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The information metric is a construction in statistics which can

be used to define a (possibly degenerate) metric on various

moduli spaces such as those of instantons and harmonic maps.

This metric is shown to be nondegenerate for the space of

harmonic maps of the two-sphere onto itself of any degree.

1. INTRODUCTIONThe information metric arises in statistics as a met-ric on a manifold of probability distributions [Rao1945]. Its construction is very simple and can beapplied, in principle, to any manifold that parame-trises a set of probability distributions or measures.However, in this general setting, the informationmetric may be degenerate.Such manifolds can be taken, for example, as theminimum sets of variational problems. Here eachpoint of the minimum set has associated to it anenergy density function, which after appropriatescaling can be regarded as a probability densityfunction.The example I would ultimately like to under-stand is the information metric on the moduli spaceof instantons on a four-manifold. The reader isreferred to [Donaldson and Kronheimer 1990] fordetails and de�nitions. This space is of particularimportance in the study of four-manifolds, where,among other things, it leads to the celebrated theo-rem of Donaldson on the non-smoothability of cer-tain four-manifolds, which leads, in turn, to theexistence of exotic R 4 's. Except for instantons ofcharge one on the four-sphere, essentially nothingis known about the structure of the informationmetric on this manifold|even whether it is non-degenerate. However, for charge-one instantons onthe four-sphere the moduli space is the �ve-ball and
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symmetry considerations [Hitchin 1988] show thatthe information metric is the hyperbolic metric.In an attempt to develop some intuition for theproblem just described, I have studied its analoguefor rational maps from the two-sphere to itself.These are harmonic maps of the two-sphere to it-self of minimum energy and positive degree. Theinformation metric turns out to be degenerate indirections corresponding to compositions of the ra-tional map with isometries of the target sphere.This de�nes an action of SO(3) on the space of ra-tional maps and the appropriate space to consideris the quotient of the space of rational maps by thisaction. These isometries play a role analogous togauge transformations for instantons.For example, when the map has degree one, thespace of rational maps is isomorphic to PSL(2; C )and the space of interest is PSL(2; C )=SO(3) =SL(2; C )=SU(2), which is a well-known model forhyperbolic three-space. The information metric inthis case is indeed the hyperbolic metric, because ofsymmetry considerations completely analogous tothe instantons of charge one on the four-sphere|namely, the metric is determined, up to scale, bythe fact that it is invariant under the group of con-formal transformations of the two-sphere or four-sphere as the case may be (see the end of Section 4).Section 2 de�nes the information metric in itstraditional context, and Section 3 details the exten-sion to manifolds of minima. Sections 4 and 5 spe-cialize to the case of rational maps. Section 6 givesa computer proof that for maps of degree two theinformation metric is nondegenerate, Section 7 ananalytic proof that works for maps of any degree.The latter proof of course makes the former re-dundant, but I have included it as an interestingexample of the power of symbolic computation inmathematical experimentation, and because it pro-vided the essential motivation for the search for theanalytic proof for maps of any degree. There wasno other source of intuition, other than the sim-ple, highly symmetric cases like charge-one mapsand instantons, that suggested that the informa-tion metric would be nondegenerate.

