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We describe a computer program, based on Maple, that de-

cides whether or not a polynomial function has a simple or

unimodal singularity at the origin, and determines theK-class

of this singularity. The program applies the splitting lemma to

the function, in an attempt to reduce the number of variables.

Then, in the more interesting cases, linear coordinate changes

reduce the 3-jet of the function (or the 4-jet if necessary) to

a standard form, and auxiliary procedures complete the clas-

sification by looking at higher-order terms. In particular, the

reduction procedure classifies cubic curves in P2.

1. INTRODUCTIONLet Cn denote the set of germs of smooth functions(Cn; 0) ! (C; 0). The group R of germs of di�eo-morphisms of (Cn; 0) ! (Cn; 0) acts on f 2 Cnby hf(x) = f(h�1(x)). The contact group K isthe group of germs of di�eomorphisms (Cn+1; 0)!(Cn+1; 0) of the formH(x; y) = (h(x); g(x; y));with h 2 R and g(x; 0) = 0. The germ H acts onf by (h(x);Hf(x)) = H(x; f(x)), that is,graph(H:f) = H(graph(f)):An R- or K-classi�cation of functions is an enu-meration of the orbits of the action of R or K onCn. For germs where the origin is an isolated singu-larity, these orbits have polynomial representatives(normal forms), and one can de�ne invariants suchas the multiplicity and the modality [Arnold 1976].The R-classi�cation of singularities of modality upto 2 or multiplicity up to 16 is given in [Arnold1976]. The K-classi�cation of simple singularities(those of modality zero) is given in [Giusti 1983],and that of unimodal singularities is given in [Wall1983].Given a function f , it is hopeless, in general, tolook for an explicit di�eomorphism H 2 K that
c
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converts f to a normal form. Any attempt to �ndthe K-class of f , then, has to proceed along dif-ferent lines. Invariants such as the multiplicity areoften di�cult to compute and do not always dis-tinguish between di�erent singularities.The computer program K-type, described in thispaper, provides a partial solution to the problem ofrecognizing the K-class of a function germ. Givena polynomial f in any number of variables, it seeksto determine whether or not f has a simple or uni-modal K-singularity at the origin, and, if it does,to �nd the normal form in [Wall 1983] that f isequivalent to.K-type is based on Maple [Char et al. 1985].Its core algorithm follows [Arnold 1976], but ad-ditional procedures are used in order to reduce theinput variables (essentially implementing the split-ting lemma) and to identify, by explicit changes ofcoordinates, the normal form of a binary quarticor of a cubic curve in P2. Details are given in thenext two sections.A result in [du Plessis et al.] shows that a largeclass of map germs are determined by their discrim-inants. In the case where the target dimension isat most equal to the source dimension, the discrim-inant is the zero set of the determinant of a squarematrix, called the discriminant matrix. A recipefor computing the discriminant matrices of mapslying in an unfolding of aK-class is also given in [duPlessis et al.]. When the target dimension is two,the discriminant function (that is, the determinantof the discriminant matrix) is K-�nite if and only ifthe map is A-�nite, and the K-class of the discrim-inant function is close to determining the A-classof the map. Some of the A-classi�cation in [duPlessis and Tari] was carried out this way.The need for recognition of theK-classes of func-tions is discussed also in [du Plessis and Wall],where an instability locus of a map is computedand a search for the di�erent K-classes at points inthis locus is carried out. Many of the calculationsin [du Plessis and Wall] have been checked usingK-type.
2. OVERALL DESCRIPTION OF THE PROGRAMThe input to K-type is a polynomial in one or morevariables. The actual call should be of the formKclass(f,[x1; : : : ; xn]);

where f is the polynomial and x1; : : : ; xn are thevariables. The output is the type of the singularitythat f has at the origin, if that type can be found.The notation forK-classes follows [Wall 1983], withthe following substitutions: Ak is printed A[k],and likewise for other subscripted capitals; whileW#k;i and S#k;i are printed Ws[k,i] and Ss[k,i].The program works as follows:
Step 1. Rename the input variables to x[1], : : : ,x[n]. (We will represent them by x1; : : : ; xn.)
Step 2. Check if rf(0; : : : ; 0) is zero. If so, thefunction is not singular at the origin: output A0.
Step 3. Apply splitting lemma. This is done induc-tively by maintaining an index set S. The induc-tion step is the following:If xi does not appear in the quadratic part off , add the index i to S. Otherwise, let a be thecoe�cient of x2i . If necessary, change coordinatesso that a 6= 0 (the change xj 7! xj + xi, wherej > i and the coe�cient of xixj is nonzero, willwork). Write f as a polynomial in xi and let P ,a polynomial in xi+1; : : : ; xn, be the coe�cient ofthe linear term in xi. Perform the change of coor-dinates xi 7! xi � P=(2a) to eliminate from f thelinear part xiP . At this point all terms in xi in theresulting function are irrelevant to the determina-tion of the K-class of f , and therefore are dropped.This concludes the induction step.
Step 4. The number of elements in the index setS at the end of this induction is the corank of f ,that is, the (initial) number of variables minus therank of the Hessian of (the initial) f . We have thefollowing cases:#S = 0. The singularity is nondegenerate: outputA1.#S = 1. Output Ak, where k is the order of f inthe remaining variable.#S = 2. Call funrec and output its result (see thenext section).#S = 3. Call Funrec and output its result (see thenext section).#S > 3. If this case occurs, the singularity is notsimple or unimodal. The program issues themessage \Higher modality", indicating that itcannot classify the singularity.
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j3f �f(x; y)x3 + xy2
D4

