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The information metric is a construction in statistics which can
be used to define a (possibly degenerate) metric on various
moduli spaces such as those of instantons and harmonic maps.
This metric is shown to be nondegenerate for the space of
harmonic maps of the two-sphere onto itself of any degree.

1. INTRODUCTION

The information metric arises in statistics as a met-
ric on a manifold of probability distributions [Rao
1945]. Its construction is very simple and can be
applied, in principle, to any manifold that parame-
trises a set of probability distributions or measures.
However, in this general setting, the information
metric may be degenerate.

Such manifolds can be taken, for example, as the
minimum sets of variational problems. Here each
point of the minimum set has associated to it an
energy density function, which after appropriate
scaling can be regarded as a probability density
function.

The example I would ultimately like to under-
stand is the information metric on the moduli space
of instantons on a four-manifold. The reader is
referred to [Donaldson and Kronheimer 1990] for
details and definitions. This space is of particular
importance in the study of four-manifolds, where,
among other things, it leads to the celebrated theo-
rem of Donaldson on the non-smoothability of cer-
tain four-manifolds, which leads, in turn, to the
existence of exotic R*’s. Except for instantons of
charge one on the four-sphere, essentially nothing
is known about the structure of the information
metric on this manifold—even whether it is non-
degenerate. However, for charge-one instantons on
the four-sphere the moduli space is the five-ball and

© A K Peters, Ltd.
1058-6458/96 $0.50 per page



272 Experimental Mathematics, Vol. 2 (1993), No. 4

symmetry considerations [Hitchin 1988] show that
the information metric is the hyperbolic metric.

In an attempt to develop some intuition for the
problem just described, I have studied its analogue
for rational maps from the two-sphere to itself.
These are harmonic maps of the two-sphere to it-
self of minimum energy and positive degree. The
information metric turns out to be degenerate in
directions corresponding to compositions of the ra-
tional map with isometries of the target sphere.
This defines an action of SO(3) on the space of ra-
tional maps and the appropriate space to consider
is the quotient of the space of rational maps by this
action. These isometries play a role analogous to
gauge transformations for instantons.

For example, when the map has degree one, the
space of rational maps is isomorphic to PSL(2, C)
and the space of interest is PSL(2,C)/SO(3) =
SL(2,C)/SU(2), which is a well-known model for
hyperbolic three-space. The information metric in
this case is indeed the hyperbolic metric, because of
symmetry considerations completely analogous to
the instantons of charge one on the four-sphere—
namely, the metric is determined, up to scale, by
the fact that it is invariant under the group of con-
formal transformations of the two-sphere or four-
sphere as the case may be (see the end of Section 4).

Section 2 defines the information metric in its
traditional context, and Section 3 details the exten-
sion to manifolds of minima. Sections 4 and 5 spe-
cialize to the case of rational maps. Section 6 gives
a computer proof that for maps of degree two the
information metric is nondegenerate, Section 7 an
analytic proof that works for maps of any degree.

The latter proof of course makes the former re-
dundant, but I have included it as an interesting
example of the power of symbolic computation in
mathematical experimentation, and because it pro-
vided the essential motivation for the search for the
analytic proof for maps of any degree. There was
no other source of intuition, other than the sim-
ple, highly symmetric cases like charge-one maps
and instantons, that suggested that the informa-
tion metric would be nondegenerate.

Of course, the analytic proof is, in its turn, mo-
tivation to investigate further the instanton case.
This is work in progress and I return to it in the
Conclusion. For those familiar with instantons, let
me remark here that the information metric is most
definitely not the same as the L? metric on the
moduli space. For instance, in the case of instan-
tons on the four-sphere of charge one, the infor-
mation metric has negative curvature and infinite
volume, whereas the L? metric has positive curva-
ture and finite volume [Groisser and Parker 1987].

In the conclusion I also discuss some possible
generalisations to other spaces of harmonic and
holomorphic maps.