Of course, the analytic proof is, in its turn, mo-tivation to investigate further the instanton case.This is work in progress and I return to it in theConclusion. For those familiar with instantons, letme remark here that the information metric is mostde�nitely not the same as the L2 metric on themoduli space. For instance, in the case of instan-tons on the four-sphere of charge one, the infor-mation metric has negative curvature and in�nitevolume, whereas the L2 metric has positive curva-ture and �nite volume [Groisser and Parker 1987].In the conclusion I also discuss some possiblegeneralisations to other spaces of harmonic andholomorphic maps.
2. THE INFORMATION METRIC IN STATISTICSThe information metric arises in statistics in thefollowing manner. Interest lies in a submanifoldP of the space of all probability measures of someprobability space 
. To avoid the technicalities in-volved in describing what that might mean, it isusual to assume that P is parametrised by coordi-nates � so it has the form:P = fp( ; �)� j � 2 U � R ng;where � is a measure on 
, U is an open subsetof R n and p( ; �) is a probability density functionon 
, for each � 2 U . It will become clear belowthat various conditions need to be imposed on thedi�erentiability of p as a function of � and on theintegrability of p and its partial derivatives. Theseconditions will be ignored in this motivational dis-cussion but addressed later for the case of rationalmaps.The information metric is de�ned in the � coor-dinates by gij = Z
 1p @p@�i @p@�j �:Various more invariant formulations are possible.We can suppress the parameters � and replace thecoordinate vector �elds by two tangent vectors X
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and Y in the tangent space to P at p�: the metricapplied to these two vectors is thengp(X;Y ) = Z
 1pX(p)Y (p)�;where X(p) is the function on 
 whose value atx 2 
 is the result of applying X to the functionon P of density at x (i.e., to p� 7! p(x)). Finallywe can suppress the dependence on the tangentvectors by letting dp dp be the tensor that whenapplied to the two tangent vectors X and Y yieldsX(p)Y (p): then gp = Z
 1p dp dp�:Although it is not important for the applicationsbelow, it is worth remarking that the informationmetric is de�ned in statistics in a slightly di�er-ent manner. There the so-called \log-likelihood" isde�ned by l(�) = log p(�), and the metric is thengij = Ep((@l=@�i)(@l=@�j)), where Ep(f) is the ex-pectation of the random variable f with respect tothe density p, that is, Ep(f) = R
 fp�. For moredetails see [Amari 1985; Murray and Rice 1993].The information metric has two, related, prop-erties that will be important below. First, if themeasure � is changed to another equivalent mea-sure (exp f)�, the metric does not change. To seethis, let �0 = (exp f)� and suppose p0�0 = p�; thenp = (exp f)p0 and1p0 dp0 dp 0�0 = 1p dp dp�; (2.1)so that the metric is the same for either choice ofmeasure. This means that the information metricreally lives on the space of measures. A more directde�nition is possible [Murray and Rice 1993].Secondly, the information metric enjoys an im-portant invariance property. A transformation of
 induces a transformation of the space of mea-sures on 
. Assuming this transformation �xesP and acts on it as a di�eomorphism, it is easyto check that this action is isometric. This is the

property that proves that on the space of instan-tons of charge one or of rational maps of degreeone the information metric coincides with the hy-perbolic metric.An interesting example of the information met-ric for both geometers and statisticians is the spaceof normal densities. Here 
 is the real line andthe mean and variance identify the space of allnormal densities with the upper half-plane in R 2 .A straightforward calculation shows that the in-formation metric on this upper half-plane is thePoincar�e metric [Rao 1945; Amari 1985].
3. THE INFORMATION METRIC ON MODULI SPACESConsider a general variational problem. Assumethat 
 is a Riemannian manifold and let ' besome type of object on 
 whose energy can be min-imised. For instance, ' may be a connection on abundle over 
, or a map to another Riemannianmanifold. Denote by E(') the energy of ', andassume that it is the integral of an energy densitye('): E(') = Z
 e(') vol;where vol is the Riemannian volume form on 
.Assume that the minima of E form a manifold P .Then the construction of the information metriccan be applied, because all points of P have thesame total mass (integral). If X and Y are tangentvectors at ' 2 P and X(e) and Y (e) are the ratesof change of e in the corresponding directions, theng'(X;Y ) = Z
 1eX(e)Y (e)�:If this integral exists, it de�nes a possibly degen-erate metric on P , that is a positive, symmetrictwo-tensor on P . For this metric to be nondegen-erate it is necessary and su�cient that X(e) neverbe identically zero on 
 unless X is zero. This isequivalent to asking that the energy density, con-sidered as a mape : P ! C1(
; R );
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be an immersion (have an injective derivative). Inthe cases considered by statisticians this conditionis built in as an assumption, namely that the so-called \scores" @l=@�i = (@p=@�i)=p be linearly in-dependent as functions on 
.
4. RATIONAL MAPSThe reader is referred to [Eells and Lemaire 1983],for example, for the basic results stated here. Wedenote by Ratk the space of rational maps of S2 ofdegree k, that is, maps that are given, under iden-ti�cation of S2 with the extended complex planeby stereographic projection, by

