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We describe a computer program, based on Maple, that de-
cides whether or not a polynomial function has a simple or
unimodal singularity at the origin, and determines the K-class
of this singularity. The program applies the splitting lemma to
the function, in an attempt to reduce the number of variables.
Then, in the more interesting cases, linear coordinate changes
reduce the 3-jet of the function (or the 4-jet if necessary) to
a standard form, and auxiliary procedures complete the clas-
sification by looking at higher-order terms. In particular, the
reduction procedure classifies cubic curves in P2.

1. INTRODUCTION

Let €,, denote the set of germs of smooth functions
(C™,0) — (C,0). The group R of germs of diffeo-
morphisms of (C",0) — (C",0) acts on f € C,
by hf(z) = f(h™'(x)). The contact group X is
the group of germs of diffeomorphisms (C"**,0) —
(C"*1,0) of the form

H(z,y) = (h(z),9(z,y)),

with h € R and g(z,0) = 0. The germ H acts on
f by (h(x), Hf(z)) = H(z, f(x)), that s,

graph(H.f) = H(graph(f)).

An R- or K-classification of functions is an enu-
meration of the orbits of the action of R or X on
C,.. For germs where the origin is an isolated singu-
larity, these orbits have polynomial representatives
(normal forms), and one can define invariants such
as the multiplicity and the modality [Arnold 1976].
The R-classification of singularities of modality up
to 2 or multiplicity up to 16 is given in [Arnold
1976]. The K-classification of simple singularities
(those of modality zero) is given in [Giusti 1983],
and that of unimodal singularities is given in [Wall
1983].

Given a function f, it is hopeless, in general, to
look for an explicit diffeomorphism H € X that
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converts f to a normal form. Any attempt to find
the XK-class of f, then, has to proceed along dif-
ferent lines. Invariants such as the multiplicity are
often difficult to compute and do not always dis-
tinguish between different singularities.

The computer program K-type, described in this
paper, provides a partial solution to the problem of
recognizing the K-class of a function germ. Given
a polynomial f in any number of variables, it seeks
to determine whether or not f has a simple or uni-
modal X-singularity at the origin, and, if it does,
to find the normal form in [Wall 1983] that f is
equivalent to.

K-type is based on Maple [Char et al. 1985].
Its core algorithm follows [Arnold 1976], but ad-
ditional procedures are used in order to reduce the
input variables (essentially implementing the split-
ting lemma) and to identify, by explicit changes of
coordinates, the normal form of a binary quartic
or of a cubic curve in P2. Details are given in the
next two sections.

A result in [du Plessis et al.] shows that a large
class of map germs are determined by their discrim-
inants. In the case where the target dimension is
at most equal to the source dimension, the discrim-
inant is the zero set of the determinant of a square
matrix, called the discriminant matrix. A recipe
for computing the discriminant matrices of maps
lying in an unfolding of a K-class is also given in [du
Plessis et al.|. When the target dimension is two,
the discriminant function (that is, the determinant
of the discriminant matrix) is X-finite if and only if
the map is A-finite, and the X-class of the discrim-
inant function is close to determining the A-class
of the map. Some of the A-classification in [du
Plessis and Tari] was carried out this way.

The need for recognition of the K-classes of func-
tions is discussed also in [du Plessis and Wall],
where an instability locus of a map is computed
and a search for the different X-classes at points in
this locus is carried out. Many of the calculations
in [du Plessis and Wall] have been checked using
K-type.

2. OVERALL DESCRIPTION OF THE PROGRAM
The input to K-type is a polynomial in one or more

variables. The actual call should be of the form

Kclass(f, [x1,...,2,1);

where f is the polynomial and xy,...,x, are the
variables. The output is the type of the singularity
that f has at the origin, if that type can be found.
The notation for K-classes follows [Wall 1983], with
the following substitutions: Aj; is printed A[k],
and likewise for other subscripted capitals; while
W,ﬁ and S,ffi are printed Ws[k,i] and Ss[k,i].
The program works as follows:

Step 1. Rename the input variables to x[1], ...,
x[n]. (We will represent them by zi,...,z,.)

Step 2. Check if Vf(0,...,0) is zero. If so, the
function is not singular at the origin: output Ay.

Step 3. Apply splitting lemma. This is done induc-
tively by maintaining an index set S. The induc-
tion step is the following:

If xz; does not appear in the quadratic part of
f, add the index 7 to S. Otherwise, let a be the
coefficient of z7. If necessary, change coordinates
so that @ # 0 (the change z; — z; + z;, where
J > i and the coefficient of z;z; is nonzero, will
work). Write f as a polynomial in x; and let P,
a polynomial in z;y1,...,2,, be the coefficient of
the linear term in x;. Perform the change of coor-
dinates x; — z; — P/(2a) to eliminate from f the
linear part x;P. At this point all terms in x; in the
resulting function are irrelevant to the determina-
tion of the K-class of f, and therefore are dropped.
This concludes the induction step.

Step 4. The number of elements in the index set
S at the end of this induction is the corank of f,
that is, the (initial) number of variables minus the
rank of the Hessian of (the initial) f. We have the
following cases:

#S = 0. The singularity is nondegenerate: output
Al

#5 = 1. Output Ay, where k is the order of f in
the remaining variable.