2. THE INFORMATION METRIC IN STATISTICS

The information metric arises in statistics in the
following manner. Interest lies in a submanifold
P of the space of all probability measures of some
probability space €. To avoid the technicalities in-
volved in describing what that might mean, it is
usual to assume that P is parametrised by coordi-
nates 6 so it has the form:

P={p(,0)n|6eUCR",

where p is a measure on €2, U is an open subset
of R™ and p( ,#) is a probability density function
on (2, for each § € U. It will become clear below
that various conditions need to be imposed on the
differentiability of p as a function of 6 and on the
integrability of p and its partial derivatives. These
conditions will be ignored in this motivational dis-
cussion but addressed later for the case of rational

maps.
The information metric is defined in the @ coor-
dinates by
B / 10p Op
Jii = | pogi 96t

Various more invariant formulations are possible.
We can suppress the parameters € and replace the
coordinate vector fields by two tangent vectors X



and Y in the tangent space to P at pu: the metric
applied to these two vectors is then

9p(X,Y) = /Q %X(p)Y(p)u,

where X (p) is the function on  whose value at
x €  is the result of applying X to the function
on P of density at z (i.e., to pu — p(z)). Finally
we can suppress the dependence on the tangent
vectors by letting dpdp be the tensor that when
applied to the two tangent vectors X and Y yields
X(p)Y (p): then

1
9p = / —dpdp p.
QP

Although it is not important for the applications
below, it is worth remarking that the information
metric is defined in statistics in a slightly differ-
ent manner. There the so-called “log-likelihood” is
defined by [(#) = logp(), and the metric is then
gij = E,((01/96")(01/907)), where E,(f) is the ex-
pectation of the random variable f with respect to
the density p, that is, E,(f) = [, fpp. For more
details see [Amari 1985; Murray and Rice 1993].

The information metric has two, related, prop-
erties that will be important below. First, if the
measure u is changed to another equivalent mea-
sure (exp f)u, the metric does not change. To see
this, let u' = (exp f)u and suppose p'p' = pp; then
p = (exp f)p' and

1 1
—dp'dp'y = =~ dpdpp, (2.1)
p p

so that the metric is the same for either choice of
measure. This means that the information metric
really lives on the space of measures. A more direct
definition is possible [Murray and Rice 1993].
Secondly, the information metric enjoys an im-
portant invariance property. A transformation of
Q induces a transformation of the space of mea-
sures on ). Assuming this transformation fixes
P and acts on it as a diffeomorphism, it is easy
to check that this action is isometric. This is the
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property that proves that on the space of instan-
tons of charge one or of rational maps of degree
one the information metric coincides with the hy-
perbolic metric.

An interesting example of the information met-
ric for both geometers and statisticians is the space
of normal densities. Here  is the real line and
the mean and variance identify the space of all
normal densities with the upper half-plane in R2.
A straightforward calculation shows that the in-
formation metric on this upper half-plane is the
Poincaré metric [Rao 1945; Amari 1985].

3. THE INFORMATION METRIC ON MODULI SPACES

Consider a general variational problem. Assume
that  is a Riemannian manifold and let ¢ be
some type of object on €2 whose energy can be min-
imised. For instance, ¢ may be a connection on a
bundle over €2, or a map to another Riemannian
manifold. Denote by E(y) the energy of ¢, and
assume that it is the integral of an energy density

e(p):
E(p) = /Q e(¢p) vol,

where vol is the Riemannian volume form on €.
Assume that the minima of F form a manifold P.
Then the construction of the information metric
can be applied, because all points of P have the
same total mass (integral). If X and Y are tangent
vectors at ¢ € P and X(e) and Y (e) are the rates
of change of e in the corresponding directions, then

Loy e

gtp(Xay) =
€

If this integral exists, it defines a possibly degen-
erate metric on P, that is a positive, symmetric
two-tensor on P. For this metric to be nondegen-
erate it is necessary and sufficient that X (e) never
be identically zero on 2 unless X is zero. This is
equivalent to asking that the energy density, con-
sidered as a map

e: P— C®(Q,R),
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be an immersion (have an injective derivative). In
the cases considered by statisticians this condition
is built in as an assumption, namely that the so-
called “scores” 91/00° = (0p/d6*)/p be linearly in-

dependent as functions on Q.