f(z) = p(z)q(z) ;where p and q are polynomials of degree at most kwithout common factors, at least one being of de-gree k. These maps are conformal except at branchpoints, that is, the derivative df(x), considered asa linear map from the tangent space at x 2 S2to the tangent space at f(x), is a scalar multi-ple of an orthogonal transformation with respectto the (spherical) inner product on both tangentspaces. We denote by jdf(x)j this scalar factor. Itis well-known that rational maps are minima of theDirichlet energy functional
E(f) = ZS2 jdf j2 volS2 ;where volS2 is the spherical volume (or area) form.We denote the corresponding energy density jdf j2by "(f).It is convenient to work in the complex planeinstead of in S2. In C , the Riemannian metricinduced from S2 by stereographic projection haselement of length 2=(1 + jzj2) times the Euclideanelement of length. Therefore

"(f)(z) = jf 0(z)j2(1 + jf(z)j2)2 (1 + jzj2)2;

where f 0 is the usual complex derivative of f re-garded as a meromorphic function. Also,volS2 = 4(1 + jzj2)2 volC ;where volC = 12 i dz ^ d�z is the usual volume ele-ment in C . Thus E(f) is the integral of the energydensity e(f) = 4jf 0j2(1 + jf j2)2over C with respect to volC . Note that e(f) is �niteat every point in C , because "(f) is.The information metric is the symmetric tensorde�ned by g = ZS2 1" d" d" volS2 (4.1)if this integral exists. The integrand is �nite exceptat the points where df = 0|the branch points off|which are �nite in number. It follows that theconvergence of (4.1) only has to be checked aroundeach of these points; moreover we can assume that1 2 S2 is not a branch point, so using (2.1) wecan write g = ZC 1ede de volC ;and we just have to check that this integral con-verges near the points where e = 0. Using therepresentation f = p=q, where p and q are polyno-mials, we have
e(f) = ����4 qp0 � pq0jpj2 + jqj2 ����2 = j�j2; (4.2)where � = 4(qp0 � pq0)=(jpj2 + jqj2) is �nite every-where in C . Thende = 2Re(�d��) = 2Re(��d�);so that de dee = 4Re(�d��)Re(��d�)��� :By the Cauchy{Schwartz inequality this is boundedabove by 4 d� d��, which gives the required result.



Murray: The Information Metric on Rational Maps 275

So the information metric is a well-de�ned sym-metric two-tensor on the space of rational maps.It is not hard to see that it is, in fact, degenerate!Changing the map f by rotating the target sphereleaves the energy density unchanged, so if X is atangent vector to Ratk in the direction of such a ro-tation we have de(X) = 0 and hence g(X;X) = 0.We can remove this degeneracy by quotienting thespace of rational maps by this action of the rota-tion group. We setMk = Ratk =SO(3)and consider the energy density as de�ned on ele-ments of Mk, obtaining a mape :Mk ! C1(C ):The information metric is de�ned in the same wayas before.If we compose f : S2 ! S2 with a fractionallinear transformation X of the domain, the resultis again a new rational map f �X. This de�nes anaction of SL(2; C ) on Ratk that clearly descends toMk. It is straightforward to check that e(f �X) =e(f) �XjX 0j2. It follows from the second propertyof the information metric discussed in Section 2that this metric is invariant under the action ofSL(2; C ).Rational maps of degree one are just fractionallinear transformations. After dividing by the ac-tion of SO(3) this givesM1 = SL(2; C )=SO(3)and the information metric is SL(2; C ) invariant.The only possibility is that M1, equipped withthe information metric, is isometric to hyperbolicthree-space.
5. PARAMETRISATION OF RATIONAL MAPS OF DE-