x2yDfinderDk
x3EfinderE6m+6E6m+7E6m+8Em+1;0Em+1;i

0
j4f �x2y2 + x4 + y4x2y2 + x4x2y2 TfinderTp;q

x3yZfinderZ6m+5Z6m+6Z6m+7Zm�1;0Zm�1;i

x4WfinderW12;W13W1;0;W1;iW#1;iW17;W18

0
higher
modality

FIGURE 1. Algorithm used by funrec to �nd the K-type of the singularity of a function f of corank 2. Thenotation j3f � means that the 3-jet of f (that is, its Taylor polynomial of degree 3) can be reduced to thegiven form by a linear change of coordinates.In the preceding discussion, when a change of vari-ables in f is called for, say x 7! '(x), the followingcode involving a dummy variable xp is employedinternally:x := phi(xp);f := eval(collect(f,[xp],distributed));x := 'x'; xp := x; f := eval(f); xp :='xp';
3. THE CASE OF CORANK 2 OR 3We now turn to the functions funrec and Funrec,which perform the classi�cation of f when, afterthe application of the splitting lemma, there aretwo or three variables left (see Step 4 above). Thebasic logic follows [Arnold 1976, pp. 101 �.] and iscomplemented by code to �nd the explicit coordi-nate changes needed to put the 3-jet (or, in somecases, the 4-jet) of f in normal form.The 
owchart for funrec is shown in Figure 1.We �rst examine the 3-jet (cubic part) j3f of f ;a linear change of coordinates reduces it to one ofthe forms x3 + xy2, x2y, x3 or 0. For example, ifthe term in x3 is not zero, we reduce to the formx3+pxy2+ qy3 by replacing x with an appropriatelinear combination of x and y, and then we testthe discriminant 4p3 + 27q2 to see whether or notthe factorization of j3f has a double factor. Or, ifthe term in x3 is zero but the term in y3 is not, westart by interchanging x and y, and so on.If j3f has the form x2y or x3 after this reduc-tion, we call an auxiliary procedure, Dfinder or

Efinder. If j3f = 0, we must examine the 4-jet j4fof f . Again by linear changes of variables, we canreduce to one of the forms shown in Figure 1, and,if j4f 6= 0, auxiliary procedures identify the sin-gularity type of f . These procedures work mostlyby searching for monomials of appropriate weightswith nonzero coe�cients, and making changes ofvariables as needed.The 
owchart for Funrec is shown in Figure 2.Again, we examine the cubic part j3f or f , whichnow is trivariate and thus determines a cubic curvein P2. The classi�cation of cubics in P2 is givenin [Cayley 1856; Salmon 1879]. Using the factorcommand, we determine whether j3f is reducibleand what its factors are.If j3f is reducible, a linear change of variablesputs it in one of the normal forms xyx, x3 + xyz,x2z + z2y or z3 + x2z. Auxiliary procedures thenidentify the K-class of f itself.If j3f is irreducible, the changes of variablesneeded to put it in one of the normal forms x3+y3+z3 + axyz (a3 + 27 6= 0), x3 + y3 + xyz or x3 + yz2are harder to obtain. The number of 
ex pointsdistinguishes between these orbits; it equals nine,three and one, respectively. If the number is nine,f has a singularity of type T3;3;3. Otherwise, thecubic has a unique real 
ex point. By interchang-ing the variables, we can assume that the real 
expoint lies on the plane z = 1. The real 
ex pointand the associated tangent line are computed bythe procedure flex.
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factor j3ff(x; y; z)
irreducibleflexmore than one

real flex point

T3;3;3
one real
flex point

j3f �x3 + y3 + xyzTfinderT3;3;r
x3 + yz2QfinderQ6m+4Q6m+5Q6m+6Qm;0; Qm;i

reducible

j3f �xyz + x3xyz TfinderTp;q;r
z2y + yx2SfinderS11; S12S1;0; S1;iS#1;iS16; S17

x2z + z3UfinderU12U1;0U1;iU16

x30
higher
modality

FIGURE 2. Algorithm used by Funrec to �nd the K-type of the singularity of a function f of corank 3.If we take for the x-axis the tangent line at the
expoint and for the y-axis any other line throughthis point, j3f takes the formx(z2 + (a1x+ a2y)z + a3x2 + a4xy + a5y2) + a6y3[Salmon 1879, Art. 195]. The substitution z 7!z � 12(a1x+ a2y) yieldsj3f = x(z2 + a1x2 + a2xy + a3y2) + a4y3(with new coe�cients ai). The polynomial a1 +a2y + a3y2 + a4y3 has a repeated root; if it is atriple root we can reduce to the case j3f = x3+yz2,and if it is a double root we can reduce to j3f =x3 + y3 + xyz [Salmon 1879, Art. 196]. After thisreduction an auxiliary procedure gives the K-classof f .
4. LIMITATIONSSome of the Maple commands on which K-typerelies work better when the input polynomial hasrational coe�cients. For speed, the input functionshould be a polynomial with rational coe�cients.Sometimes the program needs to make coordi-nate changes where the coe�cients are roots of cu-bic or quartic equations. The presence of radicalsthen makes the resulting expression very unwieldy,and often execution breaks down for lack of mem-ory space. It seems likely that this problem couldbe completely overcome by the use of a genuinelyconstructive classi�cation algorithm. The search

for such an algorithm is an interesting theoreticalproblem.
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