4. RATIONAL MAPS

The reader is referred to [Eells and Lemaire 1983],
for example, for the basic results stated here. We
denote by Rat;, the space of rational maps of S? of
degree k, that is, maps that are given, under iden-
tification of S? with the extended complex plane
by stereographic projection, by

where p and q are polynomials of degree at most k
without common factors, at least one being of de-
gree k. These maps are conformal except at branch
points, that is, the derivative df (z), considered as
a linear map from the tangent space at z € S?2
to the tangent space at f(z), is a scalar multi-
ple of an orthogonal transformation with respect
to the (spherical) inner product on both tangent
spaces. We denote by |df (x)| this scalar factor. It
is well-known that rational maps are minima of the
Dirichlet energy functional

B() = [ larFvolse

where volg: is the spherical volume (or area) form.
We denote the corresponding energy density |df|?
by e(f).

It is convenient to work in the complex plane
instead of in S?. In C, the Riemannian metric
induced from S? by stereographic projection has
element of length 2/(1 + |z|?) times the Euclidean
element of length. Therefore

f'(2)I*

@i

e(f)(z) =

where f' is the usual complex derivative of f re-
garded as a meromorphic function. Also,

1 4 1
volgz = —————— volg,
MR PTD E
where volez = %z’dz A dZ is the usual volume ele-
ment in C. Thus E(f) is the integral of the energy
density
4l f'?
(L+1[f)?

over C with respect to volc. Note that e(f) is finite
at every point in C, because ¢(f) is.
The information metric is the symmetric tensor

defined by

e(f) =

1
g= / — de de volg: (4.1)
g2 €

if this integral exists. The integrand is finite except
at the points where df = 0—the branch points of
f—which are finite in number. It follows that the
convergence of (4.1) only has to be checked around
each of these points; moreover we can assume that
oo € S? is not a branch point, so using (2.1) we
can write

1
g = / —dede volg,
ce

and we just have to check that this integral con-
verges near the points where e = 0. Using the
representation f = p/q, where p and ¢ are polyno-
mials, we have

2

|a)?, (4.2)

qp’ — pq’'
e(f) = |[4——2
) ‘ EErE

where a = 4(gp’ — pq')/(p|* + |g|?) is finite every-
where in C. Then

de = 2Re(ada) = 2Re(ada),

so that
dede  4Re(ada)Re(ada)

& (6763

By the Cauchy—Schwartz inequality this is bounded
above by 4 da da, which gives the required result.



So the information metric is a well-defined sym-
metric two-tensor on the space of rational maps.
It is not hard to see that it is, in fact, degenerate!
Changing the map f by rotating the target sphere
leaves the energy density unchanged, so if X is a
tangent vector to Raty in the direction of such a ro-
tation we have de(X) = 0 and hence g(X, X) = 0.
We can remove this degeneracy by quotienting the
space of rational maps by this action of the rota-
tion group. We set

Mk = Ratk / SO(?))

and consider the energy density as defined on ele-
ments of My, obtaining a map

e: M, — C=(C).

The information metric is defined in the same way
as before.

If we compose f : S? — S? with a fractional
linear transformation X of the domain, the result
is again a new rational map fo X. This defines an
action of SL(2,C) on Raty that clearly descends to
M. It is straightforward to check that e(fo X) =
e(f) o X|X'|?. It follows from the second property
of the information metric discussed in Section 2
that this metric is invariant under the action of
SL(2,C).

Rational maps of degree one are just fractional
linear transformations. After dividing by the ac-
tion of SO(3) this gives

M, = SL(2,C)/SO(3)

and the information metric is SL(2,C) invariant.
The only possibility is that M;, equipped with
the information metric, is isometric to hyperbolic
three-space.