GREE kSo far we have not de�ned a manifold structure oneither Ratk orMk. Indeed, as one is the quotient ofthe other, there might be cause for concern unlessthe group action is free. We de�ne this structure

now. Recall that f 2 Ratk can be written as aquotient of polynomials p0 + � � � + pkzk and q =q0 + � � � + qkzk without common factors, at leastone of pk and qk being nonzero. The criterion forp and q to have a common zero is algebraic in thecoe�cients p0; : : : ; pk; q0; : : : ; qk (see [Milnor 1993,p. 69], for example). Interpreting this (2k+1)-tupleof coe�cients as the homogeneous coordinates of apoint in complex projective space C P2k+1 , we seethat Ratk can be identi�ed with the complement ofan algebraic subset of C P2k+1 , which is open and sohas a natural structure as a (2k + 1)-dimensionalcomplex manifold or a (4k + 2)-dimensional realmanifold. For k > 0 any rational map is onto, soSO(3) acts freely on Ratk and Mk is a manifold ofreal dimension 4k � 1.Because SO(3) acts transitively on the spherewith stabiliser SO(2) = U(1), the quotient Mk =Ratk =SO(3) factors through Ratbk, the space ofbased rational maps of degree k|those taking, say,1 to 0. ThenMk = Ratbk =U(1), where U(1) is thestabiliser of 0. In the current situation, the condi-tion that 1 maps to 0 is equivalent to pk = 0, soRatbk can be identi�ed with Ratk \fpk = 0g. Bythe same argument as in the preceding paragraph,Ratbk is the (open) complement of an algebraic sub-set of C P2k , or indeed of C 2k because we can nor-malize the coe�cient qk to be 1. The action ofU(1) on Ratbk of which Mk is the quotient is givenby exp(i�)(p; q) = (exp(i�)p; q):This action is free.Rather than show that e is an immersion as amap from Mk, it is simplest to consider it as amap from Ratbk and show that the only tangentvectors in the kernel of the tangent map to e arethose pointing in the direction of the U(1) �bres.Note that at a point (p; q) the tangent vectors inthe U(1) �bre direction are those of the form v =(i�p; 0) where � is a real number.Two proofs of the fact that e is an immersionshall be given. The �rst, in Section 6, is a computerexperiment with the case k = 2. This was what
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motivated the search for the analytic proof that isgiven in the Section 7.
6. THE COMPUTER PROOF FOR k = 2Let f(z) = p(z)q(z) = az + bz2 + cz + dbe our rational map. The condition that p and qdo not have a common zero is easily computed bysubstituting the known zero of p into q: we getb2 + da2 � abc 6= 0: (6.1)So Ratbk can be identi�ed with the open subset ofC 4 where b2 + da2 � abc 6= 0. The space M2 is thequotient of this open set under the action of U(1)de�ned byexp(i�)(a; b; c; d) = (exp(i�)a; exp(i�)b; c; d):To �nd the kernel of the tangent map to the en-ergy we look at the exterior derivative de of theenergy density (4.2). This di�erential form is aquotient of polynomials in z and �z with denomi-nator (p�p + q�q)3. To �nd out when it vanishes itsu�ces to examine the numeratorn = (p�p+ q�q)3 de;a polynomial in z and �z whose coe�cients are lin-ear combinations of the di�erential forms da, db,dc, dd and their complex conjugates. Applying thisto a tangent vector v gives a polynomial n(v) in zand �z, and we must show that if its coe�cients areall zero we necessarily have v = (ita; itb; 0; 0) for treal.This calculation is impractical if approached thewrong way, because of the number of terms of n(v):when expanded using the symbolic manipulationprogram Maple [Char et al. 1991], this polynomialis some 300 lines long. One way to proceed is this:pick out the leading coe�cient of n(v)|a quitesimple expression|and set it to zero. This imposesa relation between da(v) and d�a(v). Then substi-tute this into n(v), simplify the result and pick outthe next leading coe�cient. This imposes a new