#S = 2. Call funrec and output its result (see the
next section).

#S = 3. Call Funrec and output its result (see the
next section).

#S > 3. If this case occurs, the singularity is not
simple or unimodal. The program issues the
message “Higher modality”, indicating that it
cannot classify the singularity.
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FIGURE 1.

Algorithm used by funrec to find the K-type of the singularity of a function f of corank 2. The

notation j2f ~ means that the 3-jet of f (that is, its Taylor polynomial of degree 3) can be reduced to the

given form by a linear change of coordinates.

In the preceding discussion, when a change of vari-
ables in f is called for, say = — ¢(z), the following
code involving a dummy variable xp is employed
internally:

x := phi(xp);
f := eval(collect(f, [xp],distributed));
X = ’x’; xp := x; £ := eval(f); xp :=’xp’;

3. THE CASE OF CORANK 2 OR 3

We now turn to the functions funrec and Funrec,
which perform the classification of f when, after
the application of the splitting lemma, there are
two or three variables left (see Step 4 above). The
basic logic follows [Arnold 1976, pp. 101 ff.] and is
complemented by code to find the explicit coordi-
nate changes needed to put the 3-jet (or, in some
cases, the 4-jet) of f in normal form.

The flowchart for funrec is shown in Figure 1.
We first examine the 3-jet (cubic part) j3f of f;
a linear change of coordinates reduces it to one of
the forms z® + zy?, z%y, > or 0. For example, if
the term in 2® is not zero, we reduce to the form
23+ pry? + qy® by replacing x with an appropriate
linear combination of x and y, and then we test
the discriminant 4p® + 27¢® to see whether or not
the factorization of j3f has a double factor. Or, if
the term in 2 is zero but the term in y® is not, we
start by interchanging xz and y, and so on.

If 73f has the form 2y or z*® after this reduc-
tion, we call an auxiliary procedure, Dfinder or

Efinder. If 72 f = 0, we must examine the 4-jet j* f
of f. Again by linear changes of variables, we can
reduce to one of the forms shown in Figure 1, and,
if j4f # 0, auxiliary procedures identify the sin-
gularity type of f. These procedures work mostly
by searching for monomials of appropriate weights
with nonzero coefficients, and making changes of
variables as needed.

The flowchart for Funrec is shown in Figure 2.
Again, we examine the cubic part 52 f or f, which
now is trivariate and thus determines a cubic curve
in P2, The classification of cubics in P? is given
in [Cayley 1856; Salmon 1879]. Using the factor
command, we determine whether 52 f is reducible
and what its factors are.

If j2f is reducible, a linear change of variables
puts it in one of the normal forms zyz, z* + zyz,
x%z + 2%y or 22 + w2z, Auxiliary procedures then
identify the K-class of f itself.

If j3f is irreducible, the changes of variables
needed to put it in one of the normal forms z3+y3+
2> +azyz (a® +27 #0), 23+ y® + zyz or x° + yz?
are harder to obtain. The number of flex points
distinguishes between these orbits; it equals nine,
three and one, respectively. If the number is nine,
f has a singularity of type 73 33. Otherwise, the
cubic has a unique real flex point. By interchang-
ing the variables, we can assume that the real flex
point lies on the plane z = 1. The real flex point
and the associated tangent line are computed by
the procedure flex.
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If we take for the z-axis the tangent line at the
flexpoint and for the y-axis any other line through
this point, j2f takes the form

2(2% + (017 + a2y)z + asx® + ayxy + asy?) + agy®

[Salmon 1879, Art. 195]. The substitution z
z — (a1 + azy) yields

3 f = 2(2® + a12® + axzy + asy?) + aqy’®

(with new coefficients a;). The polynomial a; +
asxy + asy® + asy® has a repeated root; if it is a
triple root we can reduce to the case j3 f = 23+y22,
and if it is a double root we can reduce to j3f =
z® + y® 4+ xyz [Salmon 1879, Art. 196]. After this
reduction an auxiliary procedure gives the K-class

of f.

4. LIMITATIONS

Some of the Maple commands on which K-type
relies work better when the input polynomial has
rational coefficients. For speed, the input function
should be a polynomial with rational coefficients.
Sometimes the program needs to make coordi-
nate changes where the coefficients are roots of cu-
bic or quartic equations. The presence of radicals
then makes the resulting expression very unwieldy,
and often execution breaks down for lack of mem-
ory space. It seems likely that this problem could
be completely overcome by the use of a genuinely
constructive classification algorithm. The search

fz,y,2)
factor j3f
irreducible reducible
more than one flex  one real 3
real flex point flex point ryz + 2® = 3
Yz 22y + ya? 2z + 28 0
3 f =
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Tsss T’ +y° +xyz T’ +yz
Tpqr S11, 512 Ui2 higher
Tfinder Qfinder S10,51 Us o modality
Si’ Ui
T3, Q6m+4 St6, Si7 Uss
Q6m+5
Q677L+6
Qm,07 Qm,i
FIGURE 2. Algorithm used by Funrec to find the X-type of the singularity of a function f of corank 3.

for such an algorithm is an interesting theoretical
problem.
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SOFTWARE AVAILABILITY

A copy of K-type may be obtained from Andrew du
Plessis at matadp@mi .aau.dk.
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