5. PARAMETRISATION OF RATIONAL MAPS OF DE-
GREE k

So far we have not defined a manifold structure on
either Rat;, or Mj. Indeed, as one is the quotient of
the other, there might be cause for concern unless
the group action is free. We define this structure
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now. Recall that f € Raty can be written as a
quotient of polynomials py + --- + prz® and q =
go + -+ - + qx2"® without common factors, at least
one of p, and g being nonzero. The criterion for
p and g to have a common zero is algebraic in the
coefficients po, ..., Dk, qo, - - -, g (see [Milnor 1993,
p. 69], for example). Interpreting this (2k+1)-tuple
of coefficients as the homogeneous coordinates of a
point in complex projective space CP**!, we see
that Rat, can be identified with the complement of
an algebraic subset of CP?**!, which is open and so
has a natural structure as a (2k + 1)-dimensional
complex manifold or a (4k + 2)-dimensional real
manifold. For k£ > 0 any rational map is onto, so
SO(3) acts freely on Rat, and My is a manifold of
real dimension 4k — 1.

Because SO(3) acts transitively on the sphere
with stabiliser SO(2) = U(1), the quotient M; =
Rat;, /SO(3) factors through Rat), the space of
based rational maps of degree k—those taking, say,
oo to 0. Then My, = Rat, /U(1), where U(1) is the
stabiliser of 0. In the current situation, the condi-
tion that oo maps to 0 is equivalent to p; = 0, so
Rat; can be identified with Rat, N{p, = 0}. By
the same argument as in the preceding paragraph,
Rat? is the (open) complement of an algebraic sub-
set of CP?*, or indeed of C?** because we can nor-
malize the coefficient g, to be 1. The action of
U(1) on Rat} of which M, is the quotient is given
by

exp(if)(p, q) = (exp(ib)p, q).

This action is free.

Rather than show that e is an immersion as a
map from My, it is simplest to consider it as a
map from Ratz and show that the only tangent
vectors in the kernel of the tangent map to e are
those pointing in the direction of the U(1) fibres.
Note that at a point (p,q) the tangent vectors in
the U(1) fibre direction are those of the form v =
(iup,0) where p is a real number.

Two proofs of the fact that e is an immersion
shall be given. The first, in Section 6, is a computer
experiment with the case £k = 2. This was what
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motivated the search for the analytic proof that is
given in the Section 7.

6. THE COMPUTER PROOF FOR k = 2
Let
p(2) az+b
q(z)  22+cz+d
be our rational map. The condition that p and ¢

do not have a common zero is easily computed by
substituting the known zero of p into ¢: we get

b?> + da® — abc # 0. 6.1)

So Rat? can be identified with the open subset of
C* where b2 + da? — abc # 0. The space M is the
quotient of this open set under the action of U(1)
defined by

exp(i6)(a, b, c,d) = (exp(if)a, exp(ih)b, c,d).

To find the kernel of the tangent map to the en-
ergy we look at the exterior derivative de of the
energy density (4.2). This differential form is a
quotient of polynomials in z and Z with denomi-
nator (pp + ¢g)*. To find out when it vanishes it
suffices to examine the numerator

n = (pp+ qq)* de,

a polynomial in z and zZ whose coeflicients are lin-
ear combinations of the differential forms da, db,
dc, dd and their complex conjugates. Applying this
to a tangent vector v gives a polynomial n(v) in z
and z, and we must show that if its coeflicients are
all zero we necessarily have v = (ita, ith, 0, 0) for ¢
real.

This calculation is impractical if approached the
wrong way, because of the number of terms of n(v):
when expanded using the symbolic manipulation
program Maple [Char et al. 1991], this polynomial
is some 300 lines long. One way to proceed is this:
pick out the leading coefficient of n(v)—a quite
simple expression—and set it to zero. This imposes
a relation between da(v) and da(v). Then substi-
tute this into n(v), simplify the result and pick out
the next leading coeflicient. This imposes a new

relation. Continue on in this way, in the hope that
the desired condition on v is forced before the re-
lations make the polynomial vanish. This indeed
occurs, and hence e is an immersion and the infor-
mation metric is nondegenerate on M,.

Although the calculation could done with pen
and paper, symbolic manipulation software such
as Maple makes the process much less painful and
decreases the probability of error. Because some
readers may be as unfamiliar with use of such sys-
tems as I was when this work was started, I will
detail what happens. Let v = (v,, U, ¢, v4); then
there are two cases:

Case 1: a # 0. The leading coefficient of n(v) is
V.0 + Va0, and this vanishes if and only if v, = ita
for some real number ¢.