relation. Continue on in this way, in the hope thatthe desired condition on v is forced before the re-lations make the polynomial vanish. This indeedoccurs, and hence e is an immersion and the infor-mation metric is nondegenerate on M2.Although the calculation could done with penand paper, symbolic manipulation software suchas Maple makes the process much less painful anddecreases the probability of error. Because somereaders may be as unfamiliar with use of such sys-tems as I was when this work was started, I willdetail what happens. Let v = (va; vb; vc; vd); thenthere are two cases:
Case 1: a 6= 0. The leading coe�cient of n(v) isva�a+ �vaa, and this vanishes if and only if va = itafor some real number t.Assign the variable va the value ita and the vari-able �va the value �it�a. Simplify the resulting ex-pression and extract the coe�cient of z4�z3, whichis 2a(�vb + it�b� �vc�a):As a 6= 0 this expression vanishes only if vb =itb+ vca and �vb = �it�b+ �vc�a. Assign these val-ues and simplify; the coe�cient of z4�z2 is3(�vc�ca�a� �vda�a� �vca�b) = 3a�a(�vc�c� �vd � �vc�b=�a):Again using a 6= 0, deduce that vd = vc(c � b=a)and �vd = �vc(�c � �b=�a). Substitute this into whatremains of n(v) and obtain the coe�cient of z4�z:4�vca�a(��a�b�c+�b2 + �d�a2):Now use (6.1) to derive �vc = 0 and vc = 0, thenwork back to get vd; �vd = 0 and �nallyvb = it�b; �vb = �itb:Hence v = (ita; itb; 0; 0) as required.
Case 2: a = 0. Here (6.1) takes the form b 6= 0.Proceeding as in the �rst case, compute the lead-ing coe�cient of n(v) as 2va�b, so va = 0. Assignthe value zero to va and simplify; the next leadingcoe�cient is 4�vbb+ 4vb�b;
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so vb = itb for some real t and �vb = �it�b. Assignthese values and simplify; the leading coe�cientbecomes �6�vcb�b, so �vc = 0 and vc = 0. The nextleading coe�cient has the form �8�vdb�b, so vd = 0.Hence v = (0; itb; 0; 0) = (ita; itb; 0; 0), as required.
7. ANALYTIC PROOF FOR ARBITRARY kSo far all the holomorphic maps we have been con-sidering have have been de�ned on all of S2 andwhen originally submitted this paper contained ananalytic proof that the energy density of such mapsis an immersion. It was suggested by a referee thatthis result should, in fact, be local, that is, true formaps de�ned on any open subset of S2. This turnsout to be the case. Perhaps referees are an evenbetter source of inspiration than computers!We give an analytic proof of the local result, fol-lowed on the next page by a more geometric one,suggested by Curt McMullen.Consider a family of holomorphic maps ft froma connected open subset V of S2 into S2, param-etrised by t in a ball of radius " in R n . We shallassume that the dependence on t is smooth and,of course, that the derivative of the energy e(ft) iszero at t = 0. Identify S2 with the extended com-plex plane and �x a point z0 in V . Since SU(2)!S2 is a locally trivial principal bundle we can, byshrinking " if necessary, lift the function t 7! ft(z0)to a function t 7! gt(z0) into SU(2). The map(gt(z0))�1ft now maps z0 to 0 and has the sameenergy as ft, so we may as well assume at the out-set that ft(z0) = 0.Let f = f0 and let _f denote the derivative of ftwith respect to t at t = 0. We will show that _f =i�f , where � is a real constant. Note that becausef and _f are holomorphic and V is connected thisis equivalent to showing that Re( _f �f) = 0 in someneighbourhood of z0. Indeed, if this is true, _f=(if)is real and meromorphic in a neighbourhood of z0,and therefore equals a constant �, so that _f�i�f =0 in this neighbourhood and hence on all of V . Topick the neighbourhood note that, by continuity,after a possible decrease in ", we can �nd an open

disk U about z0 that contains no pole of ft for allt with jtj < ". From now on we work in U .The energy of the map ft can be written ase(f) = @ �@ log(1 + jftj2);where we use the shorthands @ = @=@z and �@ =@=@�z. Then ddt log(1 + jftj2)����t=0is in the kernel of @ �@ on U . It follows thatddt log(1 + jftj2)����t=0 = '+ �'for some analytic function '. Computing the deriv-ative with respect to t at t = 0 yields2Re( �f _f) = (1 + f �f)('+ �'): (7.1)If we evaluate this at z0 we �nd that'(z0) + �'(z0) = 0:If we di�erentiate (7.1) with respect to z any num-ber of times and evaluate at z0 we �nd that ' is aconstant, so '+ �' = 0. Hence we have Re( �f _f) = 0as required.A similar approach can also be used to show thatthe energy density is injective. If two holomorphicfunctions f1 and f2 have the same energy density,then @ �@ log�1 + jf1j21 + jf2j2� = 0and hence log�1 + jf1j21 + jf2j2� = '+ �'for holomorphic '. Letting  = exp(') gives1 + jf1j2 = (1 + jf2j2) � :Calculating the derivatives of  at z0 and using thefact that f1(z0) = f2(z0) shows that  is a constantcomplex number of modulus 1. Hence jf1j2 = jf2j2and it follows that f1 = !f2 for ! some constantof modulus 1, as required.
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McMullen's geometric argument is the following.To see that the energy density is injective, notethat a holomorphic map f of the type we are in-terested in is determined by its values on an openset, so we can always restrict to an open set U onwhich f is injective. If we now have two maps withthe same energy density, composing one with theinverse of the other we get a conformal map be-tween open subsets of S2 that preserves the areaform, and hence is a local isometry. It is well knownthat such a map must be a rotation.To see that the energy density is injective, notethat f induces a linear map from, on the one hand,the tangent space at f to the space of holomorphicmaps U ! S2, to, on the other hand, the space ofholomorphic tangent vector �elds on f(U). Say-ing that the derivative of the energy map is zeroalong some tangent vector _f is saying that the cor-responding vector �eld preserves the metric of S2.Such a vector �eld corresponds to the action of anelement of the Lie algebra of the rotation group.
CONCLUSIONWe have seen that the information metric on thespace of rational maps modulo isometries is nonde-generate. As was discussed in the Introduction, theoriginal reason for considering this problem was toprovide a model for the information metric on thespace of instantons. This work is still in progress.One partial result is that for the moduli spacesconsidered in Donaldson's theorem, that have aboundary looking like the four-manifold in ques-tion, it can be shown that the information metricin a neighbourhood of this boundary is nondegen-erate.In addition to the applications indicated of theinformation metric to instantons, one can considergeneralisations to the space of harmonic maps be-tween two Riemannian manifolds M and N , mod-ulo the action of isometries of the space N . Forde�nitions in what follows see for instance [Eellsand Lemaire 1983]. The energy density of a mapf :M ! N is given by e(f)(x) = jdxf j2, where dxf

is the tangent map from TxM to Tf(x)N and thenorm is taken using the metrics on the two tangentspaces. The energy of f is E(f) = RM e(f) volM .If ft is a family of maps from M to N , its tangentat t = 0 is a section of the pullback bundle f�1TNwhere f = f0. If X is such a section, it is easy toshow that the derivative of the energy density is
dfe(X) = hdf; f�1rXi;

where f�1r is the pullback connection and the in-ner product is that induced on T �M 
 f�1TN bythe respective metrics. The proof in Section 4 thatshows that the integral de�ning the informationmetric converges can now be generalised to thiscase. Of course in general one needs to considercarefully if there is a manifold of harmonic maps; Iam indicating here only that there is a well-de�nedtwo-tensor on the space of all maps. Neverthelessthis result is useful in two cases.The �rst is when M is a Riemann surface andN = S2. It was pointed out to me by a referee thatthe local result in Section 7 can be applied to showthat the information metric is non-degenerate onthe space of all holomorphic maps from M to S2modulo isometries of S2.The second is when M = S2 and N = C Pn .Now the space of interest is rational maps moduloPU(n+ 1) acting as isometries of C Pn . If we con-sider such a map locally we get a holomorphic mapf : U ! C n+1 and we can proceed as in Section 7.The energy density is now
e(f) = @ �@ logh(f; fi;

where h ; i is the hermitian inner product on C n+1 .We can assume that f(z0) = (1; 0; : : : ; 0) and thesame sort of argument shows that Rehf; _fi = 0 forall z. We need to show now that this is only pos-sible if _f = Xf for some constant skew-hermitianmatrix X. This needs some linear algebra and thecondition that f is full (that is, does not have itsimage in a proper subspace).
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