Assign the variable v, the value ita and the vari-
able ¥, the value —ita. Simplify the resulting ex-
pression and extract the coefficient of z*z®, which
is

2a(Ty + ith — v.a).
As a # 0 this expression vanishes only if v, =
itb 4+ v.a and v, = —ith+ v.a. Assign these val-
ues and simplify; the coefficient of 2*z? is

3(0.Caa — Vg0 — V.ab) = 3aa(v.C — Vg — V.b/a).
Again using a # 0, deduce that vz = v.(c — b/a)

and vy = v.(¢ — b/a). Substitute this into what
remains of n(v) and obtain the coefficient of z*z:

45,2 (—abé + b2 + da?).
a

Now use (6.1) to derive o, = 0 and v, = 0, then
work back to get vg, 94 = 0 and finally

Vp = ltl_), 1_)1, = —1tb.

Hence v = (ita,itb,0,0) as required.

Case 2: a = 0. Here (6.1) takes the form b # 0.
Proceeding as in the first case, compute the lead-
ing coefficient of n(v) as 2v.b, so v, = 0. Assign
the value zero to v, and simplify; the next leading
coefficient is

40pb + 4vyb,



so v, = itb for some real t and T, = —ith. Assign
these values and simplify; the leading coeflicient
becomes —63,bb, so T, = 0 and v, = 0. The next
leading coefficient has the form —8%bb, so v4 = 0.
Hence v = (0,14tb, 0,0) = (ita, itb,0,0), as required.

7. ANALYTIC PROOF FOR ARBITRARY k

So far all the holomorphic maps we have been con-
sidering have have been defined on all of S? and
when originally submitted this paper contained an
analytic proof that the energy density of such maps
is an immersion. It was suggested by a referee that
this result should, in fact, be local, that is, true for
maps defined on any open subset of S2. This turns
out to be the case. Perhaps referees are an even
better source of inspiration than computers!

We give an analytic proof of the local result, fol-
lowed on the next page by a more geometric one,
suggested by Curt McMullen.

Consider a family of holomorphic maps f; from
a connected open subset V of S? into S?, param-
etrised by ¢ in a ball of radius € in R*. We shall
assume that the dependence on t is smooth and,
of course, that the derivative of the energy e(f;) is
zero at t = 0. Identify S? with the extended com-
plex plane and fix a point 2y in V. Since SU(2) —
52 is a locally trivial principal bundle we can, by
shrinking € if necessary, lift the function ¢ — f;(2o)
to a function ¢ — g;(2¢) into SU(2). The map
(9:(20)) "' f: now maps z, to 0 and has the same
energy as f;, so we may as well assume at the out-
set that f;(z9) = 0.

Let f = fo and let f denote the derivative of f;
with respect to ¢t at ¢ = 0. We will show that f =
i f, where p is a real constant. Note that because
f and f are holomorphic and V is connected this
is equivalent to showing that Re(ff) = 0 in some
neighbourhood of z,. Indeed, if this is true, f/ (if)
is real and meromorphic in a neighbourhood of z,
and therefore equals a constant i, so that f —iuf =
0 in this neighbourhood and hence on all of V. To
pick the neighbourhood note that, by continuity,
after a possible decrease in ¢, we can find an open
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disk U about z, that contains no pole of f; for all
t with |¢t| < e. From now on we work in U.
The energy of the map f; can be written as

e(f) = 90log(1+ |£.*),
where we use the shorthands & = 3/0z and 0 =
0/0%. Then

d
%10g(1+ |ft|2)

t=0

is in the kernel of 80 on U. Tt follows that

L 1og(1 4+ £?)

dt sety

t=0

for some analytic function ¢. Computing the deriv-
ative with respect to ¢t at ¢ = 0 yields

2Re(ff) = (1+ F )¢ + @) (7.1)

If we evaluate this at z; we find that

¢(20) + P(20) = 0.

If we differentiate (7.1) with respect to z any num-
ber of times and evaluate at z, we find that ¢ is a
constant, so ¢4+ @ = 0. Hence we have Re(ff) = 0
as required.

A similar approach can also be used to show that
the energy density is injective. If two holomorphic
functions f; and f> have the same energy density,

then | |2
_ 1+f1)

Adlog| — ) =0
g(1+ e

and hence

1+|f1|2) _
log( ALY — oy
g(1+|f2|2 vy

for holomorphic ¢. Letting ¢ = exp(y) gives
L+ A7 = A+ A1),

Calculating the derivatives of ¥ at zo and using the
fact that f1(zo0) = f2(20) shows that 1 is a constant
complex number of modulus 1. Hence |f;|* = |f2]?
and it follows that f; = wf, for w some constant
of modulus 1, as required.
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McMullen’s geometric argument is the following.
To see that the energy density is injective, note
that a holomorphic map f of the type we are in-
terested in is determined by its values on an open
set, so we can always restrict to an open set U on
which f is injective. If we now have two maps with
the same energy density, composing one with the
inverse of the other we get a conformal map be-
tween open subsets of S? that preserves the area
form, and hence is a local isometry. It is well known
that such a map must be a rotation.

To see that the energy density is injective, note
that f induces a linear map from, on the one hand,
the tangent space at f to the space of holomorphic
maps U — S2, to, on the other hand, the space of
holomorphic tangent vector fields on f(U). Say-
ing that the derivative of the energy map is zero
along some tangent vector f is saying that the cor-
responding vector field preserves the metric of S2.
Such a vector field corresponds to the action of an
element of the Lie algebra of the rotation group.

CONCLUSION

We have seen that the information metric on the
space of rational maps modulo isometries is nonde-
generate. As was discussed in the Introduction, the
original reason for considering this problem was to
provide a model for the information metric on the
space of instantons. This work is still in progress.
One partial result is that for the moduli spaces
considered in Donaldson’s theorem, that have a
boundary looking like the four-manifold in ques-
tion, it can be shown that the information metric
in a neighbourhood of this boundary is nondegen-
erate.

In addition to the applications indicated of the
information metric to instantons, one can consider
generalisations to the space of harmonic maps be-
tween two Riemannian manifolds M and N, mod-
ulo the action of isometries of the space N. For
definitions in what follows see for instance [Eells
and Lemaire 1983]. The energy density of a map
f: M — N is given by e(f)(z) = |d.f|?, where d, f

is the tangent map from T,M to T%)N and the
norm is taken using the metrics on the two tangent
spaces. The energy of f is E(f) = [,, e(f) volu.
If f; is a family of maps from M to N, its tangent
at t = 0 is a section of the pullback bundle f~'TN
where f = fy. If X is such a section, it is easy to
show that the derivative of the energy density is

dye(X) = (df, 'V X),

where f~1V is the pullback connection and the in-
ner product is that induced on T*M ® f~'TN by
the respective metrics. The proof in Section 4 that
shows that the integral defining the information
metric converges can now be generalised to this
case. Of course in general one needs to consider
carefully if there is a manifold of harmonic maps; I
am indicating here only that there is a well-defined
two-tensor on the space of all maps. Nevertheless
this result is useful in two cases.

The first is when M is a Riemann surface and
N = S2. It was pointed out to me by a referee that
the local result in Section 7 can be applied to show
that the information metric is non-degenerate on
the space of all holomorphic maps from M to S?
modulo isometries of S2.

The second is when M = S? and N = CP,.
Now the space of interest is rational maps modulo
PU(n + 1) acting as isometries of CP,,. If we con-
sider such a map locally we get a holomorphic map
f:U — C*"! and we can proceed as in Section 7.
The energy density is now

e(f) = 09log((f, ),

where ( , ) is the hermitian inner product on C***.
We can assume that f(zy) = (1,0,...,0) and the
same sort of argument shows that Re(f, ) = 0 for
all z. We need to show now that this is only pos-
sible if f = X f for some constant skew-hermitian
matrix X. This needs some linear algebra and the
condition that f is full (that is, does not have its

image in a proper subspace).
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